
EasyChair Preprint
№ 8434

A Rust-like Type System for Cooperative Threads

Darine Rammal, Wadoud Bousdira and Frédéric Dabrowski

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 10, 2022

A Rust-like type system for cooperative threads

Darine Rammal, Wadoud Bousdira, and Frédéric Dabrowski

{darine.rammal,wadoud.semmar, frederic.dabrowski}@univ-orleans.fr

Abstract. We propose a Rust-like type system for a kernel program-
ming language named MSSL and featuring a cooperative threading model.
Our proposal allows the sharing of mutable data between cooperative
threads while preserving the type and borrowing safety. This result is
obtained by introducing a new abstraction, named Trc, which combines
the ownership safety of Rust references with the reference counting mech-
anism of Rust smart pointers. We present a subset of MSSL semantics
and type system and prove that the latter ensures types and borrowing
safety.

Keywords: Cooperative scheduling, reactive programming, memory safety, Rust

1 Introduction
Reliability of system software is a challenge in the computer world. Even today,
most software vulnerabilities stem from programming errors related to memory
management[23, 1]. Such errors can be memory leak errors, use after free errors
or double free errors. To achieve memory safety, many high-level programming
languages (e.g. Java and SML) use a garbage collector[12, 25] to automatically
manage memory. At run-time, the garbage collector identifies blocks of memory
that can never be used by the program again and reclaims their space for future
allocations. However, dynamic garbage collection incurs an execution overhead
that is not acceptable for some computer systems (system programming, em-
bedded system, etc.). Thirty years of research[3, 20, 9] and the pragmatism of
the Rust[2] development team have made it possible to combine the efficiency
of high-level programming languages with the memory safety of high-level lan-
guages.

Sponsored by Mozilla and developed in the open by a large and diverse
community of contributors, Rust is a statically-typed programming language
designed for performance, reliability and safety, especially safe concurrency and
memory management without requiring garbage collection. The type system of
Rust restricts the possibilities of aliasing in such a way that upon exiting the
scope of a variable, the memory addresses accessible from it can be safely deallo-
cated. In practice, a strict application of this type system is too restrictive. This
is where the pragmatism of Rust comes into play. Libraries can be developed in
which the type system is disabled by using the unsafe keyword. Many features of
Rust, such as RC and Mutexes, rely on this mechanism. RCs are a special type of
read-only references whose safety is based on reference counting, which makes it

2 Darine Rammal, Wadoud Bousdira, and Frédéric Dabrowski

possible to get rid of lexical scope constraints. Yet, libraries using the unsafe fea-
ture must satisfy certain invariants in order not to break memory safety[13]. Rust
comes with a multithreading library (or crate in Rust terminology) that relies on
system threads. Although this concurrent programming model is widespread, it
is too resource intensive for some systems (e.g. low resource embedded systems).
Cooperative threads, which can be implemented in user space, are a good alter-
native. In this paper, we propose a Rust-like type system for a subset of MSSL
(Memory Safe Synchronous Language) a reactive programming language based
on cooperative threads and synchronous execution. MSSL is inspired by the fam-
ily of synchronous reactive languages (Esterel[4],Fairthreads[8], Reactive ML[17],
etc). In this programming model, threads run in turn. The change of control is
done on demand through a yield command. A notion of signal allows threads to
synchronise. Thanks to a notion of logical time, called instants, threads progress
synchronously with a coherent view of the state of signals (present or absent)
at each instant. Due to the use of cooperative scheduling, MSSL does not need
a locking facility. However, even if the execution of threads is cooperative, the
Rust type system requires adaptations to allow data sharing between threads
since it introduces a new form of aliasing that must be controlled. Reference
counting, as proposed by Rust, appears to be an interesting solution since it al-
lows to get rid of lexical scope constraints. This is necessary to allow the sharing
of data between different threads. This solution is however limited by the fact
that these references are read-only. Removing this constraint would break the
memory safety properties at the thread level. We therefore propose to combine
the reference counting approach with the aliasing constraints of standard Rust
references. This new type of smart pointer, which is the main contribution of
this paper, is named Trc. We present an operational semantics for MSSL and
Rust-like type system ensuring memory safety in presence of Trc. The formal
developments presented in this paper build on top of the work of Pearce[21]. For
lack of space, we omit signal-based synchronization and focus on the cooperate
command, which is a special case. The rest of the paper is organized as follows:
Section 2 describes the Rust feature and the reactive synchronous. Section 3
presents the syntax and the semantic of MSSL. Section 4 defines the type sys-
tem. Section 5 presents the principal results of soundness. Section 6 we explore
future work based on MSSL, and we conclude in Section 7.

2 About Rust and Concurrent Programming
Rust has common elements found in other languages, such as struct, traits
(similar to interfaces in Java), lambda functions and modules. The main fea-
ture of Rust is its ownership and borrowing system [22]. This helps prevent
many classes of errors arising from incorrect usage of memory, (e.g. use-after-
free, double-free, memory leaks). Every value in Rust has a type, a mutability
modifier, an owner and a lifetime. The owner is often the scope in which the
value was declared, but ownership of the value can change when performing as-
signments or passing function arguments by value. In Rust, this is known as a
move. A lifetime begins when the value is created and ends when it is dropped.

A Rust-like type system for cooperative threads 3

The compiler tracks lifetimes of every reference (borrow) to ensure all references
are valid (i.e. the value could not possibly be dropped before using the refer-
ence, preventing a use-after-free error), and lifetimes are tied to the scope in
which a value exists. The Rust type system includes a borrow checker that stat-
ically checks that for a given variable (1) one or more shared references (&τ)
exist, and (2) no more than one mutable reference (&mut τ) exists. Borrowing
prevents unsafe concurrent modifications of the same memory location thus en-
suring memory safety. Another essential element of Rust is the lifetime concept.
When borrowing something, misunderstanding can be prevented by agreeing up
front on how long it can be borrowed. So, when a reference is created, a life-
time is assigned to it. Then, it is recorded in the full form of the reference type:
&
′
a mut τ for lifetime ′

a. The compiler ensures that (1) the reference is used
only during that lifetime, and (2) the referent is not used again until the lifetime
is over. In the left part of Figure 1, the lifetime of x starts at line 5 and goes on
until line 9 while that of y starts at line 6 and ends at line 7. The ownership of
x is moved to y and then after line 7, the value of x becomes unreachable since
the scope of y closes and y is automatically dropped. In the right part of Figure
1, at line 8, the inner scope closes and the variable y is dropped. Even though x
is still available in the outer scope, the reference at line 9 is invalid because the
value to which it points no longer exists. The Rust compiler reports an error.

1. struct Circle {
2. a ∶ i32, b ∶ i32
3. }
4. fn newCircle(a ∶ i32, b ∶ i32) {
5. let mut x = Circle{a, b};
6. { let mut y = x;
7. }
8. return x; //Error: value used after moved
9. }

1. struct Circle {
2. a ∶ i32, b ∶ i32
3. }
4. fn newCircle(a ∶ i32, b ∶ i32) {
5. let mut x;
6. { let mut y = Circle{a, b};
7. x = &y;
8. }
9. println!(”{}”, x.a); //Error!
10. }

Fig. 1: Example 1
When using functions, Rust requires insurance that references used at runtime
are valid. To achieve this, generic lifetimes in functions are used. A generic life-
time parameter imposes a lifetime constraint on the reference(s) and the return
value(s) of a function. While compiling the code, a generic lifetime is substi-
tuted for a concrete lifetime, which is equal to the smaller of the passed refer-
ences lifetimes. This enables Rust to identify a violation of the constraint by a
parameter or the variable storing the return value. In Figure 2, the invocation
of compareCircle at line 12 returns a reference whose lifetime is equal to the
shortest lifetime among the references passed into the function (i.e. the lifetime
of y). Calling print instruction at line 14 illustrates a compilation error because
there may be cases when one of the returned references is invalid. To manipu-

1. struct Circle {
2. a ∶ i32, b ∶ i32
3. }

4. fn compareCircle(a ∶ &i32, b ∶ &i32) → &i32 {
5. if a > b { b }
6. else { a }
7. }

8. fn main (){
9. let x = 5;
10. let result;
11. { let y = 10;
12. result = compareCircle(&x,&y);
13. }
14. println!(”{}”, result); // Error!
15. }

Fig. 2: Example 2

4 Darine Rammal, Wadoud Bousdira, and Frédéric Dabrowski

late dynamic data structures, Rust provides some types to allocate data in the
heap. The simplest form is the type Box⟨τ⟩. Boxes provide ownership for this
allocation and drop their contents automatically when they go out of scope. Two
other types are defined that use shared data are Rc and Arc. These types allow
shared ownership of values allocated in the heap by using reference counting
operations. Unfortunately, inside both types, we cannot get a mutable reference
to something even though Arc is thread-safe (unlike for Rc, reference counting
are atomic operations for Arc). In order to share mutable data between threads,
an alternative in Rust consists of using Mutex⟨τ⟩ where the data of type τ is
only accessed through guards returned from blocking functions. However, using
Mutex does not protect against the risk of creating deadlocks and it is too re-
source intensive for some systems. Instead, we propose a new type Trc(τ) to
share data between cooperative synchronous threads which is an alternative to
the concurrency as it is implemented in Rust. Let us present the main features of
concurrent programming. The essential function of multi-threads systems, named
scheduling is to manage the sequencing of tasks by optimizing CPU usage. The
thread is the basic unit of concurrency. When they are managed according to a
cooperative strategy, threads cooperate with each other and the scheduling pol-
icy must avoid to hog the CPU indefinitely. Various proposals for cooperative
threads have been made recently. One of them named fairthreads consists of fair
threads executed by specialized schedulers giving them equal possibilities to ac-
cess the processor. Fairthreads can be finely controlled allowing the user to code
their own execution strategy. Moreover, fairthreads can communicate through
broadcast events, which simplifies programming and this style of programming is
called reactive programming. Programs using fairthreads are deterministic: their
result is independent of the scheduler of the machine which executes them, and
this is in general not true with standard threads. Determinism greatly facilitates
the porting and the debugging of programs. Fairthreads have been implemented
in Java[7], in C[8] and in Scheme[16]. Finally, another approach exists, called
reactive-synchronous approach which allows a simple and efficient programming
of concurrency, by solving some problems of threads. Languages built on this
approach have been developed, the best known of which are the synchronous
languages Esterel [5], Lustre [10] and Signal [15].

MSSL is inspired by the cooperative part of this work. Threads are implic-
itly linked to a scheduler and they are executed cooperatively according to the
scheduler’s clock. The execution of the threads is synchronous and is divided into
logical instants like for Fairthreads[6]. In addition, these threads can also return
control to their scheduler through the cooperate expression. At this point, the
scheduler knows that the undergoing thread has finished its execution for the
current instant, and that it will assume back control at the next instant.

3 MSSL
MSSL aims at improving the Faithreads programming model by providing mem-
ory safety in the manner of Rust. As in Fraithreads, threads are executed co-
operatively by a round-robin scheduler, communicate through shared memory

A Rust-like type system for cooperative threads 5

and synchronize by means of signals. In the rest of the paper, we focus on the
cooperative fragment of MSSL. Compared with FR, the new constructs are: two
multithreading instructions (threads spawning and explicit cooperation) and a
new kind of smart pointers called TRC and dedicated to communication. Intu-
itively, every shared data must be encapsulated in an TRC. The type system will
enforce this property and will protect such data from concurrent corruption.
The challenge in designing a new kind of smart pointers was to combine sharing
and mutability without requiring a locking discipline (as is done in Rust). More
precisely, TRC (1) allow sharing among threads, (2) ensure per thread unicity of
mutable and (3) ensure that no thread possesses references to shared data at
cooperation time. TRC pointers fall into two categories : active and inactive TRC.
An active TRC is an entry point to the shared part of the heap, while an inactive
TRC is a copy of the pointer aimed at being communicated to other threads.
When communicated to another thread, an inactive TRC becomes active. Only
active TRC can be accessed (required for (2)).

3.1 Syntax

The syntax of MSSL is given in Figure 3. A value may be one of the special
constants ϵ0 or ϵ1, an integer n or a memory location. A value ϵ0 is produced
by a statement that finishes (e.g an assignment) whereas a value ϵ1 is produced
by a statement that cooperates. We distinguish four kinds of memory locations.
A value ℓ▪ (resp. ℓ◦) denotes an owned (resp. borrowed). A value ℓ⬩ (resp. ℓ⋄)
denotes an active (resp. inactive) Trc. Partial values extend values with a special
constant denoting a moved value.

Values v ∶∶= ϵ0 ∣ ϵ1 ∣ n ∣ ℓ◦ ∣ ℓ⋄ ∣ ℓ▪ ∣ ℓ⬩
Partial Values v⊥ ∶∶= v ∣ ⊥
Types τ ∶∶= ϵ ∣ int ∣ &mut w ∣ & w ∣ ⋄ω ∣ ⬩τ ∣ ▪τ
Partial Types τ̃ ∶∶= Types ∣ ▪τ̃ ∣ ⬩τ̃ ∣ ⌊τ⌋
LVals ω ∶∶= x ∣ ∗ω
Expressions e ∶∶= v ∣ w ∣ ŵ ∣ {e}l ∣ let mut x = e ∣ box(e) ∣ &[mut] w ∣ w = e

∣ trc(e) ∣ w.clone ∣ spawn(f(e)) ∣ cooperate
Functions f ∶∶= fn f(mut x ∶ S){e}l
Signatures S ∶∶= ϵ ∣ int ∣ ▪S ∣ ⬩S
Programs p ∶∶= f p ∣ e

Fig. 3: Syntax of MSSL
Types include primitive types ϵ and int, reference types (&mut w and & w) and
box types (▪τ), similar to their counterpart in FR. A type &mut w (resp. & ω)
denotes a mutable (resp. immutable) reference to the location held at one of the
lvals w. A type ▪τ denotes a heap allocated value of type τ . New types have the
form ⋄ω and ⬩τ . A value of type ⬩τ denotes an active TRC while ⋄ω denotes an
inactive TRC. Similarly to references, the type of an inactive may refer to several
paths (e.g. ⋄x, y). Finally, a partial type (⌊τ⌋) denote a value that may contain
moved locations.

6 Darine Rammal, Wadoud Bousdira, and Frédéric Dabrowski

We reuse the definition of the expressions of FR, augmented by the following
ones: (1) trc(e) : allocates a new active Trc, initialized with the value denoted by
e, (2) ω.clone returns an inactive copy of the Trc denoted by ω, (3) spawn(f(e))
runs f(v) as a new thread, v are the values denoted by e and (4) cooperate

yields the control to other threads. Other expressions are identical to those in
FR. {e}l denotes a block, the scope of which is expressed by the lifetime l where
e is a sequence of expressions separated by semicolons. The lifetimes form a
partial ordering (i.e. l ⪰ m stands for m is inside l and l ⪰ l is always valid)
that reflects the nesting property. The expression ω̂ (resp. ω) denotes a non
destructive (resp. destructive) read of the value held at ω. box(e) allocates a new
Box in the heap, initialized with the value denoted by e. Finally, when declaring
functions, parameters are defined with the mut keyword to be consistent with
the variable declaration. The shape of the signatures is well defined in Figure 3.
Since, threads communicate with each other, the inactive Trc becomes active,
and its signature is ⬩S. Note that with an active Trc, we cannot perform this
communication. Therefore, a check is performed to ensure that in the signatures,
there are no two active Trcs belonging to the same shared data (this adds further
restrictions to the typing rules).

3.2 Operational Semantics

We introduce an operational semantics for MSSL. A state has the form S▷T1, T2
where S is a program store mapping locations to partial values, and T1, T2 are
sets of threads. Concerning locations, we use three forms: (1) ℓm∶∶x the location
that is bound to the variable x with a lifetime m, (2) ℓn the location that is
not bound to any variable and (3) ℓω which is any location for a path ω. A
thread is a pair (t, {e}l) where t is the thread’s name and {e}l is the code which
is currently executed by t under the lifetime l. We use a pair of threads to
schedule threads in a round robin scheduling (explained latter). Rules have the

form ⟨S ⊳ T1, T2
T
−→i S

′
⊳ T

′
1, T

′
2⟩l where T is a, possibly empty, set of threads

spawned during the reduction. The index i, ranging over 0, 1, denotes either a
termination computation (0) or a cooperation (1). These rules rely on a auxiliary
kind of rules denoting local computation of threads. Those rules have the form
S ▷ e→i S

′ ▷ e
′.

We introduce few notations in Figure 4 and explain the semantics rules which
are given in Figure 5. The notation ℓ

∗ stands for any possible kind of location
(ℓ▪, ℓ⬩, ℓ⋄, ℓ◦). The notation S[ℓm∶∶ω ↦ ⟨v⊥⟩m] returns a program store by mod-
ifying in S the value of the lval location ω by a partial value v⊥. The function
drop(S, m) is responsible for deallocating memory locations associated with the
lifetime m. drop(S, m) is defined as drop(S, ψ) where ψ = {ℓ▪, ℓ⬩ ∣ ℓ↦⟨v⊥⟩m ∈ S}.
As illustrated in Figure 4, drop(S, ψ) recursively traverses the owning references
dropping the location if necessary. Hence, ψ denotes a drop set, which identifies
the locations allocated by a given box or trc (ℓ▪, ℓ⬩) and should be dropped
when its lifetime ends. Since the deallocation of slots allocated by a Trc depends
on the counter (denoted by i), the deallocation is performed only if the counter

A Rust-like type system for cooperative threads 7

loc(S, x) = ℓm∶∶x where(ℓm∶∶x) = ⟨.⟩m and ¬∃n.(m ⪰ n ∧ S(ℓn∶∶x) = ⟨.⟩n
loc(S,∗ω) = ℓ where loc(S, ω) = ℓω and S(ℓω) = ⟨ℓ∗⟩m
read(S, ω) = S(ℓω) where loc(S, ω) = ℓω and S(ℓω) = ⟨v⟩l
write(S, ω, v⊥) = S[ℓω ↦ ⟨v⊥⟩m] where loc(S, ω) = ℓω and S(ℓω) = ⟨.⟩m
drop(S,∅) = S

drop(S,ψ ∪ {v⊥}) = drop(S,ψ) where (v⊥ ≠ ℓ
▪ ∧ v⊥ ≠ ℓ

⬩ ∧ v⊥ ≠ ℓ
⋄)

drop(S,ψ ∪ ℓ▪) = drop(S − {ℓ↦ ⟨v⊥⟩∗}, ψ ∪ {v⊥}) where S(ℓ) = ⟨v⊥⟩∗

drop(S,ψ ∪ ℓ⬩) = {drop(S − {ℓ↦ ⟨v⊥⟩1}, ψ ∪ {v⊥}) where S(ℓ) = ⟨v⊥⟩1
drop(S − {ℓ↦ ⟨v⊥⟩i−1}, ψ} where S(ℓ) = ⟨v⊥⟩i

drop(S,ψ ∪ ℓ⋄) = drop(S − {ℓ↦ ⟨v⊥⟩i}, ψ} where S(ℓ) = ⟨v⊥⟩i+1

Fig. 4: Notations
falls to 1. Indeed, when the counter is 1, it means that there is only one refer-
ence for that slot and thus the deallocation is safely performed. Furthermore,
we assume that only active Trc’s are responsible for deallocating the locations
to which they refer. Specifically, when the lifetime of an inactive Trc expires, it
is sufficient to decrement the counter by 1.

Now, let us present and explain the MSSL reduction rules for a given thread
t according to Figure 4. R-Copy is the first reduction rule. The borrow checker
should allow this rule if and only if the lval ω has copy semantics (see Section
4). Otherwise, if ω has move semantics, the T-Move rule should be applied.
In comparison with R-Copy, R-Move enforces a destructive read by making
lval ω inaccessible. Thus, this rule is responsible for reducing lval by effectively
removing its location from the resulting program store (i.e. S2), we use (⊥)
to indicate that ω is read-inaccessible. Regarding dynamic allocation, MSSL
handles heap allocation in two ways depending on whether it is a Box or a Trc.
The R-Box rule creates a fresh location in S to represent the new box. We
note that the slots in the heap receive the global lifetime *, i.e. corresponds to a
static variable in C/C++. In contrast, the R-Trc creates a fresh location in the
program store representing the active Trc by setting the counter i to 1. As we can
produce multiple instances of inactive Trc, which point to the same allocation on
the heap as the active Trc source, we can use R-Clone. This rule increments the
number of references that point to the same allocation on the heap, e.g. ⟨v⟩i+1.
The R-Borrow rule determines the location of the borrowed lval that already
exists in S. R-Assign updates the value of a given lval by its new value using
the write(S, ω, v) function after it removes the old value using drop(S, {v⊥})
function. This function is responsible for dropping any location belonging to
v
⊥. To declare a new variable in a program store, it is therefore necessary to

determine its corresponding location and R-Declare is then introduced. With
R-Declare, we create a new lval and we add it to S1 where the new value takes
the lifetime l of the enclosing block. At this point, write(S, ω, v) cannot be used
because it takes as a parameter an lval that already exists in S. For reducing
a sequence of expressions, we define two rules: (1) R-Seq which reduces the
expression if the indicator i is 0 (i.e. when e is different from cooperate and the
value ϵ1 denotes the reduction of the cooperate expression). In this case, the

8 Darine Rammal, Wadoud Bousdira, and Frédéric Dabrowski

read(S, ω) = ⟨v⟩m
⟨S ⊳ ω̂ →0 S ⊳ v⟩l (R −Copy) read(S1, ω) = ⟨v⟩m S2 = write(S1, ω,⊥)

⟨S1 ⊳ ω →0 S2 ⊳ v⟩l (R −Move)

ℓm ∉ dom(S1) S2 = S1[ℓl∶∶m ↦ ⟨v⟩∗]
⟨S1 ⊳ box(v) →0 S2 ⊳ ℓ▪m⟩l (R −Box) ℓm ∉ dom(S1) S2 = S1[ℓl∶∶m ↦ ⟨v⟩1]

⟨S1 ⊳ trc(v) →0 S2 ⊳ ℓ⬩m⟩l (R −Trc)

ℓ
⬩
m = loc(S1, ω) S1(ℓm) = ⟨v⟩i S2 = S1[ℓl ∶∶ m↦ ⟨v⟩i+1]

⟨S1 ⊳ ω.clone→0 S2 ⊳ ℓ⋄l∶∶m⟩l (R −Clone)

loc(S, ω) = ℓω
⟨S ⊳ &[mut]ω →0 S ⊳ ℓ◦ω⟩l

(R −Borrow) S2 = S1[ℓl∶∶x ↦ v]
⟨S1 ⊳ let mut x = v →0 S2 ⊳ ϵ⟩l (R −Declare)

read(S1, ω) = ⟨v⊥1 ⟩m S2 = drop(S1, {v⊥1 }) S3 = write(S2, ω, v2)
⟨S1 ⊳ ω = v2 →0 S3 ⊳ ϵ⟩l (R −Assign)

S2 = drop(S1, {v}) v ≠ ϵ1
⟨S1 ⊳ v; e→0 S2 ⊳ e⟩l (R − Seq) ⟨S1 ⊳ ϵ1; e→1 S1 ⊳ e⟩l (R − SeqTerm)

⟨S1 ⊳ e1 →i S2 ⊳ e2⟩m
⟨S1 ⊳ {e1}m →i S2 ⊳ {e2}m⟩l (R −BlockA) S2 = drop(S1,m)

⟨S1 ⊳ {v}m →0 S2 ⊳ v⟩l (R −BlockB)

⟨S ⊳ cooperate →1 S ⊳ ϵ1⟩l
(R −Coop)

t ∈ fresh D(f) = λ(x){e}m Θ(l ⇒ {e}m) = {e}n S2 = S1[ℓn∶∶x ↦ ⟨v⟩n]

⟨S1 ⊳ spawn(f(v)) {(t,{e}n)}
−−−−−−→0 S2 ⊳ ϵ0⟩l

(R − Spawn)

⟨S1 ⊳ e1 →i S2 ⊳ e2⟩l
⟨S1 ▷EJe1K →i S2 ▷EJe2K⟩l

(R − Sub)

⟨S ⊳ e
T1
−−→0 S

′′
⊳ e

′′⟩l ⟨S ′′ ⊳ e′′ T2
⟹ S

′

⊳ e
′⟩l

⟨S ▷ e
T1∪T2
⟹ S ′ ▷ e′⟩l

(R − Steps1)

⟨S ⊳ e
T
−→1 S

′
⊳ e

′⟩l

⟨S ▷ e
T

⟹ S ′ ▷ e′⟩l
(R − Steps2)

∅, T2, S ⟹ T2,∅, S
(R −End)

(t, {e}l) ∈ T1 ⟨S ▷ e
T

⟹ S
′ ▷ e

′⟩l
T1∣t, T2 ∪ {(t, {e′}l)} ∪ T, S ′ ⟹ T

′
1, T

′
2, S

′

T1, T2, S ⟹ T
′

1, T
′

2, S
′

(R −Thread)

Fig. 5: MSSL Reduction Rules

A Rust-like type system for cooperative threads 9

reduction is done by removing those completed from the left using drop(S, {v}).
Otherwise, with (2) R-SeqTerm, nothing occurs if the indicator i is 1 (i.e. when
e is a cooperative expression). The reduction of a block using the R-BlockA rule
only terminates if there is only one value remaining. At this point, the block is
completely reduced by the R-BlockB rule. In R-blockB, we deallocate any
remaining owned locations using the drop(S, m) function previously defined. R-
Coop rule terminates the execution of the thread for the current round. We
consider the R-Spawn rule for reducing the expression spawn(f(v)). This rule
creates a new thread (i.e. a pair {(t, {e}n)} where t is the name of the thread
and {e}n the expression that t should execute with the lifetime n. The function
Θ(l ⇒ {e}) is responsible for instantiating the lifetime of an expression e. Hence,
it recursively instantiates all lifetimes of an expression e into fresh lifetimes in
l. As usual, we rely on evaluation context to specifify the evaluation strategy.
Contexts are defined below. The evaluation under contexts is defined in rule
R-Sub.

E ∶∶= J.K ∣ E; e ∣ let mut x = E ∣ ω = E ∣ box(E) ∣ trc(E) ∣ spawn(f(v,E, e))

Rules R-Steps1 and R-Steps2 shows how an expression is evaluated upon
termination (index 0) or cooperation (index 1). Rules R-end and R-Thread
shows how we execute all threads in a round-robin manner. All threads are
executed once upon termination or cooperation and are moved in T2. Once all
threads have been executed we then move all threads from T2 to T1 and restart
the process. Spawned threads are added to T2 in order to be scheduled in the
next round. An execution of a program is a, possibly infinite, sequence of states
(S1, T1, T

′
1), (S2, T2, T

′
2), . . . such that (S1, T1, T

′
1) ⟹ (S2, T2, T

′
2) ⟹

4 Type System
In this section, we concentrate on type and borrowing safety between threads
while preventing type and borrowing errors. Here is an example statically checked
in MSSL: {let mut x = 0; let mut y = &x; {let mut z = 5; y = &z; }n y; }m
This program is not considered to be a safe borrowed type. However, the assign-
ment "y = &z" changes the value of y by creating a borrowed reference to the
variable z that exists outside its lifetime.

We present now the shape of our typing judgment as follows: Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣

Γ2 where Γ1 is the typing environment mapping variables to a slot type ⟨τ̃⟩m
with an allocated lifetime m. Afterwards, evaluating the expression e under the
typing environment Γ1 produces the environment Γ2. The difference between the
two environments forms the effect of the expression e, l is the context lifetime
and σ is the typing store. The presence of σ in typing judgment is necessary
to keep track of the heap-allocation location as described in [14]. For example:
∅ ⊳ {let mut x = trc(1)};l→ {ℓ1 ↦ ⟨1⟩1} ⊳ {let mut x = ℓ

⬩
1 ; }l

As explained previously, Γ maps each variable to its type. However, in this
example, ℓ1 is not represented in any typing environment. Specifically, it refers
to the location ℓ1 allocated to the heap and this appears in the program store
S. As a result, the typing store in this case has the form : σ ⊢ ℓ

⬩
1 ∶ ⬩int.

10 Darine Rammal, Wadoud Bousdira, and Frédéric Dabrowski

We present the typing rules for our calculus. Keep in mind that variables
in our language can have either copy semantics or move semantics. Having said
that our type system encodes both: type checking and borrow checking rules
that are required to determine when it is safe to copy or move a variable.
The following introduces some support functions necessary for the typing rules:

Copy and Move Types. A type τ has a copy semantics, denoted by copy(τ),
when τ is a base type (int) or τ is a shared reference &ω. Otherwise, all other
types, (mutable references, boxes and Trcs types) have move semantics.
To ensure MSSL safety, it is imperative to be able to determine when a location
is mutable or immutable borrowed or cloned. Thus, we require a mechanism to
determine if a location is borrowed as mutable (readprohibited) or as immutable
(writeprohibited) or if a location is cloned (Trcprohibited):

Path, Path Conflict and Type Containment. A path π is defined as a sequence
of zero (π ≜ ϵ) or more dereferences (π ≜ π

′
.∗). u ≜ πu ∣ x denotes a destructuring

of an lval u into its base x and path π. Let u ≜ πu ∣ x and ω ≜ πu ∣ y be lvals.
Then, u is said in conflict with ω, denoted u ⋈ ω, if x = y. Finally, let Γ be an
environment where Γ(x) = ⟨τ̃1⟩l for some l. Then, Γ ⊢ x ↝ τ indicates that x
contains the type τ .

Read Prohibited. The readProhibited(Γ, ω) function is responsible to deter-
mine for a given lval ω if it is read prohibited where it exists for x the following:
Γ ⊢ x↝ &mut u ∧ ∃ i.(ui ⋈ ω).

Write Prohibited. The writeProhibited(Γ, ω) function is responsible to deter-
mine for a given lval ω if it is write prohibited where it exists for x the following:
Γ ⊢ x↝ & u ∧ ∃ i.(ui ⋈ ω) or readProhibited(Γ, ω).

SafeTrc. An environment Γ is said to be safeTrc, denoted safeTrc(Γ) if for
all ω ∈ LVAL where Γ(ω) = ⟨⬩τ⟩l, then we have ¬writeProhibited(Γ, ω).

Active. The active(Γ, ω) partial function verifies that the path for a given
lval ω never crosses an inactive trc (e.g. ⬩ ▪ ⋄ω).

Mutable. An lval ω is said to be mutable if it is recursively mutable, i.e.
the path it describes never crosses an immutable borrow (e.g. ⬩ ⬩ &x) . The
mut(Γ, ω) partial function identifies that for a given ω, ω is mutable or not.

Move. The move(Γ, ω) partial function returns the resulting environment
after moving the value of an lval ω where ω ≜ πx ∣ x and Γ(x) = ⟨τ̃1⟩l. Then,
Γ[x↦ ⟨τ̃2⟩l] = move(Γ, ω) such that τ̃2 = strike(πx ∣ τ̃1) defined as:

strike(ϵ ∣ τ) = ⌊τ⌋
strike((π.∗) ∣ ▪τ̃1) = ▪τ̃2 where τ̃2 = strike(π ∣ τ̃1)

The following feature is helpful to avoid dereferencing an inactive Trc:
Deref Prohibited. The derefProhibited(Γ, ω) function is responsible to de-

termine for a given lval ω if it is dereference prohibited where if ∃ u, u′ such that
Γ (u) = ⟨⋄u′⟩l and (∗u ⋈ ω).

Trc Prohibited. The TrcProhibited(Γ, ω) function is responsible to determine
for a given lval ω if it is move prohibited where if it exists for x the following:
Γ ⊢ x↝ ⋄u ∧ (u ⋈ ω) or derefProhibited(Γ, ω).

A Rust-like type system for cooperative threads 11

Γ(x) = ⟨τ̃⟩m

Γ ⊢ x ∶ ⟨τ̃⟩m (T − LvVar) Γ ⊢ ω ∶ ⟨⬩τ̃⟩m

Γ ⊢ ∗ ω ∶ ⟨τ̃⟩m (T − LvTrc)

Γ ⊢ ω ∶ ⟨&[mut]u⟩n Γ ⊢ u ∶ ⟨τ⟩m
Γ ⊢ ∗ ω ∶ ⟨⊔iτi⟩⊓imi

(T − LvBorrow)

σ ⊢ v ∶ τ

Γ ⊢ ⟨v ∶ τ⟩lσ ⊣ Γ
(T −Const) Γ ⊢ ω ∶ ⟨▪τ̃⟩m

Γ ⊢ ∗ ω ∶ ⟨τ̃⟩m (T − LvBox)

Γ ⊢ ω ∶ ⟨τ⟩m copy(τ) ¬readProhibited(Γ, ω)
Γ ⊢ ⟨ω̂ ∶ τ⟩lσ ⊣ Γ

(T −Copy)

Γ1 ⊢ ω ∶ ⟨τ⟩m ¬writeProhibited(Γ1, ω)
¬TrcProhibited(Γ1, ω) Γ2 = move(Γ1, ω)

Γ1 ⊢ ⟨ω ∶ τ⟩lσ ⊣ Γ2

(T −Move)

Γ ⊢ ω ∶ ⟨τ⟩m mut(Γ, ω) ¬writeProhibited(Γ, ω)
Γ ⊢ ⟨&mut ω ∶ &mut ω⟩lσ ⊣ Γ

(T −MutBorrow)

Γ ⊢ ω ∶ ⟨τ⟩m ¬readProhibited(Γ, ω)
Γ ⊢ ⟨& ω ∶ & ω⟩lσ ⊣ Γ

(T − ImmBorrow)

Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2

Γ1 ⊢ ⟨trc(e) ∶ ⬩τ⟩lσ ⊣ Γ2

(T −Trc) Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2

Γ1 ⊢ ⟨box(e) ∶ ▪τ⟩lσ ⊣ Γ2

(T −Box)

Γ ⊢ ω ∶ ⟨⬩τ⟩m active(Γ, ω)
Γ ⊢ ⟨ω.clone ∶ ⋄ω⟩lσ ⊣ Γ

(T −Clone)

Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ ⊣ Γ2 ... Γn ⊢ ⟨en ∶ τn⟩lσ ⊣ Γn+1

Γ1 ⊢ ⟨e ∶ τn⟩lσ ⊣ Γn+1
(T − Sequence)

Γ1 ⊢ ⟨e ∶ τ⟩mσ ⊣ Γ2 Γ2 ⊢ m ⪰ l Γ3 = drop(Γ2, m)
Γ1 ⊢ ⟨{e}m ∶ τ⟩lσ ⊣ Γ3

(T −Block)

x /∈ dom(Γ1) Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2 Γ3 = Γ2 [x↦ ⟨ τ ⟩m]
Γ1 ⊢ ⟨let mut x = e ∶ ϵ⟩lσ ⊣ Γ2

(T −Declare)

Γ ⊢ ω ∶ ⟨τ̃1⟩m Γ1 ⊢ ⟨e ∶ τ2⟩lσ ⊣ Γ2 Γ2 ⊢ff τ̃1 ≈ τ2
Γ2 ⊢ τ2 ⪰ m Γ3 = write

0(Γ2, ω, τ2)
¬writeProhibited(Γ3, ω) ¬TrcProhibited(Γ3, ω)

Γ1 ⊢ ⟨ω = e ∶ ϵ⟩lσ ⊣ Γ2

(T −Assign)

safeTrc (Γ)
Γ ⊢ ⟨cooperate ∶ ϵ1⟩lσ ⊣ Γ

(T −Coop)

Γ1 ⊢ ⟨e ∶ T ⟩lσ ⊣ Γ2

Γ2 ⊢ (S) ⟸ (τ)
Γ1 ⊢ ⟨spawn(f(e)) ∶ ϵ⟩lσ ⊣ Γ2

(T − Spawn)

Fig. 6: MSSL Typing Rules

12 Darine Rammal, Wadoud Bousdira, and Frédéric Dabrowski

We introduce more notions in Figure 7 as follows: The drop(Γ, ω) function
deallocates locations with a lifetime m, by removing them from an environ-
ment Γ. The writek(Γ, ω, τ) partial function updates the type of a given lval
ω where ω ≜ πx ∣ x and Γ(x) = ⟨τ̃1⟩l. For some k ≥ 0, this function is de-
fined as Γ2[x ↦ ⟨τ̃2⟩l] where (Γ2, τ̃2) = update

k(Γ, πx ∣ τ̃1, τ) presented in
Figure 7. Then, for an environment Γ, two partial types τ̃1 and τ̃2 are said to be
shape compatible, denoted as Γ ⊢ τ̃1 ≈ τ̃2, according to the rules (S-*). More-
over, Γ is said to be well-formed with respect to a lifetime l, denoted Γ ⊢ τ ⪰ l,
according to the rules (L-*): Now we describe the typing rules for lvals and ex-

drop(Γ, m) = Γ − {x↦ ⟨τ̃⟩m ∣ x↦ ⟨τ̃⟩m ∈ Γ}
update

0(Γ, ϵ ∣ τ̃1, τ2) = (Γ, τ2)
update

k≥1(Γ, π ∣ τ1, τ2) = (Γ, τ1 ⊔ τ2)
update

k(Γ, (π.∗) ∣ ▪τ̃1, τ) = (Γ1, ▪τ̃2) where (Γ1, τ̃2) = updatek(Γ, π ∣ τ̃1, τ)
update

k(Γ, (π.∗) ∣ ⬩τ1, τ) = (Γ1,⬩τ2) where (Γ1, τ2) = updatek(Γ, π ∣ τ1, τ)
update

k(Γ, (π.∗) ∣ &mut ui, τ) = (⊔iΓi,&mut ui)

Γ ⊢ int ≈ int
(S−Int)

Γ ⊢ τ1 ≈ τ̃2

Γ ⊢ ⌊τ1⌋ ≈ τ̃2
(S−UnL)

∀i,j(Γ ⊢ ui ∶ τ̃1 ≈ τ̃2 ∶ ωj ⊣ Γ)
Γ ⊢ &[mut]u ≈ &[mut]ω (S−Bor)

Γ ⊢ τ̃1 ≈ τ̃2

Γ ⊢ ▪τ̃1 ≈ ▪τ̃2
(S−Box)

Γ ⊢ τ̃1 ≈ τ̃2

Γ ⊢ ⬩τ̃1 ≈ ⬩τ̃2
(S−ATrc)

Γ ⊢ ũ ∶ τ1 ≈ τ̃2 ∶ ω ⊣ Γ

Γ ⊢ ⋄u ≈ ⋄ω
(S−ITrc)

Γ ⊢ τ̃1 ≈ τ2

Γ ⊢ τ̃1 ≈ ⌊τ2⌋
(S−UnR)

Γ ⊢ τ̃1 ≈ τ̃2 ∶ ω ⊣ Γ

Γ ⊢ ⬩τ̃1 ≈ ⋄ω
(S−ATrcL)

Γ ⊢ u ∶ τ̃1 ≈ τ̃2 ⊣ Γ

Γ ⊢ ⋄u ≈ ⬩τ̃2
(S−ATrcR)

Γ ⊢ int ⪰ l
(L−Int)

Γ ⊢ τ ⪰ l

Γ ⊢ ▪τ ⪰ l
(L−Box)

Γ ⊢ τ ⪰ l

Γ ⊢ ⬩τ ⪰ l
(L−AcTrc)

Γ ⊢ τ ⪰ l

Γ ⊢ ⋄τ ⪰ l
(L−IncTrc)

Γ ⊢ u ∶ ⟨τ⟩m m ⪰ l

Γ ⊢ &[mut] u ⪰ l
(L−BoR)

Fig. 7: Notations of typing rules

pressions in MSSL according to Figure 6: An lval ω is well-typed with respect to
Γ, denoted Γ ⊢ ω ∶ ⟨τ̃⟩m, by the following rules (T-Lv*) presented in Figure 6.
Consider the following example: Γ = {y ↦ ⬩int, b↦ ⋄y, c↦ &y} it follows that
∗y ∶ int and ∗c ∶ int. However, *b cannot be typed. Additionally, lvals can have
partial types as long as their internal ”path” is defined, e.g. Γ = {x ↦ ▪⌊▪int⌋}
it follows that x and ∗x can be typed, while **x cannot. Finally, we denote by
⊓imi (see T-LvBorrow) the lowest lifetime of m0, . . . , mn such that the sequence
of active lifetimes is always well defined in an expression. The T-Copy rule
handles copying out of an lval that has copy semantics. Hence, it is safe to leave
the output environment unchanged. This rule requires that ω is not borrowed as
a mutable using ¬readProhibited(Γ, ω) function. The value returned will take
on a new lifetime. With T-Move, instead of copying the value, we move it out
of ω that has move semantics. Nonetheless, this rule requires two constraints:
(1) ω must not be borrowed or cloned in its environment, which is checked by ¬

A Rust-like type system for cooperative threads 13

writeProhibited(Γ1, ω) and ¬TrcProhibited(Γ1, ω) respectively. (2) Since with
an inactive Trc we cannot access the values of the heap, we then must prevent its
dereferencing. This behavior is captured by the derefProhibited(Γ1, ω) function
imposed in ¬TrcProhibited(Γ1, ω) function. After validating these conditions,
the output environment removes ω using move(Γ1, w). The T-MutBorrow
rule requires that ω is not write prohibited in order to borrow it safely. How-
ever, the T-ImmBorrow rule requires that ω is not read prohibited. In both
cases, the type of ω must be well defined ⟨τ⟩m. In MSSL, dynamic allocation
is handled either by returning a box type with the T-Box rule, or an active
Trc type with T-Trc. These types represent an owned pointer to a dynamically
allocated location in the heap. According to these rules, if e induces the move
of a variable, we observe this effect in box(e) (or trc(e)) as well. Finally, T-
clone returns an inactive Trc type by enforcing two requirements: (1) ω has to
be of Trc type. (2) ω must be recursively active. This property is checked by
the active(Γ, ω) function. The T-Sequence rule captures how variable environ-
ments are threaded into programs. The environment generated after evaluating
an expression in a sequence is simply added to the next following environment,
since the type checking of some expressions modifies the environment. Further-
more, the type of a sequence is determined by the final expression in it. The
T-Block rule builds on T-Sequence for body processing. This rule exploits
the lifetime associated with a given block to determine which variables should
be dropped while ensuring that there are no dangling references: the drop(Γ, m)
function deallocates variables that have a lifetime m, as illustrated in Figure
7. With T-Declare, the creation of a new location (owner) requires that the
variable does not already exists in the environment. Then, this rule produces
an output environment by adding the new variable whose lifetime matches that
of the enclosing block. T-Assign requires several conditions: (1) ω should not
be borrowed or cloned. This is checked with the ¬writeProhibited(Γ3, ω) and
¬TrcProhibited(Γ3, ω) functions, to ensure that an unchecked mutation does
not occur in the presence of aliasing, (2) ω can have a partial type, (3) τ̃1 and
τ2 must be shape compatible τ̃1 ≈ τ2, (4) the new type τ2 has to be well-formed
with respect to lifetime l (i.e., τ2 ⪰ m as a subtype requirement). The ex-
pression cooperate means that the current thread has finished its execution at
the current instant (round); in this case, another thread ready to execute as-
sumes control. This implies that the latter can share the data with the current
thread through Trc extension. Thus, to ensure memory safety and to avoid errors
that may be produced, it is necessary to guarantee that in the current typing
environment, there are no variables of Trc type that are borrowed. Therefore,
this must be checked by the safeTrc(Γ) function with T-Coop rule. Finally,
we introduce the T-Spawn rule which ensures the typing of arguments on e
from left to right, denoted by Γ1 ⊢ ⟨e ∶ T ⟩lσ ⊣ Γ2. Afterwards, it is necessary
to guarantee that the signatures in the declared function are compatible with
the arguments types when the function is called. For this reason, we define the
following mechanism: Γ ⊢ (S) ⟸ (τ). The latter is used to verify two con-
straints, in order to avoid: (1) the presence of two inactives Trcs with the same

14 Darine Rammal, Wadoud Bousdira, and Frédéric Dabrowski

source Trc, e.g. Γ ⊢ (⬩int,⬩int) ⟸ (⋄x,⋄x); (2) the presence of an active
Trc in the arguments of the function, e.g. Γ ⊢ (⬩int) ⟸ (⬩int), where, in
this case, the signature (⬩int) is incompatible with the active Trc type (⬩int).
For example, consider the following program: fn f(a ∶ ⬩int, b ∶ ⬩int) {..}l
{let mut x = e; let mut y = x.clone; spawn(f(x, y)); }m. When f(x, y) is called
and according to the type of a, Γ(x) = ⬩int and then Γ(y) = ⋄x. Consequently,
spawn(f(x, y)) is not valid.

5 Soundness
In this section, we state our main results which are progress and preservation.
Both notions are related to the notion of validity. Let S be a program store, let
ℓ1, ℓ2 ∈ S. S ⊢ ℓ1 ↝ ℓ2 if S(ℓ1) = ℓ2 or ∃ ℓ3 ∈ S such that S(ℓ1) = ℓ3 and
S ⊢ ℓ3 ↝ ℓ2. We note S ⊢u ℓ1 ↝ ℓ2 if S ⊢ ℓ1 ↝ ℓ2 and whenever there exists
ℓ3 ∈ S, ℓ3 ≠ ℓ1 such that S ⊢ ℓ3 ↝ ℓ2 then either S ⊢ ℓ3 ↝ ℓ1 or S ⊢ ℓ1 ↝ ℓ3.

– Let e be an expression where v ∈ e is the sequence of all distinct values it
contains. We say that e is well-formed if ¬∃ i, j.(i ≠ j ∧∃ ℓ⬩.(vi = vj = ℓ⬩))
∧ ¬∃ i, j.(i ≠ j ∧ ∃ ℓ.(vi = vj = ℓ))

– Let S be a program store. For every thread t, let vt be the sequence of all
distinct values reachable from t. Then S is said to be a valid store if for all
t and ℓ

⬩ we have ℓ⬩ = v
t
i = v

t
j ⇒ i = j and, moreover, for all t, t′ and ℓ, if

ℓ = v
t
i = v

t
′

j , where (t, i) /= (t′, j), then there exists m, n and ℓ
⬩ such that

v
t
m = v

t
′

n = ℓ
⬩ and S ⊢ ℓ

⬩
↝ ℓ.

– Let S ⊳ T1, T2 be a program state and let e be the thread expressions in
T1∪T2 where S and e1, . . . , en are valid. For all thread t, let vt and ut be the
sequence of all distinct values reachable from t in S and et respectively. Then
S ⊳ T1, T2 is said to be valid if for all t and ℓ⬩ we have ℓ⬩ = v

t
i = u

t
j ⇒ i = j

and, moreover, for all t, t′ and ℓ, if ℓ = v
t
i = u

t
′

j , where (t, i) /= (t′, j), then

there are m, n and ℓ⬩ such that vtm = u
t
′

n = ℓ
⬩ and S ⊢ ℓ

⬩
↝ ℓ.

5.1 Safe Abstraction

An important connection exists between runtime program stores S, and typing
environments Γ. Let us note that S is a safe abstraction by Γ when, for every
variable in the typing environment, its value exists in the program store with the
appropriate type. Let S be a program store, v⊥ a partial value and τ̃ a partial
type. Then, v⊥ is abstracted by τ̃ in S, denoted S ⊢ v

⊥
∼ τ̃ , according to the

following rules:

S⊢ϵ∼ϵ
(V−Unit)

S⊢c∼int
(V−Int)

S⊢⊥∼⌊τ⌋ (V−Undef) ∃ i.(loc(S,ωi) = ℓ)
S⊢ℓ◦∼&[mut]ω (V−Borrow)

S(ℓ) = ⟨v⊥⟩l S⊢v
⊥
∼τ̃

S⊢ℓ⬩∼⬩τ̃
(V−Trc) S(ℓ) = ⟨v⊥⟩l S⊢v

⊥
∼τ̃

S⊢ℓ▪∼▪τ̃
(V−Box) ∃ i.(loc(S,ωi)=ℓ)

S⊢ℓ⋄∼⋄ω
(V−Clone)

A Rust-like type system for cooperative threads 15

Let S be a program store, σ a store typing, and e an expression where v ∈ e is
the sequence of distinct values it contains. Then, σ is valid for state S⊳e, denoted
S⊳ e ⊢ σ, if ∀i.(S ⊢ vi ∼ σ(vi)). Let Γ to be a typing environment for a given
thread t and S a program store where S contains the locations of the variables
reachable from t. Let L be the set of all heap locations, denoted ℓn. Then, S is
safely abstracted by Γ, denoted S ∼ Γ, iff (dom(S)-L) = Θ(dom(Γ)) and for all
x ∈ dom(Γ) we have (S ⊢ v

⊥
∼ τ̃) where S(ℓx) = ⟨v⊥⟩l and Γ(x) = ⟨τ̃⟩l. For

a set of variable identifiers, ϕ, Θ(ϕ) = {ℓx ∣ x ∈ ϕ}.

5.2 Progress and Preservation
An important invariant about typing environments is (1) to avoid the presence
of invalid borrowings (2) to ensure that for every inactive Trc there is always
one or more active Trc. This property is named the borrow invariant and it is
captured in the well-formedness property over environments:
Let Γ be a typing environment, Γ is well-formed with respect to some lifetime
l if :

1. for all x ∈ dom(Γ) and ω ∈ LV al
+ where Γ ⊢ x↝ &[mut]ω ∧Γ(x) = ⟨.⟩n,

we have Γ ⊢ ω ∶ ⟨τ⟩m ∧ m ≥ n
2. for all x ∈ dom(Γ) where Γ(x) = ⟨.⟩n, we have n ≥ l;(3) for all x ∈ dom(Γ)

and ω ∈ LV al
+, if ∃ i where Γ ⊢ x ↝ ⋄ωi, then we have Γ(ωi) = ⟨⬩τ⟩m

where m ≥ l.

Proposition 1 (Progress). Let T1, T2, S be a global state; let σ be a store where
S ⊳ e ⊢ σ for all (t, {e}l) ∈ T1∪T2. Let Γ 1

1 , . . . Γ
n
1 , where n is the cardinality of

T1 ∪ T2, be well formed typing environments with respect to lifetimes l1, . . . , ln
respectively; Let Γ 1

2 , . . . Γ
n
2 be typing environments and let τ1, . . . , τn be some

types. If for all (ti, {ei}li) ∈ T1 we have Γ i
1 ⊢ ⟨ei ∶ τi⟩lσ ⊣ Γ

i
2 then either all

threads are terminated or there exists T ′1, T
′
2, S

′ such that T1, T2, S ⟹ T
′
1, T

′
2, S

′,
or T1, T2, S diverges.

Proposition 2 (Preservation). Let T1, T2, S1 be a valid state and (t, {e}n) ∈
T1 and let σ be a valid store typing such that S1 ⊳ e ⊢ σ. Let Γ1 be a well
formed environment with respect a lifetime l where S1 ∼ Γ1; let Γ2 be a typing
environment and let τ be a type and T be a set of threads. If Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2

and ⟨S ▷ e
T

⟹ S2 ▷ e
′⟩n, then T1∣t, T2 ∪ (t, {e}n) ∪ T, S2 remains valid where

S2 ∼ Γ2 and S2 ⊢ v ∼ τ .

6 Related Work
Several works have been up to date to carry out on the Rust type system and
verification of Rust programs. Pearce [21] has developed FR, a lightweight formal
programming language that represents a subset of the Rust language containing
the safe part, including model boxes explicitly. This work is inspired by Feath-
erweight [11] Java to produce a relatively lightweight formalization of Rust. The

16 Darine Rammal, Wadoud Bousdira, and Frédéric Dabrowski

FR most closely resembles Rust 1.0, which introduced lifetimes based on the
lexical structure of programs. This work provides a type system that enforces
type and borrowing safety and preserves the borrowing invariant. Weiss et al.
[24] developed Oxide. Like FR, Oxide is a formalized programming language
that represents a similar version of the Rust source code, especially on the for-
malization of the ownership system. Unlike FR, Oxide does not manage dynamic
allocation of the heap and allows for Non-Lexical Lifetimes [19] by introducing
a new view of lifetimes as an approximation of the provenances of references.
Meanwhile, Jung et al. [13] developed a formal semantics and type system of a
language called λRust. Unlike Fr and oxide, λRust is much closer to the Mid-level
Intermediate Representation (MIR) [18] than to Rust source and it has been
implemented in Coq. In addition, this work studies the ownership discipline of
Rust in the presence of unsafe code.

7 Conclusion and Perspective
We have proposed an extension of the FR language dedicated to cooperative
concurrent programming. This extension is a subset of our programming lan-
guage MSSL. Compared to FR, we have proposed a new kind of smart pointers
which allows threads to communicate without need for locking primitives. We
provided an operational semantics and a type system ensuring memory safety of
well-typed programs. In future work, we will provide an implementation of the
type system for full MSSL and provide a translation, for well typed programs,
of the latter to Fairthreads. We also plan to propose a Rust Crate based on
our programming model. Such an extension will use [13] to ensure that safety is
preserved.

References

1. Implications of rewriting a browser component in rust – mozilla hacks - the web
developer blog.

2. The rust programming language. http://www.rust-lang.org.
3. Henry Baker. ’use-once’ variables and linear objects - storage management, reflec-

tion and multi-threading. SIGPLAN Notices, 30:45–52, 01 1995.
4. Gérard Berry. The foundations of esterel. pages 425–454, 01 2000.
5. Gérard Berry, Philippe Couronne, and Georges Gonthier. Synchronous program-

ming of reactive systems: an introduction to esterel. 08 1988.
6. F. Boussinot. “FairThreads: Mixing Cooperative and Preemptive Threads in C.”.

Concurrency and Computation: Practice and Experience,, 2005.
7. F. Boussinot and J-F. Susini. “Java Threads and SugarCubes”. Software Practice

and Experience, 2000.
8. Frédéric Boussinot. Fairthreads: Mixing cooperative and preemptive threads in c.

Concurrency and Computation: Practice and Experience, 18:445–469, 04 2006.
9. Dave Clarke, John Potter, and James Noble. Ownership types for flexible alias

protection. SIGPLAN Notices (ACM Special Interest Group on Programming Lan-
guages), 33, 08 1998.

A Rust-like type system for cooperative threads 17

10. Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The syn-
chronous data flow programming language lustre. Proceedings of the IEEE, 79:1305
– 1320, 10 1991.

11. Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight java - a min-
imal core calculus for java and gj. ACM Transactions on Programming Languages
and Systems, 23, 11 1999.

12. Richard Jones and Rafael Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. 08 1996.

13. Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Rustbelt:
Securing the foundations of the rust programming language. Proceedings of the
ACM on Programming Languages, 2:1–34, 12 2017.

14. Mats Kindahl. Review of "types and programming languages by benjamin c.
pierce", mit press, 2002. SIGACT News, 37:29–34, 01 2006.

15. Paul LeGuernic, Thierry Gautier, Michel Borgne, and Claude Maire. Programming
real-time applications with signal. Proceedings of the IEEE, 79:1321 – 1336, 10
1991.

16. F. Boussinot M. Serrano and B. Serpette. “Scheme Fair Threads.”. Proceedings
of the 6th ACM SIGPLAN international conference on Principles and practice of
declarative programming, pages 203–214, New York, NY, USA,, 2004.

17. Louis Mandel and Marc Pouzet. ReactiveML : un langage fonctionnel pour
la programmation réactive. Technique et Science Informatiques (TSI), 27(9–
10/2008):1097–1128, 2008.

18. Nicholas D. Matsakis. Introducing mir. https://blog.rust-
lang.org/2016/04/19/MIR.html., 2016.

19. Nicholas D. Matsakis. Non-lexical lifetimes: introduction.
http://smallcultfollowing.com/babysteps/blog/2016/04/27/non-lexical-lifetimes-
introduction/. Accessed: 2019-02-28., 2016.

20. Naftaly Minsky. Towards alias-free pointers. 08 2001.
21. David Pearce. A lightweight formalism for reference lifetimes and borrowing in

rust. ACM Transactions on Programming Languages and Systems, 43:1–73, 04
2021.

22. Mozilla Research. Rust book. 2019.
23. MSRC Team. We need a safer systems programming language – microsoft security

response center.
24. Aaron Weiss, Daniel Patterson, Nicholas Matsakis, and Amal Ahmed. Oxide: The

essence of rust. 03 2019.
25. Paul Wilson. Uniprocessor Garbage Collection Techniques, volume 637, pages 1–42.

04 2006.

18 Darine Rammal, Wadoud Bousdira, and Frédéric Dabrowski

A Appendix

Example 1: One of the main objectives of the newly introduced Trc extension
is to ensure that two active Trcs do not point to the same location in the same
thread. The following example reflects the aforementioned and of course it is
rejected by our type system:

fn g(a ∶ ⬩ ⬩ int, b ∶ ⬩ ⬩ int) {...}l
fn f(r ∶ ⬩ ⬩ int, q ∶ ⬩ ⬩ int) { spawn(g(r.clone, q.clone)); }l
1. { (1)
2. let mut x = trc(trc(0));
3. spawn(f(x.clone, x.clone));
4. }m

In the block that covers lines 1 to 4, we declare one variable x of active Trc
type (⬩ ⬩ int). Then we create a new thread that will execute the code of the
function f . Both variable parameters in the function f are of type (⬩⬩int). The
T-Spawn rule returns an error on line 3, as the two arguments of the function
f do not satisfy the unicity of mutable constraint because x.clone and x.clone
both point to the same location as x. This leads to the creation of two active
Trcs at the same location in the new thread environment.

Example 2: Another necessary constraint to ensure the unicity of mutable
is to prevent threads to communicate between them using active Trc. To elabo-
rate, we consider the following example:

fn g(a ∶ ⬩int, b ∶ ⬩int) {...}l
fn f(r ∶ ⬩ ⬩ int, q ∶ ⬩ ⬩ int) { spawn(g(∗r, ∗ q)); }l
1. {
2. let mut = x trc(trc(0));
3. let mut = y trc(trc(0)); (2)
4. spawn(f(x.clone, y.clone));
5. let mut a = trc(5);
6. ∗x = a.clone;
7. ∗y = a.clone;
8. }m

In the function f that takes two parameters with (⬩⬩ int) as its signatures,
we create a new thread that will execute the code of the function g. Since, the
expression ∗r moves the content of an active Trc, an error is displayed such as
’Arc’ or ’Rc’ in Rust, where also it cannot move out of an active ‘Trc‘.

Example 3: One of the most important purpose of Rust borrow checker is
to statically guarantee the validity of pointers (e.g., there are no dangling point-
ers). We ensure this property with the use of the cooperate expression where
another thread assumes control. The following example explains how this works:

A Rust-like type system for cooperative threads 19

fn g(a ∶ ⬩ ⬩ int, b ∶ ⬩ ⬩ int) {...}l
fn f(r ∶ ⬩ ⬩ int, q ∶ ⬩ ⬩ int) {

spawn(g(r.clone, q.clone));
let mut a = &r; cooperate; }l

1. {
2. let mut x = trc(trc(0)); (3)
3. let mut y = trc(trc(0));
4. spawn(f(x.clone, y.clone));
5. let mut a = trc(5);
6. ∗x = a.clone;
7. ∗y = a.clone;
8. }m

In the function f that takes two parameters with (⬩⬩ int) as its signatures,
we create a new thread that will execute the code of the function g. No error
occurs on this line. Subsequently, we create a reference to the variable r and we
bind it to ’a’ and the local thread terminates the function with the cooperate
statement to give the control to another thread. The T-Coop rule returns an
error because there is no reference to a Trc in the local environment (i.e. shared
memory) to make certain that a thread will not overwrite the shared memory of
other threads. Consequently, this example is rejected by the MSSL type system.

