
EasyChair Preprint
№ 7323

An Alternative Approach to Rounding Issues in
Precision Computing with Accumulators, with
Less Memory Consumption: a Proposal for
Vectorizing a Branched Instruction Set

Roy Gulla

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 10, 2022

An Alternative Approach to Rounding Issues in Precision Computing with
Accumulators, with less Memory Consumption: A Proposal for Vectorizing a

Branched Instruction Set.
Roy P. Gulla rgullape@gmail.com

Abstract— Recent developments in numerical
formatting have introduced a new system and a new
emphasis on the use of accumulators for numerical
computation. There also has been a recent development in
this Posits numerical system, designed by John Gustafson,
utilizing logarithmic bases. Here an alternative in light of
these new developments is presented in a way to
incorporate a design feature of Gustafson's format which
negates the need for fractional bits in his system. One
possible application for implementation of the formatting
is also mentioned, which enhances the usage of instruction
level parallelism in the arithmetic circuit design.

1.1 Introduction
Low level hardware designs are rapidly undergoing a major
sea level change in response to the new emerging technology
surrounding quantum computing. In order to control for some
of the inherent volatility in these new products, new
formatting for precision computing is taking shape with
several performance constraints enacted in order to limit the
nearly unlimited bounds for power consumption in these new
devices.

Some of the most important constraints are hardly new
considerations, but one of them in particular, word size, can
now be controlled for more easily, sort of ironically, due to a
particularly recent implementation made possible by these new
technologies.

In this new development, described in the third section
below, a sort of folding of layers of bit streams is pretty clearly
detailed as the building block for multiple layers being
architecturally networked, or even streamed together. The
blocks being connected though are words, and the words are
being connected at the bit level.

Very recently, John Gustafson’s POSIT formatting has
found some implementations in a square root and divide
circuit described in [2],and a new standard creation is
underway to directly implement the direct dot product as a
fifth arithmetic operation. In the first of these developments,
power consumption is highlighted as a primary interest of the
application designers.

Even more recently a proposed application of the minposis
subset of Gustafson’s posits has been described where a word
the size of a single minposis bit is repeatedly read, or
weighted, in a small arithmetic circuit consisting of the
additional operations of adding and multiplying.

In this arithmetic circuit design described in [3] these
repeated, or branched add and multiply instructions, lead to an

expansion of the minposis value in a finite sum approximation
of a non-exactly representable value in binary.

In the first portion of the paper the author will describe this
proposed arithmetic circuit in light of the new quantum dot
cellular automata application implementation with one-bit full
adders described in [1], in a way that the instruction set is not
in any way bloated with extraneous operands (i.e. store and/or
load). In this portion a design tactic for instruction set
architectures already implemented in a previous MIPS
processor will be re-implemented with very few optimization
flags enacted, so as to not increase the level of token matching
in the operand matching stage of compilation performed in
dataflow or even superscalar architectures.

In the final two sections of this paper, an actual prototyped
package, with minimally accessible instruction sets for global
registers, will be introduced as a vectorized computer
architectural representation of the minposis subset of
Gustafson’s Posit formatting.

In the interim a brief digression will ensue that will follow
the mathematical developments in low level numerical
formatting that have lead to the use of these newer hardware
designs for the improvement of computing precision.

1.2 The Problem of Rounding with Variable and
Large Word Sizes
This new proposed implementation of certain rational numbers
avoids the one issue that is common to all of the
architectures.mentioned above, storage and retrieval of the
correct values. Simply put, the difficulties in the rounding
stage of computation can be exacerbated in vectorized
machines where the mixing of different levels of precision can
lead to denormalization of values. As implementations of
these numerical types go through layers of architecture to
higher levels, what once was a double type can become mixed
with integer and decimal types, and astonishingly, even
hexidecimal types when these are perpetuated from the
program test registers at lower levels. When designers of
higher level programs seek to implement high performance
compute nodes and these lower level gates, their design
choices teeter dangerously between implementing massive
amounts of compute nodes, and their inherent compute power,
and incorporating them in re-usable data structures in the spirit
of sharing these compute nodes’ data with other interested
computing clients. And anytime when global access registers
are implemented, which necessitates the use of general
purpose registers, either data corruption, or performance
fall-off becomes an issue. Accordingly, here the design choice
is to avoid altogether the use of global general purpose

registers, and in particular to avoid the implementation of the
proposed instruction sets in any higher level language module,
and instead pursue the course of instruction level parallelism.
This both enables the avoidance of global general purpose
registers, and implements more local and effective usage of
memory, making global memory registers unnecessary. And
as architectures trend more and more towards multithreaded
ones, the larger blocks of instructions which are mapped into
ISBs should be grouped together at the earliest point in the
control flow graph anyhow (i.e. in the closest sequential
proximity to each other in the code block). In the case of
dataflow architectures where token matching is a crucial part
of the compilation process, this can prove vital to processor
performance.

1.3 The Number Rings of these Non-Exactly
Representable Numbers
Certain subunitary numbers exhibit certain properties which
make them primary candidates for the alternative arithmetic
circuit design proposed here. Particularly, those numbers
which can be represented in the following geometric series
form fitting the proposed formatting:

 𝑗∊Ν ∑� 𝑛�/1 − 𝑛�
where is the th binary number. [3] gives a detailed𝑛� 𝑗
description of the expansions of these non exactly
representable numbers. And although these expansions are
ideally suited for those of the form given above, the use of
weights in these expansions also makes a much larger class of
subunitary numbers expressible in these binary expansions.[3]
A simple example from [3] is shown below:

Table I. Expansion in Geometric Series of 1/2ⁿ

Decimal Value.

Alternate Expanded
form, in as much
binary as possible->

.333333...(1/3)

1/4 + 1/12 = 1/4(1+1/3)
=1/4(1+1/4(1+1/3))
=1/4(1+1/4(1+1/4(1+1/3)))
etc.

Floating Term 1+1/3 = 4/3

.

The use of repeated terms(i.e. bits) in these circuits
hints at the idea of the repeated use of bit strings in
representing a very small subset of the above subunitaries
with certain cyclic properties. The numbers exhibiting
these cyclic properties can be represented as shown
below:

1/𝑥² − 𝑦³ 𝑥, 𝑦 ∊ 0, 1 𝑚𝑜𝑑 9

These numbers, and these alone, are recommended for
representation in either hexidecimal or other constant
character formatting to limit the chances of corruption
when the bit strings are repeatedly written into memory
offsets.

2.1 An Architecture Which May Exploit
Instruction Level Parallelism
Implementing one bit flags or tokens in registers is
nothing new. Here a recent architecture has been shown
as an effective implementation of a quantum dot cellular
automata showing promise for the use of one bit full
adders put to use in a future CMOS circuit design, where
full bit adders have already been in use.

In this architecture, one bit full adders are implemented in a
multi gate input- single gate output design. Below is a
depiction of the idea behind a sum-carry adder circuit,
implemented with a one bit full adder, which is a primary
candidate for implementing the compound arithmetic circuit
proposed in this paper. Although the diagram below depicts a
full word with two bits summed in the adder, and the carry
propagating forward, the proposal in [1] is more for a six
-layer cellular design, where the polarization of the input gates
needs to be carefully read at each gate (three in total) of each
level. Here for simplicity, and for the purposes of this paper,
we are merely interested in the potential use of these newer
proposed hardware models as simple well known CMOS
circuit designs, once technology has made such advances
possible.

Figure 1 The eventual simplified design of the above described arithmetic
circuit using the QCA architecture, as referenced in [1].

2.2 A Description of the Program Template
As is demonstrated in the architectural hardware design briefly
referenced above, branched instructions, depending on the
size of the code blocks being implemented, will not
necessarily lead to greater sized code generation, and here the
intent is not to branch anywhere outside our current block of
instructions. The proposition is to generate branched, or
“compound” machine level instructions. Generally put, the
design’s purpose is to make use of an SIMD architecture at the
lowest possible level by incorporating a very parallelized
instruction set, at the finest granular level.

Although consideration has been given for a proposal to
generate a new pragma directive, this would be far too
specialized and intensive of an effort, and in order to keep the
linkage stage as simple as possible, the decision was made to
simply incorporate a code design already in place in some
legacy and most newer arm neon processors. There were
several criteria used in making this choice, but the one most
heavily considered was that of a reusable sublibrary header
which would not fall under a large dependency chain, creating
the need for losing unnecessary cycles of processor time
during the compilation and linking stages.

The general idea of a program template is displayed below
in the following section.

AN EXISTING MIPS BRANCHED INSTRUCTION SET FOR A
COMPOUND ARITHMETIC CIRCUIT

#define D0(X) X
#define D1(X) X "\n\t" X
#define D2(X) D1 (D1 (X))
#define D3(X) D2 (D1 (X))
#define D4(X) D2 (D2 (X))
#define D5(X) D4 (D1 (X))
#define D6(X) D4 (D2 (X))
#define D7(X) D4 (D2 (D1 (X)))
#define D8(X) D4 (D4 (X))
#define D9(X) D8 (D1 (X))
#define D10(X) D8 (D2 (X))
#define D11(X) D8 (D2 (D1 (X)))
#define D12(X) D8 (D4 (X))
#define D13(X) D8 (D4 (D1 (X)))
#define D14(X) D8 (D4 (D2 (X)))

Figure 2. DN(X) generates 2**N copies of asm instruction X. Here for our
purposes the instruction will be exclusively add and/or mlt. So, for example, we
implement D6(X) D4(D2(X)) when X is add, and D4 is add instruction twice, or
multiply("mlt") 2*operand (and, similarly, D2 is the add instruction twice).

For the multiply instruction, utilizing the traditional bitshift
approach as in Intel processors, but this time to shift right for
what is essentially a divide (i.e. multiply by 1/16, as these are
minposis bit values) simply define our header file macro as
follows:

#define D() asm volatile (" %d0, %1.d[0]" \
: "=w"(shrl)) //

Figure 3a. Because of the use of general purpose register which is what will
be the case during testing, d[0] must be offset to the correct bit inside of D1(X),
D2(X), D3(X), etc. etc.

#define D2(X) D1 (D1 (X) D(D(D())))

Figure 3b. So for 3 increments from base address,
the macros are shown here.

Then all subsequent macros, D3, D4, etc. will propagate the
multiplication by minposis (or division) factor up the iterative
scheme.

The section to follow is simply included to show an
initialization test of the above macro and precompilation
directives portion of the header file.

Since we are focusing on localized registers for our threads,
any sort of buffer mapping will not be necessary at this stage
of development. So we would make the width as wide as

might be necessary on an architecture which might not
perform any peeling or other such optimizations of vectorized
instruction sets. Here, simply ensuring alignment with
register widths is imperative, i.e. ensuring no split lines
happen(as can occur, historically in x86 processors). But this
is outside of the scope of the current paper. Here, the focus is
simply on not implementing shared registers, at least at this
layer. We are emphasizing ILP compilation, and by increasing
the instruction size inside of blocks, parallelism can be
exploited here, even when branching occurs. In fact,
parallelism is being enhanced here because of this vectorized
model of instructions.

In the following section, an example is given of how this
vectorization, or perhaps better termed, instruction binding,
can occur at a higher level in the compiler linker chain.

2.3 A Proposed Implementation which Avoids
Higher Level Compilation and Global
Namespaces
One of the biggest hurdles to instruction level parallelism is
register alignment and/or spilling. So again, however fine
grained we design our proposed parallelism, register
overwrites and/or data corruption will kill performance of a
precision computing superarchitecture.

In an effort to show how even vectorized models may take
advantage of smaller word sizes, we can assign a word with
one set bit (in the context of full adder circuits)in the
initialization stages- much as making only one component of a
vector exposed during compilation and link time improves
performance and limits chances for data corruption by
exposing more components to register reads and writes.

We need only access minimal amounts of components
during vectorization by an ILP compiler, as described in [6]
below, so the vectorized versions of the following numerics is
already perfectly designed for streamlining this process, as
they themselves are multi-dimensional vectors of binary bits.
The goal in this intermediate level program is to create threads
where registers are "local" to each one. In order to avoid the
data corruption inherent when multi-threaded processes share
registers, we employ local structures and only implement them
in strongly typed applications, and even then not in C++ global
namespaces.

A SUBHEADER W/OUT EXTERN DIRECTIVES

typedef struct minposis4x4x2_t
{
int8x8_t val[2];

} int8x8x2_t;

typedef struct minposis4x2x2_t
{
int8x16_t val[2];

} int8x16x2_t;

typedef struct minposis4x1x2_t
{
int16x4_t val[2];

} int16x4x2_t;

typedef struct minposis4x8x2_t
{
int16x8_t val[2];

} int16x8x2_t;

typedef struct minposis4x16x2_t
{
int32x2_t val[2];

} int32x2x2_t;

typedef struct minposis4x32x2_t
{
int32x4_t val[2];

} int32x4x2_t;

typedef struct minposis4x64x2_t
{
int64x1_t val[2];

} int64x1x2_t;

Figure 4.. The above code segment is based on the arm_neon.h header file auto
generated for the arm-neon architecture. Minposis here refers to the subunitaries
of John Gustafson’s Unum Posits formatting [4]. The appropriate minposis types
can be set as global typedefs in pre-compiler directives. Since doing this here
would preclude assuming authorship for the above code, this is outside of the
scope of this paper.

3. Suggestions for Future Development of the
Program Template
As the proposed sublibrary header file depicted in the
second section of this paper contains non-initialized global
variables, the obvious first suggestion here is to incorporate
them in typedef structure definitions, much as int and double
have their own unique identifiers in any strongly typed
language, as the language shown here is (C/C++).

And although no specific recommendation is made for the
creation of any new pragma directives, which might create
the case for a more direct hardware implementation with
specific alignment and/or data width requirements, that
possibility has been alluded to in the first part of this paper.

References

1. Angizi, Shaahin, , Fartash, Mehdi, Sarmadi, Soheil,
Sayedsalehi, Samira, (2016) “A Structured Ultra Dense
QCA One-Bit Full Adder Cell” Quantum Matter
5(1):118-123 .

2. Cheng, S. Liang,F. Liang, J., Xiao, F., Wu, B Zhang, G.
“Posit Arithmetic Hardware Implementations with the
Minimum Cost Divider and Square Root.” Electronics 2
October 2020

3. Gulla, Roy P. “Two Alternative Approaches to Rounding
Issues in Precision Computing with Accumulators, with
Less Memory Consumption.” Lecture Notes in Engineering
and Computer Science:

Proceedings of The International MultiConference of
Engineers and Computer Scientists 2021,
20-22 October, 2021, Hong Kong, pp 240-243

4. Gustafson, John. (2015). The End of Error: Unum
Computing. 10.1201/9781315161532.

5. Koenig, Jack & Biancolin, David & Bachrach, Jonathan &
Asanovic, Krste. (2017). A Hardware Accelerator for
Computing an Exact Dot Product. 114-121.
10.1109/ARITH.2017.38.

6. Kumar, Rajendra, PK Singh (2011). “A New Compiler for
Space-Time Scheduling of ILP Processors”, in Proceedings
of International Journal of Computer and Electrical
Engineering, Vol. 3, No. 4, August 2011.

