
EasyChair Preprint
№ 7099

Computer Vision based Vehicle Detection and
Speed Estimation for Road Safety

Mohammed Ibrahim, B S Divya and Stephan Thompson

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 28, 2021

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Computer Vision based Vehicle Detection and Speed

Estimation for Road Safety

Mohammed Ibrahim

Department of computer science and

Engineering

M S Ramaiah University of Applied Sciences

Bengaluru, India

miayaz26@gmail.com

Divya BS

Department of computer science and

Engineering

M S Ramaiah University of Applied Sciences

Bengaluru, India

divyabies@gmail.com

Thompson S

Department of computer science and

Engineering

M S Ramaiah University of Applied Sciences

Bengaluru, India

thompsoncse@gmail.com

Abstract— Road safety is of immense significance, as travel is

a basic necessity. According to data published by World Health

organization (WHO), nearly 1.3 million people loses their lives due

to accidents and road crashes. This research work focuses on

deploying object detection and tracking algorithms to differentiate

over-speeding vehicles in the traffic using Machine Learning

concepts such as Computer Vision and Deep Learning. A

MobileNet SSD architecture trained on MS COCO dataset for

vehicle detection and identification was adopted. Subsequently,

detected vehicles were tracked with respect to their centroids and

with the help of simple velocity equation, speed of the particular

vehicle was registered. Moreover, the vehicles over-speeding

would be captured along with their timestamp. The captured

images could be shared over file hosting platforms such as

dropbox, google drive, etc. authorities could make use of this

system to bring orders on roadways through imposing fines on the

offenders. Apparently, it can reduce accidents and road crashes.

Keywords— Object Detection, Deep Learning, Computer Vision,

Centroid Tracking

I. INTRODUCTION

 Road safety refers to the procedures and techniques

employed by road transport authorities to avoid road accidents

and crashes to a maximum extent. According to the data

obtained from World Health Organization (WHO), more than

1.3 million people die due to mishaps on road globally. Every

25 seconds a person loses a life on road and the condition is

worse in developing countries such as India. According to a

statement by Nitin Gadkari, the Honorable Union Minister of

India, “the scenario of road accidents in India is far more

serious than Covid- 19, registering around 415 deaths per day”.

While there is a numerous reason for vehicle crashes, over-

speeding constitutes to a major proportion. Speed of the vehicle

is directly proportional to the likelihood of crash. With every

1% increase in the vehicle speed brings about 4% increase in

fatal crash possibility and 3% increase in serious vehicle

damage.

With the help of this research, one can impose fines on the

traffic rules violators. Which can not only reduce the vehicle

crashes, but also, we can impart a sense of responsibility on

road users. This research is mainly developed with Deep

Learning, Image Processing and neural network framework and

techniques, that gives us an opportunity to explore, learn and

make productive use of such areas. The deployment of which

was explained elaborately in the upcoming sections.

A. Motivation

Each and every individual has the right to live and thrive

their way into this world. These basic rights of human beings

are being violated by the inadequate law enforcements of traffic

rules and regulations. According to World Health Organization

(WHO), on an average, road accidents cause harm to more than

3% of the Gross Domestic Product (GDP). Thus, the road

crashes are directly related to the economic status of a country.

We can strive to improve our economy considerably by

reducing the road disasters.

We can easily grasp the increase in the trends of the deaths

over the years with the help of various surveys. And if the

situation persists, the death rate can jump up to 2,60,000 deaths

per year. All these surveys and data indicates that some robust

steps to be taken towards the road safety sector for the

wellbeing of its citizens. This turns out to be the motivation for

this research.

B. Related Work

There are breakthroughs that have been acquired in this

similar field of work hitherto and primarily it is achieved

through various uses of sensors, like VASCAR (Visual

Average Speed Compute and Recorder), RADAR (Radio

Detection and Ranging), LIDAR (Light Detection and

Ranging), Speedometers, Tachometers and many more.

Although, in terms of result accuracy, they work adequate, but

it is the cost of such assets that make them not only inaccessible,

but impractical to deploy at most of the Roadways and

Highways.

Visual Average Speed Computer and Recorder (VASCAR)

is a gadget used to estimate the speed of the vehicles on the

road. The VASCAR covers only certain area of the road where

it is installed. It does not depend on any RADAR or LIDAR for

the estimation of the speeds. The working of VASCAR is quite

accurate, whose accuracy ranges from plus to minus 1%. But it

requires a lot of manual approaches to detect the speed. First of

all, a distance between two points for example, poles, trees, or

any physical things are calculated manually. Secondary a

person needs to be operating the VASCAR. Whenever a vehicle

enters the first point, a button needs to be pressed and when the

vehicle exits through the last point, the timer has to be stopped

manually. This method needs a lot of human intervention,

which can be prone to errors. The working of the VASCAR is

based on the same velocity equation i.e., Speed = Distance/

Time There are breakthroughs that have been acquired in this

similar field of work hitherto and primarily it is achieved

through various uses of sensors, like VASCAR (Visual

Average Speed Compute and Recorder), RADAR (Radio

Detection and Ranging), LIDAR (Light Detection and

Ranging), Speedometers, Tachometers and many more.

Although, in terms of result accuracy, they work adequate, but

it is the cost of such assets that make them not only inaccessible,

but impractical to deploy at most of the Roadways and

Highways.

Visual Average Speed Computer and Recorder (VASCAR)

is a gadget used to estimate the speed of the vehicles on the

road. The VASCAR covers only certain area of the road where

it is installed. It does not depend on any RADAR or LIDAR for

the estimation of the speeds. The working of VASCAR is quite

accurate, whose accuracy ranges from plus to minus 1%. But it

requires a lot of manual approaches to detect the speed. First of

all, a distance between two points for example, poles, trees, or

any physical things are calculated manually. Secondary a

person needs to be operating the VASCAR. Whenever a vehicle

enters the first point, a button needs to be pressed and when the

vehicle exits through the last point, the timer has to be stopped

manually. This method needs a lot of human intervention,

which can be prone to errors. The working of the VASCAR is

based on the same velocity equation i.e., Speed = Distance/

Time.

C. Constraints

Following are the constraints of this research:

⎯ No dataset available for two wheelers and three wheelers which

makes their detection arduous.

⎯ Vehicles over-taking other vehicles has a potential of swapping

their ID’s

⎯ Two overlapping vehicles could be detected as a single vehicle.

⎯ The camera needs to installed very accurately and a small tilt in

the camera angle could produce inaccurate speeds.

⎯ The vehicles on the other side of the road should not be

detected, which can provide disrupted readings.

⎯ If this model is to be installed on a remote camera, a Raspberry

pi and intel movidius neural compute stick (NCS) is required

for fast computation.

II. LITERATURE SURVEY

An approach to create vehicle speed detection system from

a video scene was conducted in 2009 to estimate the speeds of

the vehicles travelling on the road [1][2]. Their work was

successful in estimating speeds but due to low effectiveness and

low performance of the system it could not be employed in real

time. And it requires a lot of time for computing. The system

lacked in efficiency whereas the approach can be used to create

a more robust system.

An Efficient Convolutional Neural Networks for Mobile

Vision Applications i.e., the mobile Nets was utilized [3].

Mobile Nets are based on a streamlined architecture that uses

depth wise separable convolutions to build light weight deep

neural networks. Smaller and faster Mobile Nets using width

multiplier and resolution multiplier by trading off a reasonable

amount of accuracy to reduce size and latency. With the help of

Light weight deep neural networks one can use it for wide range

applications for object detection [4].

The combination of MobileNet and SSDs using Caffe

Version of the original Tensorflow implementation by training

on COCO dataset using OpenCV 3.3 version was explained [5].

This deep learning model uses (MobileNet + SSD), and can

detect objects in approximately 6-8 FPS [6]. Further speed

improvements can be obtained by applying skip frames, using

different variations of MobileNet and using the quantized

version of Squeeze Net. The fact that the author had provided

stored as well as real time analysis of the images in the

algorithm was mentionable.

The speed tracking of the vehicles was explained [7]. They

tracked the vehicles using edge detection. But Speed calculated

was not very accurate. Further work was required in image

processing domain. And not applicable for real time purpose

due to more image processing techniques. This method

included Noise removal, background subtraction,

morphological operations add up to a lot of computation. Thus,

real time implementation isn’t possible.

A Region Based Framework Regression/classification-

based Framework was discussed [8]. We can employ this study

to improve localization accuracy on small objects under partial

occlusions, it is necessary to modify network architectures. This

study has been meaningful for the developments in neural

networks and related learning systems, which provides valuable

insights and guidelines for future progress. This Provides a

detailed review on deep learning-based object detection

frameworks which handle different sub-problems, such as

occlusion, clutter and low resolution, with different degrees of

modifications on R-CNN.

Multi-Scale feature maps, Convolution predictors, Default

boxes and aspect ratios was used [9]. 300 × 300 input, SSD

achieves 74.3% mAP on VOC2007 at 59 FPS on a Nvidia Titan

X and for 512 × 512 input, SSD achieves 76.9% mAP,

outperforming a comparable state-of-the-art Faster R-CNN

model. Experiments and demonstrations prove that given

appropriate training strategies, a larger number of carefully

chosen default bounding boxes results in improved

performance. Given the same VGG-16 base architecture, SSD

compares favorably to its object detector counterparts in terms

of both accuracy and speed. SSD model provides a useful

building block for larger systems that employ an object

detection component.

The main methodology used was bounding box and classes

prediction [10]. At 320 × 320 YOLOv3 runs in 22 ms at 28.2

mAP, as accurate as SSD but three times faster. It also achieves

57.9 AP50 in 51 ms on a Titan X, compared to 57.5 AP50 in

198 ms by RetinaNet, similar performance but 3.8× faster. In

conclusion the authors mentions that computer vision is already

being put to questionable use and as researchers we have a

responsibility to at least consider the harm our work might be

doing. It calculates the Anchor box offset predictions Linear

(x,y) predictions instead of logistic. It is possible that some of

these techniques could eventually produce good results,

perhaps they just need some tuning to stabilize the training.

Real time vehicle tracking with speed estimation was

discussed [11]. The work included Detecting vehicles with

MobileNet SSD and applying speed estimation concurrently.

Although a Powerful system for detection further engineering

is required because of the limitations. In this work Swapping of

object id’s when vehicles change direction was a big problem.

And it Requires manual calibration. An overall efficient system

for real time application. Requires comparatively less

computation power.

III. STUDY OF DATASETS AND ARCHITECTURES

Datasets play an important role in deep learning algorithms.

In fact, the efficiency of the proposed architecture completely

relies on the dataset used for training. Architecture is the

conceptual model of desired functionality.

This section focuses on the architecture design of the

research, the sequential application of the features, flow of

coding syntax and the Hardware and Software requirements

along with their versions.

A. Proposed Architecture

This section can also be referred as Sequence Design. The

major segments of the research can be apportioned into 3

phases, hence creating a sequential plan for befitting research

configuration, analysis, working and performance. Fig 1

describes the overall concept.

Fig. 1. Phase1: Vehicle Detection. Phase2: Vehicle Tracking. Phase3: Speed
Estimation. The above Fig portrays the entire High Level Design of the project.

The inputs were obtained from the traffic cameras. This input was then

processed with image processing techniques such as image smoothing, scaling,
noise reduction. Then the inputs were analyzed and detected for any vehicles.

The detected vehicles were tracked and their speeds were calculated. If the

vehicle violates the maximum speed limit their image was captured and saved
into Dropbox. The log file contains the other details such as the actual speed of

the vehicle, specific date and time, and the image ID and ID of the Vehicle.

B. Vehicle Detection Algorithm

To detect surrounding objects accurately, several existing

detection systems which could classify objects and evaluate it

at various locations in an image were investigated. RCNN uses

region proposal methods to generate possible bounding boxes

in an image. Then, various ConvNets are applied to classify

each box. The post processed results give finer output boxes.

The slow testing-time, complex training pipeline and the large

storage does not fit into our application. So, the models which

are compatible with resource constrained devices and have a

tiny architecture are desired. From the literature it was found

that MobileNet-SSD was the more suitable model for this

research.

• MobileNet SSD trained on COCO dataset.

Basically, MobileNet works as a feature extracting base

network for (Single-Shot multi box Detection) SSD,

combinedly MobileNet-SSD gives the feature extraction and

image classification results necessary for object detection as

shown below.

The MS COCO (Microsoft Common Objects in Context)

dataset is a large-scale object detection, segmentation, key-

point detection, and captioning dataset. The dataset consists of

328K images. The COCO Dataset has 80 classes. In this

research, the pretrained MobileNet SSD constitutes of 21

Classes, as this research requires the classes which have only

Automobiles and Vehicles in them.

⎯ Classes that contain Automobiles and Vehicles like

1. Bus

2. Car

3. Motorbike

The designs or diagrams in this section will focus on the

coding syntax and primary python packages required for

executing the program using Python and OpenCV. This section

digs deeper into the phasing design of the research and

emphasizes on the flow of code with the help of low-level

diagrams as shown as in Fig 2.

Fig. 2. The flowchart representing the flow of code implemented for the real-

time Cars detection executed on PyCharm 2012.2 (IPython 3.8)

The above diagram depicts the pipeline employed to obtain

vehicle detection with the help of MobileNet SSD Architecture

trained on MS COCO dataset. The Threshold parameter needs

to be adjusted manually for confidence. The MobileNet

Architecture can detect multiple objects in a single shot. That’s

why the name SSD (Single Shot Object Detection). MobileNet

SSD is based on a Feed-Forward convolutional neural network.

C. Vehicle tracking Algorithm

Vehicle tracking is a utilization of object tracking where

moving objects are situated inside video data. Thus, vehicle

tracking algorithms can handle live, real-time film and

furthermore pre-recorded video documents.

The vehicle tracking algorithm is called centroid tracking as

it depends on the Euclidean distance between (1) existing

vehicle centroid (i.e., vehicle the centroid tracker has

effectively seen previously) and (2) new centroids for the same

vehicle between ensuing casings in a video.

When a vehicle is detected by above mentioned vehicle

detection algorithm, the coordinates of the bounding boxes

produced by detections were forwarded to the tracking

algorithm. The tracking algorithm calculates the centroids of

the bounding boxes by determining the diagonals.

When the object moves in any direction, coordinates of the

bounding boxes were updated. The algorithm keeps constantly

checking whether the centroids were at exact center. Else it w

update the location of the centroid. This process keeps repeating

for every detected vehicle.

Steps involved in a vehicle tracking algorithm:

Step 1: Accepting the input bounding boxes coordinates and

computing their centroids with the help of bounding box

diagonals.

Step 2: When the new bounding boxes are obtained for the

same vehicle, we will compute the Euclidean distance between

newly obtained bounding boxes and the existing ones for the

same vehicle.

Step 3: Updating the bounding box coordinates (x, y) of the

moving vehicle

Step 4: Registering new objects with the help of their Bounding

boxes

Step 5: Deregistering of the older objects along with their IDs

when they disappear from the frame.

D. Speed estimation

Each centroid represents a vehicle. One can easily track the

movement of the vehicles by their centroids. The camera was

installed on one side of a road or highway which will cover one

complete side of the road, which means the camera was

installed at such an angle that all incoming vehicles can be

detected and tracked.

For speed estimation was carried out using the centroids.

Four imaginary lines are created along the width of the input

video frame as shown in the Fig 3 when the centroids meet the

first line a timestamp of the centroid is registered. The same

process is carried out for all the four imaginary lines. Each

timestamp is registered which will help in speed estimation.

And we have to manually calculate the distance covered by

those imaginary lines. This process needs to be done on-site.

Now we have two main variables for the estimation of speed

of vehicles i.e., Time and Distance. The basic formula for

calculating speed is Speed = Distance / Time. We can easily

calculate the speed with the two variables obtained. Here

distance was measured in terms of pixels as shown in Fig 5

(from A to B was 360 pixels, B to C was 420, C to D was 480

and D to end was 540, which was corresponding to equidistance

80m) and time was measured in terms of number of frames in

the video. Here it was 8-10 Frames Per Second. The online

video mentioned in [12] was used for carrying out trials and

evaluating the model performance.

Fig. 3. Fig showing the imaginary lines for the calculation of speed. user
viewing point is the camera's point of view and the vehicles approach from

opposite side.

IV. IMPLEMENTATION

Implementation of all the above-mentioned modules integrated

together, is carried out by running the code in the PyCharm

(Version 2012.2). The complete implementation of the code is

explained in this section.

TABLE 1. Specifications of hardware requirements

Hardware Requirements

Operating system Windows, Ubuntu/Raspbian

CPU

Intel Core i3/i5, (or AMD

Ryzen 3/5)

System type

64-Bit

RAM

8 GB

SD Card

4 GB

Camera Resolution

>10Mega pixels and

minimum 30FPS

Processing unit for

Raspberry Pi

Intel Movidius Neural

Compute Stick (NCS)

To run the code successfully on a local hardware one need

to be sure of the hardware requirements which were mentioned

above. We can execute the code on any python terminals or any

IDEs (interactive development environments). We have to be

sure that the python version is higher than 3.0 and all the

modules or libraries mentioned before were successfully

installed.

V. RESULTS AND DISCUSSIONS

The protype software can detect, Track and estimate the

speed of the vehicles travelling on the road. Through which law

and order could be imposed on road and minimize road

accidents due to over-speeding. With the help of this model,

one can penalize the offenders as their images were captured.

This project had the potential to be far more economical than

the existing ways of penalizing the speed mongers. Without any

doubt this can reduce the accidents. Fig 4 shows the results of

vehicle detected and ID assigned.

Fig. 4. Fig depicts the results obtained from applying Centroid tracking

algorithm on the vehicles detected from MobileNet SSD trained on MS COCO

Dataset. vehicles were tracked successfully and each vehicle is assigned a

unique identification number ID’s

The Centroid tracking algorithm would track the vehicles

detected with the help of MobileNet SSD trained on MS COCO

Dataset. When the vehicles were detected, they were assigned

distinct IDs for their identification. Vehicles were tracked with

respect to their IDs. When a bounding box was created around

the detected vehicle, its centroid was calculated by using their

diagonals. The vehicles would have the same ID until they were

in the frame. When the vehicle leaves the frame or the vehicle

disappears their distinct ID was deregistered. When a new

vehicle was detected, the algorithm would assign a new ID to

that vehicle in the increasing number order.

The Frames per second (FPS) was around 8-10 FPS. If the

vehicles stay in frames for more frames, this indicates the speed

of the vehicle was less. Similarly, if vehicles stay in frames for

less frames, this indicates the speed of the vehicle was more.

So a constant frame per second (FPS) was very necessary to

acquire more precise speeds. Fig 5 showed the output of the

developed vehicle speed detecting software.

The speed and the ID of the vehicles were displayed in the

terminal. Speed of each vehicle would be calculated and printed

in the python terminal. The maximum speed of the vehicles was

set to 65KMPH, from now on the vehicles exceeding the speed

limit would be noted, captured and saved in local drive or

dropbox (If Dropbox account was linked).

Fig. 5. The output showing the speed and ID of the vehicle

Moreover, the details of the vehicles will be stored in a log

file. This log file was created automatically if it doesn’t exist.

The log file will be stored locally on the disk. This log file

would have more details like Date, Time, Speed of the Vehicles

in KMPH, Image ID, vehicle ID.

VI. ALPHA-BETA TESTING

The final integrated code was deployed on a local machine

with i5 11th generation processor and Nvidia GeForce GTX 30

graphical processing unit. When the script was executed, the

speed estimation model was loaded. A new window pops up

displaying the vehicles being detected and tracked. The testing

has been carried on the video mentioned in the sample data. The

IDE (Interactive Development Environment) used was

PyCharm. As one could see in the video the cars were being

detected and tracked and their speeds would be displayed in the

python terminal. Vehicles are given distinct IDs and they were

displayed on the screen. The speed limit while testing was set

to 35 KMPH. Any vehicle going beyond the speed limit would

be tracked and captured. This data was accumulated in the local

directories and on dropbox.

To test the model for various weather conditions such as

sunny, cloudy and rainy the video clip has been edited in Cyber

Link Power Director 365 as shown in Fig 6, Fig 7 and Fig 8.

Three different videos would be tested and the results obtained

were as mentioned below.

Fig. 6. Sunny/clear weather

Fig. 7. Rainy Weather

Fig. 8. Cloudy/Overcast weather

TABLE 2. Detection and Tracking acccuracy of the concept in different

weather condition

VII. CONCLUSION

This research has been carried out in order to cope up with the

need of hour. This model can differentiate Vehicles which are

over-speeding from the normal traffic. These vehicles are

captured and stored as evidence which be used by authorities

governing roads. By this plan, we can reduce the over-speeding

vehicles by scaring them off with hefty fines. By deploying this

work, we can reduce the Vehicle crashes on road. Therefore,

saving a chunk of the national GDP (Gross Domestic Product)

which dips up to 3% due to vehicles crashes every year.

Through this work, I’ve tried to demonstrate the possibility of

using computer vision techniques in public transport systems.

REFERENCES

[1] Dhulavvagol, P. M., Desai, A. & Ganiger, R., 2017. Vehical Tracking and
Speed Estimation of Moving Vehicles for Traffic Surveillance
Applications. International Conference on Current Trends in Computer,
Electrical, Electronics and Communication (CTCEEC).

[2] V. K. Madasu and M. Hanmandlu, 2010, Estimation of vehicle speed by
motion tracking on image sequences, IEEE Intelligent Vehicles
Symposium, 2010, pp. 185-190, doi: 10.1109/IVS.2010.5548051.

[3] Gupte, S., Masoud, O., Martin, R. F. K. & Papanikolopoulos, N. P., 2002.
Detection and Classification of Vehicles. IEEE Transactions on
IntelligentTransportation Systems, Volume 3, pp. 30-43.

[4] S. Hua, M. Kapoor and D. C. Anastasiu, "Vehicle Tracking and Speed
Estimation from Traffic Videos," 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), 2018,
pp. 153-1537, doi: 10.1109/CVPRW.2018.00028.

[5] Howard, A. G. et al., 2017. MobileNets: Efficient Convolutional Neural
Networks for Mobile VisionApplications. arXiv:1704.04861v1 [cs.CV].

[6] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[7] Kumar, T. & Kushwaha, D. S., 2016. An Efficient Approach for Detection
and SpeedEstimation of Moving Vehicles. Twelfth International Multi-
Conference on Information Processing-2016 (IMCIP-2016).

[8] Kumar, T., Sachan, R. & D. S. Kushwaha, 2015. Smart City Traffic
Management and Surveillance System for Indian Scenario. Proceedings
ofInternational Conference on Recent Advances in Mathematics,
Statistics and Computer Science (ICRAMSCS).

[9] Pornpanomchai, C. & Kongkittisan, K., 2009. Vehicle Speed Detection
System. 2009 IEEE International Conference on Signal and Image
Processing Applications, pp. 4-5.

[10] Redmon, J. & Farhadi, A., 2018. YOLOv3: An Incremental
Improvement. arXiv:1804.02767 [cs.CV].

[11] Wei Liu, D. A. D. E. et al., 2016. SSD: Single Shot MultiBox Detector.
arXiv:1512.02325 [cs.CV], pp. 3-4.

Weather Total

Numbe

r of

Vehicle

s

Total

vehicle

s

Detecte

d

Detec

tion

Accur

acy in

%

Track

ing

Accur

acy in

%

Clear/Sunn

y

104 102 98.07 98

Rainy 104 89 85.57 85

Cloudy/ov

ercast

104 95 91.34 92

[12] Supercircuits (2014) Alibi ALI-IPU3030RV IP Camera Highway
Surveillance [Online Video] Available at:
https://www.youtube.com/watch?v=_channel=Supercircuits

