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Abstract 
The historical origins of the game theoretic predator-prey pursuit problem can be traced back to 
Benda, et al., 1985 [1]. Their work adapted the predator-prey ecology problem into a pursuit 
environment which focused on the dynamics of cooperative behavior between predator agents. 
Modifications to the predator-prey ecology problem [2] have been implemented to understand how 
variations to predator [3] and prey [3-5] attributes, including communication [6], can modify 
dynamic interactions between entities that emerge within that environment [7-9]. Furthermore, the 
predator-prey pursuit environment has become a testbed for simulation experiments with 
computational multiagent systems [10-12]. This article extends the theoretical contributions of 
previous work by providing 1) additional variations to predator and prey attributes for simulated 
multiagent systems in the pursuit problem, and 2) military-relevant predator-prey environments 
simulating highly dynamic, tactical edge scenarios that Soldiers might encounter on future 
battlefields. Through this exploration of simulated tactical edge scenarios with computational 
multiagent systems, Soldiers will have a greater chance to achieve overmatch on the battlefields 
of tomorrow. 

Background 
The predator-prey paradigm originally emerged from the field of ecology and was analyzed 
through a series of differential equations describing population dynamics among at least two 
species (often predator and prey) [13]. Over time, this evolved into a framework for investigating 
environmental and spatial contributions towards behavioral dynamics. From 1925 to 1966 
modifications to the predator-prey model resulted in the emergence of functional predator behavior 
dependent on prey death rate and prey population density [14-16]. These modifications introduced 
the first inferred spatial component to the predator-prey paradigm. In 1985, the predator-prey 
model was extended to the problem of individual pursuit (i.e., focusing on individual interactions 
rather than population dynamics). This shift was aimed at exploring cooperative behavioral 
dynamics in multi-agent systems [1]. Since then, the predator-prey pursuit problem has begun to 



see use as a benchmark for testing multiagent algorithms, due to the inherent competitive and 
cooperative elements intrinsic to its design [17]. 

The typical predator-prey pursuit environment consists of multiple predators and a single prey 
moving around in a 2-D confined arena either discretely (one space at a time in either up, down, 
left, or right directions) or continuously (smooth continuous movement in any direction) for a fixed 
duration [7, 11, 12, 17-22]. The goals of the predators are in direct competition with those of the 
prey. The predators’ shared goal is to come in contact with (continuous movement) or settle 
adjacent to (discrete movement) the prey, while the prey’s goal is to avoid contact or adjacency 
with all predators (provided the prey moves). This creates an interesting dichotomy of competition 
between species (predator and prey), while promoting cooperation, coordination, and collaboration 
within the predator species. Although competition weighed against cooperation within the predator 
group has been explored [20], the majority of studies utilize the predator-prey pursuit environment 
to investigate team dynamics with respect to a shared goal. 

The original predator-prey pursuit environment (Figure 1) required four predator agents to 
surround the single prey agent from four directions in a discretized grid world [1, 9, 21, 23]. The 
predator agents were guided by an algorithm and their movements were limited to one grid square 
per time step to an adjacent available square (not occupied by another agent or a boundary) in only 
the vertical or horizontal directions (no diagonal movements). The prey agent was restricted to the 
same criteria and guided by random movement. The goal of their simulation experiments was to 
show the impact that varying degrees of agent cooperation and control had on the efficiency of 
prey capture. This first rendition of the predator-prey pursuit problem introduced an environment 
to test the effectiveness of an algorithm to cooperate in a well-constrained domain. 

 
Figure 1. Typical predator-prey pursuit environment utilized a discretized grid world bounded on all sides. The goal was to have 
four predator agents (green blocks) surround the prey agent (red block) on four sides (top, bottom, left, and right). Agents could 
only move one square at a time and neither could move diagonally nor catch the prey from an adjacent diagonal location. 

Cooperative algorithms inherently enable predators to collaborate [12, 24-28]. However, under 
certain conditions, predators using a greedy strategy may have greater success [29], though 
cooperative algorithms often win out when a sophisticated prey is faced [23], and in some 
environments prey benefit most from a mix of greedy and altruistic strategies [20]. These 
algorithmic explorations of multi-agent cooperation show how the predator-prey pursuit 
environment provides an ideal testbed for understanding collaborative agent behavior. 

Since the origination of the predator-prey pursuit environment, many studies have leveraged 
manipulations to the pursuit environment to investigate human and artificial intelligence behavior 



in multiagent systems. The next section explores many of these predator-prey environmental 
manipulations along with the experimenters’ goals to provide a foundation for simulating tactical 
edge scenarios. 

Modifications to the Predator-Prey Pursuit Environment 
Many multiagent research efforts utilize the original discretized predator-prey pursuit environment 
shown in Figure 1, implementing a toroidal grid world and requiring the single prey to be blocked 
on all sides by four predators [7, 21, 22]. These studies tend to focus less on the structure of the 
environment and more on how specific sets of predator strategies impact cooperation and 
teamwork in homogenous and heterogeneous groups of predators. Whereas this foundational work 
is important, the remainder of this section will discuss modifications to the predator-prey pursuit 
environment and their implications. 

Changes in Task Constraints 
One of the simplest modifications of the original predator-prey pursuit task is to change the 
constraints of the task in order to address specific questions or increase task realism. The most 
straight forward example of this is pursuit environments that are made more complex through the 
use of continuous spaces. While in grid worlds the prey are typically considered caught when 
surrounded on four sides by predators (Figure 1), continuous environments require a predator to 
come within some small distance of [30], or to “tag” (touch or overlap in center of mass) [17, 31] 
they prey. While discrete environments are typically easier to analyze and reason over, it is worth 
recognizing that most real-world tasks take place in a continuous domain. Thus, the application of 
theoretical and empirical revelations that emerge from continuous (or other more realistic) 
predator-prey pursuit environments will aid our understanding of real life pursuit problems.  

As an intermediate step, some authors have extended (while maintaining) the discrete environment 
with diagonal movements [32], or more complex cell-shapes (such as hexagons [18, 32], or 
irregular convex cells [33]). The timing of predator and prey movement has also been manipulated, 
with the standard parametrization allowing agents to move synchronously per time step [32], 
alternating agents’ movements through a sequence of time steps (e.g., turn-taking as described in 
[34]), or allowing more realistic unrestricted, asynchronous movement [23] such that predators 
and prey can react to each other at flexible time intervals. 

Manipulations to environment bounding have illuminated a dependence between structure and 
predator pursuit strategies. Unbounded non-toroidal environments have been used, including 
unbounded planes where pursuers move along an unbounded curvature [35], as well as bounded 
environments, e.g., [36] where traffic in a police chase is restricted to a closed grid of streets or 
[24] where encountering the edge of the environment results in death. These manipulations have 
clear implications for pursuit and evasion strategies, since a non-toroidal unbounded environment 
will allow fast enough prey to continue indefinitely in a given direction and bounded environments 
contains corners in which prey can be trapped. 



Changes in the Number of Agents 
The most frequent predator-prey pursuit environment modifications have been to vary the number 
of agents. In one study, the number of pursuers (predators) was varied between one and two in a 
discrete environment with block obstacles to investigate how different agent learning parameters 
(Q-learning: learning rate, discount factor, and decay rate), implemented into both the predator 
and prey (in one condition), alter evader (prey) capture time [19]. In other work, the number of 
competitive (egoistic) and collaborative (altruistic) predator agents was varied along with the total 
number of predators (up to 20) to understand how different sizes of homo- and heterogeneous 
egoistic and altruistic groups of predators catch a single prey [20]. Together, this work 
demonstrates how simply changing the number of predators and including various types of 
obstacles can illuminate aspects of collaborative behavior while simultaneously testing the 
effectiveness of different algorithmic approaches. 

Modifications of the External Environment 
Obstacles in the pursuit environment can take on various attributes that force agents to adapt and 
develop more sophisticated behaviors to achieve the task goal. Typically, these obstacles are static 
and must be circumnavigated as was described previously [17, 28, 30, 37], but they may take on 
attributes that disrupt or eliminate an agent (predator or prey) [24]. In one research effort, three 
pursuers (predators) needed to collaborate in a 2-D environment with complex maze-like obstacles 
(branching obstacles) to capture an intruder (prey) before it escaped [37]. The goal of this particular 
study was to identify an optimal strategy that emphasized group reward over individual reward, 
essentially discovering optimal collaboration within their environmental. Dynamic obstacles have 
also been utilized to investigate a predator-prey like task where a police chase was modulated with 
varying degrees of street traffic [36]. In general, these studies found that successful agent behavior 
was dependent on the attributes of the obstacles. 

Changes in Agent Capabilities 
Similar to the inclusion of obstacles in the pursuit environment, restricting how far agents 
(predators and prey) can see necessitates changes to agent behavior to achieve task success. Some 
research allows the agents to be omniscient, where all entities’ positions are known at every time 
point [17, 35], whereas other studies permit agents to see in a straight line until an occlusion is 
encountered [33, 38-40]. Some allow predators and prey to see only within a given range around 
themselves [21, 30, 41] or apply random limitations to predator vision [42]. While some research 
explores predators with limited sensing abilities, these studies allow information to be shared 
among predators [21, 36], either through direct communication (e.g., police radio, [36]) or 
indirectly (e.g., by leaving cues such as pheromone trails in the environment) [26]. Other work has 
explored an imbalance between sensing abilities of the predators and prey. For example, a predator 
may see a prey from a greater distance than the prey can detect, reflecting a more realistic scenario 
where the predator is on the hunt for a non-vigilant prey [21]. Other work has further modified 
agent vision or sensing abilities by testing something akin to sound, where a predator agent can 
hide around corners [43]. Together, these studies show the importance of agents’ sensing 
capabilities and how manipulations illuminate the dependence between pursuit strategies and these 
capabilities. 



Limitations to agents’ sensing capabilities in simulation experiments naturally extends the pursuit 
problem into the physical domain with robots. A common physical limitation of a robotic agent is 
the field of view [44]. The field of view is dependent on two main factors, 1) the distance between 
the visual system and the object, and 2) the degrees of visual angle the system can see (the average 
human can see approximately 210 degrees of visual angle). Given that robotic systems need to 
have some visual representation of the environment around them for obstacle avoidance and 
navigation, certain limitations to field of view can cause a catastrophic failure (possibly disabling 
or destroying the robot). Therefore, it is of critical importance to understand how manipulations to 
field of view effect robotic systems’ pursuit behavior. 

Additional Dimensions 
In general, 3-D environments provide an opportunity for more complex behavioral strategies, such 
as those required in aviation, aquatics, and for traversing uneven surfaces [31, 39]. Through 
investigation of these various 3-D environments, a natural emergence of behavioral strategies that 
depend on the terrain can be discovered. A physical example of this phenomenon is found in the 
attack and evasion strategies for spiders and crickets as forest leaf litter change geometries between 
winter and summer [45]. 

Adaptation of the Predator-Prey Pursuit Environment to Tactical Edge 
Scenarios 

The predator-prey pursuit environment has been used by researchers since 1985 [1] to investigate 
a host of topics including various aspects of group dynamics [25, 46], pursuit strategies [3, 47], 
escape/evasion strategies [27, 41, 48], and multi-agent systems [18-20, 49] to name a few. The last 
portion of this article discusses a set of proposed manipulations to the predator-prey pursuit 
environment to investigate potential simulated tactical scenarios that easily map to a physical 
domain. 

Impact of Spatial Constraints on Strategies and Behavior 
The predator-prey environment size, or the space available for agents (predators and prey) to move 
around in, has been manipulated to understand how environmental geometries [18, 32] and sizes 
[50] influence agent behavior in discrete spaces. Building upon this body of work and extending 
into the continuous domain [17], it would be of interest to start with a trivial minimized space, 
such that the predators always catch the prey within a short period of time, and incrementally 
increase the size of the environment to gain a quantitative understanding of how environment size 
impacts prey catch times as a function of increasing environment size. We would expect that prey 
catch time would increase with a power function of the dimensions of the environment, with a 
certain size resulting in a near-zero probability of catch. The dimensional expansion can provide a 
fundamental understanding of task difficulty with respect to environment size. In a simulated 
tactical scenario, such an understanding would allow us to better assess the probability of acquiring 
a moving target given the estimated escape space available. This could also lead towards valuable 
insight into the type of agent capabilities needed to estimate a high probability of mission success 
(e.g., small and fast reconnaissance agents). 



Modifying Predator Capabilities 
While holding all other possible manipulations constant, modifications to agent velocity or rate of 
predator agent movement in a continuous space introduces many additional degrees of freedom 
and provides an opportunity to simulate tactical teams with homo- and heterogeneous capabilities. 
A systematic sweep through a range of velocities for a set of predator agents can provide a valuable 
mapping between agent velocity and mission success (i.e., prey catch time). However, it is 
important to note that changes to predator velocity are relative to prey velocity and should likely 
be thought of as a ratio. With that stated, a simultaneous change to all predator agents’ velocities 
(increase or decrease) relative to the prey agent will result in an understanding of the relationship 
between homogeneous alterations to a team’s capabilities and mission success. Similarly, 
heterogeneous manipulations to the predator agents’ velocities relative to the prey agent in a 
continuous predator-prey pursuit environment can provide an estimate of mission success for the 
various capabilities (velocity sweep across all predators) in this simulated target acquisition 
tactical scenario. 

On the other side of the proverbial coin, holding predator attributes constant and applying 
manipulations to the prey’s velocity introduces additional dimensionality to the task domain and 
may result in the need for more complex collaborative behavior to achieve predator agent mission 
success. As was suggested for the predator agents, a velocity sweep for the prey would dictate task 
difficulty (easy for low velocities and hard for high velocities) and should result in a spectrum of 
competitive to collaborative predator agent behaviors for low to high velocities respectively. It is 
important to note that modifications to the prey’s velocity would need to be relative to the predator 
agents’ velocities. We would expect that manipulations from low to high predator to prey velocity 
ratio would result in the shifts from easy to hard for task difficulty and competitive to collaborative 
predator agent team behavior. These simulation experiments might represent the differences 
between having a homo- or heterogeneous teams of slow, heavy, powerful assets (e.g., tanks), 
camouflaged insurgent ground assets, or drones in reconnaissance or target acquisition scenarios. 

Modifying Prey Capabilities 
In the prey manipulation domain, introducing multiple prey in various forms could change the task 
goals entirely. The inclusion of a second prey expands the dimensionality of the task domain to 
include homo- and heterogeneous adversarial dynamics (two prey agents forming an adversarial 
team), a potential decoy (catching the decoy prey agent does not complete the mission), and 
variable temporal mission objective windows (the predator agents must coordinate to catch both 
prey agents within a preselected duration). The inclusion of additional prey agents (number of prey 
agents > 2) can further increase the complexity of the task domain, possibly to the point of which 
the probability of simulated tactical mission success goes to zero. Mission failure is important to 
explore, especially in simulated environments, in order to maximize the probability of mission 
success in the multi-domain battlespace. 

Modifications to coordinate locations in the simulated environment, while holding all agent 
attributes (both predator and prey) constant, permits an investigation of degraded agent 
capabilities. Coordinate manipulations can take the form of static impassible barriers that represent 
buildings/walls/obstacles, patches that induce injury by temporarily (short duration) or 



permanently (remaining duration) reducing/minimizing/stopping agents’ (predator and/or prey) 
movements or small environmental regions with simulated hidden explosives that completely 
remove an agent from further participation in the mission. Other coordinate manipulations are 
possible (e.g., teleport agents randomly around the environment), but they might not have an easily 
identifiable correspondence to tactical scenarios. Therefore, environmental manipulations that 
easily map to tactical scenarios can provide an estimate of the relationship between agent capability 
degradation and mission success. 

Conclusion 
Complexification of the predator-prey pursuit environment to include modifications that easily 
map to simulated tactical scenarios allows for the adaptation of computational agents to these 
domains. This line of predator-prey pursuit research can be extended to a physical environment 
that accommodates the testing of robotic platforms working with Soldiers in target acquisition 
training drills, for the eventual implementation on the multi-domain battlefield. 
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