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Abstract. The existence of problems and objects in the real world which
can be naturally modeled by complex graph structure has motivated re-
searchers to combine deep learning techniques with graph theory. Despite
the proposal of various spectral-based graph neural networks (GNNs),
they still have shortcomings in dealing with directed graph-structured
data and aggregating neighborhood information of nodes at larger scales.
In this paper, we first improve the Lanczos algorithm by orthogonality
checking method and Modified Gram-Schmidt orthogonalization tech-
nique. Then, we build a long-scale convolution filter based on the im-
proved Lanczos algorithm and combine it with a short-scale filter based
on Chebyshev polynomial truncation to construct a multi-scale directed
graph convolution neural network (MSDGCNN) which can aggregate
multi-scale neighborhood information of directed graph nodes in larger
scales. We validate our improved Lanczos algorithm on the atom clas-
sification task of the QM8 quantum chemistry dataset. We also apply
the MSDGCNN on various real-world directed graph datasets (including
WebKB, Citeseer, Telegram and Cora-ML) for node classification task.
The result shows that our improved Lanczos algorithm has much better
stability, and the MSDGCNN outperforms other state-of-the-art GNNs
on such task of real-world datasets.

Keywords: Graph neural network · Lanczos algorithm · Directed graph
· Node classification

1 Introduction

Traditional deep learning techniques based on artificial neurons such as RNN
[36] and CNN [22] have achieved great success in classification tasks [15] and
recognition tasks [17] in euclidean space data such as images and texts. The
success of the deep learning techniques is that they effectively leverage the sta-
tistical properties of Euclidean space data such as permutation invariance [46].
However, in the real world, graph-structured data is ubiquitous, and a large
number of problems and objects need to be modeled based on complex graph
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structures. Unfortunately, graph-structured data do not belong to the Euclidean
space, which means the data do not possess the aforementioned statistical prop-
erties. Thus, applying deep learning techniques on graph-structured data faces
great challenges.

In recent years, many researchers have applied deep learning techniques to
process graph-structured data in non-Euclidean space and have achieved success
in various applications such as recommendation systems [18], program analysis
[27], software mining [24], drug discovery [3] and anomaly detection [48]. As men-
tioned in [45], there are four kinds of graph neural networks currently available,
including recurrent graph neural networks, graph convolution neural networks,
graph autoencoders and spatio-temporal graph neural networks. Gated graph
neural networks [27] aims to learn node embeddings through the construction of
a recurrent neural network with gated units. Graph autoencoders [20] encodes
nodes or entire graph into a latent vector through an encoder and then de-
codes the latent vector by a decoder for node-level or graph-level learning tasks.
Spatio-temporal graph neural networks [26] aims to learn the hidden patterns of
a graph from spatio-temporal graphs. Graph convolution neural networks gen-
eralizes the convolution operation from grid data to graph data, aggregating
features of nodes and their neighbors through the convolution operation to gen-
erate node embeddings. More details about graph neural networks can be found
in [45] and [51].

In spectral-based graph neural networks, there exist two main issues. Firstly,
spatial-based graph neural networks such as GAT [42] can naturally be im-
plemented for directed graph data by symmetrizing the adjacency matrix and
treating it as an undirected graph. However, spectral-based graph neural net-
works that involves Fourier transformation require the adjacency matrix of a
graph to be symmetric to ensure the matrix’s eigenvalues are real. Since the ad-
jacency matrix of a directed graph often does not have symmetry, spectral-based
graph neural networks can not be directly applied to directed graphs. Secondly,
how to obtain the multi-scale information of graphs by convolution operations
has not been effectively explored. Due to the involvement of large sparse ma-
trix eigen-decomposition and multiplication in spectral-based graph convolution
theory, performing multi-scale convolution operations is itself a computational
challenge.

Recently, many researchers ([6], [12], [16], [21], etc.) have used the Magnetic
Laplacian Matrix [29] from the field of particle physics to model directed graph
data, which involves introducing a phase parameter q to control the strength of
the directional flow in a graph and converting the adjacency matrix of the graph
to a Magnetic Laplacian Matrix. This approach transforms the real-valued asym-
metric adjacency matrix of a directed graph into a complex Hermitian matrix,
which partially overcomes the difficulty of processing directed graphs directly
with spectral-based graph neural networks. Compared with DGCN [41] and Di-
agGraph [40], which are specifically used for directed graphs, the method reduces
the complexity of neural networks and makes spectral-based directed graph con-
volution neural networks can be easily trained. However, in the research afore-
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mentioned, the filter used for the convolution operation faces extremely high
computational overhead in the problem of expanding the convolution scale.

Most of the current spectral-based graph neural networks use the Kth order
truncation of Chebyshev polynomials to obtain filtering operators, which avoids
directly performing eigendecomposition on the Laplacian matrix of a graph and
reduces computational complexity to some extent. However, there is still a high
computational cost when using the method to aggregate larger-scale information
about neighbors of a node. The Lanczos algorithm [23], which is commonly used
in quantum systems, has been applied to compute the eigendecomposition of
large-scale sparse graphs [39]. In their experiments, the algorithm exhibits lower
error and time cost than the Chebyshev polynomial truncation method. Sub-
sequently, AdaLanczosNet [28] was proposed based on the Lanczos algorithm.
Experimental results showed that the spectral-based graph neural network with
the algorithm has lower training and testing errors as well as better computa-
tional efficiency than other spectral-based GNNs with the Chebyshev polynomial
truncation method. However, although the aforementioned studies considered
the problem of loss of orthogonality of Krylov subspace vectors due to round-
ing errors during the iterative process of the Lanczos algorithm, their methods
did not effectively correct the orthogonal vectors. Even worse, they lowered the
efficiency of the Lanczos algorithm since executing re-orthogonalization at each
iteration. In this paper, we aims to addressed these problems and the main
contributions are listed here:

* We improve Lanczos algorithm using Modify Gram-Schmdit orthogonaliza-
tion technique and the orthogonality checking method.

* We model directed graphs using the Magnetic Laplacian matrix and build a
multi-scale graph convolution neural network(MSDGCNN) for node classi-
fication tasks combining ChebyShev polynomials and our improved Lanczos
algorithm.

* We evaluate the performance of our improved Lanczos algorithm on the QM8
quantum chemistry dataset and validate the effectiveness of MSDGCNN on
the WebKB, Telegram, CiteSeer and Cora-ML datasets.

2 Related Work

2.1 Spectral Graph Convolution Theory

Given an undirected graph G = (V,E,X), where V denotes the set of nodes
of G, |V | = N ; E denotes the set of edges, E = {eij | if ∃ vi ↔ vj ; i, j =
1, ..., N} ⊆ V × V ; W is the set of weights of the edges, W = {wij | if eij ∈ E}
and W ∈ RN×N , if G is an unweighted graph then wij ∈ {0, 1}; X denotes the
set of node features, X = {xi| i = 1, ..., N}; A denotes the adjacency matrix of
G and we have:

Aij =

{
wij if ∃ vi ↔ vj ∈ E

0 other cases
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According to the spectral graph theory [4], define the unnormalized Laplacian
matrix of G: LU = D − A ∈ RN×N , where D ∈ RN×N is the degree diagonal
matrix of G and Dii =

∑N
j=1 Aij . Then the normalized Laplacian matrix of

G is defined as LN = IN − D− 1
2AD− 1

2 ∈ RN×N where IN is the identity
matrix of order N. Clearly, LN = LT

N (LT
N denotes the transpose of LN ), thus,

LN has non-negative real eigenvalues λ1, ..., λN and the orthogonal eigenvectors
u1, ..., uN corresponding to the eigenvalues. Let U = [u1|...|uN ] ∈ RN×N , Λ =
diag(λ1, ..., λN ), then we have LN = UΛUT , where U = [u1|...|uN ] is called
the Fourier orthogonal basis. According to [37], the graph Fourier transform of
the feature signal xi ∈ RN of node vi(i = 1, ..., N) is x̂i = UTxi ∈ RN and
the inverse transform of the graph Fourier transform is xi = Ux̂i. Thus, the
convolution operation on the feature signal of node vi of the graph G in spectral
domain is defined as

y ∗ xi = U
(
(UT y)⊙ (UTxi)

)
= U(ŷ ⊙ (UTxi))

= Udiag(ŷ)UTxi

(1)

where y ∈ RN , ŷ is called the Fourier coefficient and ⊙ denotes Hadamard
product. Let gθ(Λ) = diag(ŷ), according to Eq. (1) the feature signal xi of node
vi is filtered by gθ(Λ) = diag(ŷ). Also, in practice, gθ(Λ) can be regarded as a
function of the diagonal matrix Λ of eigenvalues of the Laplacian matrix LN of
G [43].

2.2 Chebyshev Polynomials Approximate

Due to the involvement of large sparse matrix multiplication and eigendecom-
position, computing gθ(Λ) is computationally expensive. [14] approximated the
Fourier filter gθ(Λ) by truncating the Chebyshev polynomials at order K. Then,
[5] used this method to construct ChebNet, which avoids the huge cost of eigen-
decomposition of the Laplacian matrix of graph G and improves stability in the
face of perturbations [25].

Let Λ̂ = 1
λmax

Λ−IN be the normalized Laplacian eigen matrix, then we have
the filter which is based on truncating the Chebyshev polynomials at order K:

gθ(Λ̂) =

K∑
m=0

θmTm(Λ̂) (2)

where the Kth order Chebyshev polynomial TK is recursively defined as T0(Λ̂) =
IN , T1(Λ̂) = Λ̂, TK(Λ̂) = 2Λ̂TK−1(Λ̂) + TK−2(Λ̂). Then the feature hi obtained
by the convolution operation on the feature xi of the node vi of graph G is

hi =

K∑
m=0

UθmTm(Λ̂)UTxi

=

K∑
m=0

θmTm(L̂)xi

(3)
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3 Method

In this section, we will provide a detailed description of the construction details
of our proposed MSDGCNN which can aggregate larger scale information of a
node of G with lower computational overhead by using our improved Lanczos
algorithm. Firstly, we magnetize the Laplacian Matrix of the graph G to obtain
the Magnetic Laplacian Matrix. Then, we utilize our improved Lanczos algorithm
to obtain the low-rank approximation of the eigenvalues and eigenvectors of the
Magnetic Laplacian Matrix of graph G. Finally, through the MSDGCNN, we
perform convolution operations using short Scale Filters and song Scale Filters,
and output the node classification results.

3.1 Problem Formulation

Given a directed graph G = (V,E,X), where V denotes the set of nodes of G,
|V | = N ; E denotes the set of edges, E = {eij | if ∃ vi → vj ; i, j = 1, ..., N} ⊆
V × V ; W denotes the set of weights of edges, W = {wij | if eij ∈ E} ⊆ RN×N ,
and if G is unweighted then wij ∈ {0, 1}. Let A be the adjacency matrix of G,
if there exists vi → vj , i.e. ∃ eij ∈ E then Aij = wij , otherwise Aij = 0. Let X
denotes the set of features of nodes, X = {xi| i = 1, ..., N}.

3.2 Constructing the Magnetic Laplacian Matrix of G

To improve the stability of the training process, let Ã = 1
2 (A

T + A) + IN ; D̃ is
the degree diagonal matrix of Ã, where D̃ii =

∑N
j=1 Ãij and D̃ij = 0 (i ̸= j).

We have the magnetization process of graph G by follows:

Θ(q) = 2πq(A−AT ), q ≥ 0 (4)

H(q) = Ã⊙ exp
(
iΘ(q)

)
= Ã⊙

(
cos(Θ(q)) + i sin(Θ(q))

) (5)

where Θ(q) is a skew-symmetric matrix; H(q) is an Hermitian matrix with com-
plex elements; sin() and cos() are element-wise functions; The phase matrix Θ(q)

is used to capture the directional information of the directed edges of G. For ex-
ample, Θ(0) = 0 when q = 0, H(0) = Ã degenerates to the adjacency matrix of
the undirected graph. When q ̸= 0, Θ(q) will be able to capture the directional
information of G. If q = 0.25 and ∃ eij ∈ E then we have:

H
(0.25)
(i,j) = ± iwij

2
= −H

(0.25)
(i,j)

In this case, an edge vi → vj will be regarded as an edge opposite to vj → vi.
Thus the Magnetic Laplacian Matrix of G can be defined as

L
(q)
U = D̃ −H(q) = D̃ − Ã⊙ exp

(
iΘ(q)

)
(6)
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L
(q)
N = I −

(
D̃− 1

2 ÃD̃− 1
2

)
⊙ exp

(
iΘ(q)

)
(7)

where L
(q)
U denotes the unnormalized Magnetic Laplacian Matrix of G and L

(q)
N

denotes the normalized Magnetic Laplacian Matrix of G. From Eq. (6) and (7),
we have two theorems as follows:

Theorem 1. Both L
(q)
U and L

(q)
N have non-negative real eigenvalues.

Proof. The proof of the theorem 1 can be found in [7].

Theorem 2. For ∀ q ⩾ 0, the eigenvalues of the normalized Magnetic Laplacian
Matrix L

(q)
N taking the interval [0, 2].

Proof. The proof of the theorem 2 can be found in [50].

The two theorems above, ensure that we can use the Kth order Chebyshev
polynomial to build short-scale filter.

We follow a similar setup to [50]: let K = 1, set λmax ≈ 2 and θ1 = −θ0. Let
L̃ = 2

λmax
L
(q)
N − IN , then the output of the node feature xi after filtering is:

hi =

1∑
m=0

θmTm(L̃)xi

= θ0(IN + (D̃− 1
2 ÃD̃− 1

2 )⊙ exp(iΘ(q)))xi

(8)

3.3 Imporved Lanczos Algorithm

Lanczos algorithm is a kind of Krylov subspace iteration method, which aims
to find a set of standard orthogonal bases Qk = [q1|...|qk] ∈ CN×k (where QH

k

denotes the conjugate transpose of Qk and QH
k Qk = Ik) and a tridiagonal matrix

Tk ∈ Rk×k, thus approximating the eigenvalues and eigenvectors of the Hermi-
tian matrix A. Given the Hermitian matrix A ∈ CN×N , if QH

k AQk = Tk is a
tridiagonal matrix and QH

k Qk = Ik then:

Kk(A, q1, k) = QkQ
H
k Kk(A, q1, k)

= Qk[e1|Tke1|...|T k−1
k e1]

is the QR decomposition of Kk(A, q1, k). Where e1 and q1 are the first columns of
the identity matrix IN and Qk, respectively. Using the orthogonal matrix whose
first column is q1 to tridiagonalize A can effectively generate the columns of Qk.
Define the tridiagonal matrix Tk ∈ Rk×k:

Tk =



α1 β1

β1 α2 β2

. . . . . . . . .
. . . . . . βk−1

βk−1 αk


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By transforming QH
k AQk = Tk to AQk = QkTk, for i = 1, ..., k − 1, we have:

Aqi = βi−1qi−1 + αiqi + βiqi+1

where β0q0 ≡ 0, according to the orthogonality of vector q there is: αi = qHi Aqi.
By shifting the term, the vector ri is defined as

ri = (A− αiIN )qi − βi−1qi−1

Then we have qi+1 = ri
βi

, where βi = ±∥ri∥2. If ri = 0 then the iteration
stops, at which point useful information about the Krylov invariant subspace
has been obtained.

Although the Lanczos algorithm is more computationally efficient than the
power method, rounding errors during its iteration process can cause the or-
thonormal basis q1, ..., qk of the Krylov subspace to lose orthogonality [31]. To
overcome the problem above, it is necessary to perform reorthogonalization of
the vectors q1, ..., qi(i = 1, ..., k) at each iteration of the Lanczos algorithm.
However, this approach significantly reduces the computational efficiency of the
algorithm. Fortunately, numerical experiments and theoretical analyses indicate
that the results of the Lanczos algorithm still have high accuracy when the
loss of orthogonality of the basis vectors is within an acceptable scope ([32], [11],
[38], etc.). Therefore, we turn to check the orthogonality of the orthonormal basis
generated by the Lanczos algorithm at each iteration, and use the Modify Gram-
Schmdit orthogonalization technique ([30] suggest that Modify Gram-Schmdit
is a more effective method.) to reorthogonalize the basis vectors when the loss
of orthogonality exceeds a certain threshold.

Our improved Lanczos algorithm is shown in Alg. 1. In Step 6, we per-
form an orthogonality check on the Krylov subspace basis generated by the
iteration, where ϵM is machine precision and the max() is an element-wise
function which finds the maximum value of matrix. In Step 13, we perform
a Schur decomposition on the three-term recurrence relation matrix Tk, i.e.
V H
k TkVk = diag(r1, ..., rk), to obtain the diagonal matrix Rk ∈ Rk×k which

is consisted of Ritz values. In Step 14, we construct the matrix Yk = [y1|...|yk],
where yi and ri form a Ritz pair. Finally, the matrix Yk formed by Ritz vectors
and diagonal matrix Rk obtained from k steps of the algorithm can be used to
approximate the Hermitian matrix A, i.e. A ≈ YkRkY

H
k . The upper bound on

the approximation error of the Lanczos algorithm is given by theorem 3:
Theorem 3. Let UΛUH be the Schur decomposition of a Hermitian matrix
S ∈ CN×N , where Λ = diag(λ1, ..., λN ), λ1 ≥ ... ≥ λN ; U = [u1, ..., uN ]. Let
Uj = span{u1, ..., uj}, the initial vector for K-step Lanczos algorithm is q, and it
outputs an orthogonal matrix Q ∈ CN×K and a tridiagonal matrix T ∈ RK×K .
For any j(1 < j < K < N), we have:

∥∥S −QTQH
∥∥2
F
≤

j∑
i=1

λ2
i

(
sin (q,Ui)

∏j−1
k=1 (λk − λN ) / (λk − λj)

cos (q, ui)TK−i (1 + 2γi)

)2

+

N∑
i=j+1

λ2
i

where TK−i(x) is a Chebyshev polynomial of order K − i, γi = λi−λi+1

λi+1−λN
. The

proof details can be found in [10].
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Algorithm 1: Improved Lanczos Algorithm
Input: A ∈ CN×N , AH = A; q1 is a unit− 2 norm vector ∈

CN ; LanczosStep ∈ N+, LanczosStep≪ N .
Result: Ritz vector y1, ..yk and Ritz value r1, .., rk.
Data: set k = LanczosStep, i = 0, β0 = 1

1 while i ≤ k and βi ̸= 0 do
2 qi+1 ← ri

βi
;

3 i← i+ 1;
4 αi ← qHi Aqi;
5 ri ← (A− αiI)qi − βi−1qi−1;
6 if max(

∣∣Ii −QH
i Qi

∣∣) > √ϵM then
7 do Modify Gram-Schmdit Process
8 end
9 βi ← ∥ri∥2;

10 end
11 Qk = [q1, ..., qk];
12 Tk ← Tridiagonal[α1, ..., αk] and [β1, ..., βk − 1];
13 Rk, Vk ← decompose Tk;
14 Yk ← QkVk;
15 return Yk = [y1|...|yk], Rk = diag(r1, ..., rk);

3.4 MSDGCNN Architecture

In this section, we propose a multi-scale directed graph convolution neural net-
work (MSDGCNN) that combines Chebyshev polynomials and the improved
Lanczos algorithm. The MSDGCNN uses K-order truncation of Chebyshev poly-
nomials to approximate low-order filters of G during short-scale convolution op-
erations and uses our improved Lanczos algorithm to obtain high-order filters of
G during long-scale convolution operations. The network architecture is shown
in Fig. 1.

Short-scale Filter Let X(0)
N×F0

= [x
(0)
1 |...|x(0)

N ], x
(0)∈RF0

i is the matrix of initial
node features, where the feature dimensions of each node is F0. Let Z(0) = X(0),
where Z(l) is the output features of the lth convolution layer. The output of the
short-scale convolution filter in the lth(l = 1, ..., L) layer can be represented as
h
(l)
short. According to Eq. (8), we have:

h
(l)
short = θ0(IN + (D̃− 1

2 ÃD̃− 1
2 )⊙ exp(iΘ(q)))Z(l−1) (9)

Long-scale Filter To obtain the structure information of G in larger scale, we
use the low-rank approximation of the Magnetic Laplacian Matrix of G obtained
by the Alg. 1, i.e. L(q)

N ≈ YkRkY
H
k , then the long-scale convolution filter output
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Fig. 1. Network architecture: for example we set longscale = [10, 20, 30, 40] and use
short scale filter given by Eq. (8) with K=1.

h
(l)
long of the lth layer is:

h
(l)
long =

longscale∑
L∈longscale

Ykf
(l)
L (unwind(RL

k ))Y
H
k Z(l−1) (10)

where the function fL is a shallow neural network formed by MLP, the function
unwind() unwinds the diagonal matrix Rk into a one-dimensional vector, and
longscale is a long-scale list. For example, we set longscale = [10, 20, 30, 40],
and the maximum value of the long-scale list longscale should not exceed the
number of nodes i.e. N. We set up a shallow neural network for each scale L in
our long-scale list.

Aggregate Scale According to Eq. (9) and (10), we can finally construct the
lth convolution layer.

Z(l) = σ
(
W

(l)
shorth

(l)
short +W

(l)
longh

(l)
long +B(l)

)
(11)

where W
(l)
short and W

(l)
long are the weight parameters of the short-scale and the

long-scale convolution filters, respectively. B(l) is the bias parameter matrix and
σ() is the complex ReLU activation function [50]. After passing through L con-
volution layers, the output Z

(L)
N×FL

is obtained, then we unwind Z(L) into real
and imaginary parts, and use the softmax function to output the result of node
classification:

class = softmax
(
unwind(Z(L))Wunwind

)
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where the Wunwind ∈ R2FL×Numclass is the weight parameter matrix of the real
and imaginary parts after unwinding Z(L). Numclass is the number of node
classes in the final output.

4 Experiment

In this section, we illustrate our experiments. We validate the effectiveness of
our improved Lanczos algorithm and the MSDGCNN we built with different
datasets, respectively. In this paper, we choose node classification task to evalu-
ate MSDGCNN, and our method can be easily applied on link prediction task by
reversing the graph(In the reversed graph, edges and nodes correspond to nodes
and edges, respectively, in the original graph.) and clustering task by changing
loss functions.

4.1 Datasets

The QM8 dataset is derived from summarizing chemical structures and quantum
chemistry computation output values of molecules [34]. The dataset contains
21,786 molecules with 6 different types of chemical bonds and 70 different types
of atoms. In our experiment, each molecule is treated as a graph, where each
type of chemical bond represents a type of connection(or edge). Each atom is
treated as a node in the graph. Since there may be multiple types of chemical
bonds between two different atoms in a molecule, the graph for each molecule
is a multi-graph. We evaluated our improved Lanczos algorithm for the node
classification task on the QM8 quantum chemistry dataset.

Table 1. Real world dataset details.

Dataset Nodes Edges Class Features
Telegram 245 8912 4 1
Citeseer 3312 4715 6 3703
Cora-ML 2995 8416 7 2879
Wiscosin 251 499 5 1703
Cornell 183 295 5 1703
Texas 183 309 5 1703

The Telegram dataset [2] is a network of pairwise interactions between 245
telegram channels, comprising 8,912 relationships between channels. The nodes
in the telegram channel network are divided into four classes according to the in-
formation provided in [2]. The Wisconsin, Cornell and Texas datasets are taken
from the WebKB dataset which model the relationships between different uni-
versity websites [33]. In our experiment, the nodes in these datasets are labeled
to cover identity information for five categories of personnel. The Cora-ML and
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CiteSeer datasets, provided by [1], are citation networks for scientific articles.
The articles in these datasets belong to seven and five different scientific fields,
respectively. We perform node classification tasks on these datasets to evaluate
the performance of our multi-scale directed graph convolution neural network.
The detailed information about the datasets is presented in Table 1.

4.2 Implementation Details

We implement our improved Lanczos algorithm using the Python language and
build our multi-scale directed graph convolution neural network using the Py-
torch1.13 deep learning framework. We use the Ubuntu20.04 operating system
as our system environment. We are conducting experiments using a computer
equipped with an Intel i5-12600K with 64GB DDR4 memory and Nvidia RTX
3060 with 12GB memory.

Evaluation of Improved Lanczos Algorithm We use the method provided
by DeepChem [35] to split the QM8 quantum chemistry dataset. Also, we use the
approach provided by [9] and [44], which means that we use MSE as loss function
to update the parameters in training and use MAE function to evaluate the train-
ing performance. We apply the improved Lanczos algorithm to AdaLanczosNet
[28] by replacing the original Lanczos algorithm and compare it with the original
AdaLanczosNet which is the baseline in the experiment. To ensure the reliability
of the experiment, our hyperparameter settings follow the same long-scale list
longscale = [5, 7, 10, 20, 30] and short-scale list shortscale = [1, 2, 3] as in [28].
We set the threshold for rounding error of the improved Lanczos algorithm to
ϵM = 1.192× 10−7 which is the machine precision of 32-bit floating-point num-
bers. In the experiment, since the number of atoms contained in each molecular
graph is different and the average number of atoms per molecule is around 16,
we set LanczosStep to 10 and train both the AdaLanczosNet using the original
Lanczos algorithm and the AdaLanczosNet using the improved Lanczos algo-
rithm for 200 epochs.

Evaluation of MSDGCNN We use the spliting method, as in many litera-
tures ([49], [33], etc.) mentioned, to split the WebKB and Telegram datasets,
i.e., 60%, 20%, 20% for training, validation and testing sets. During training
process, we also use the data of testing set without the node labels. The spliting
method of Cora-ML and CiteSeer we used is similar to [40]. We randomly split
each dataset into 10 subsets. When applying our improved Lanczos algorithm,
we set the size of LanczosStep to half of the number of nodes in each dataset(i.e.
LanczosStep ≤ N

2 ), therefore, the number of iterations of our improved Lanc-
zos algorithm will not exceed N

2 . We set different long-scale lists for different
datasets with different node numbers (e.g. for the node classification task on
the Telegram dataset, we set longscale = [15, 25, 35, 45].), and adjust the di-
mensions of the hidden layers of the function fL from Eq. (10) according to the
node feature dimensions and number of nodes in the dataset. To speed up the
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training process of our network, we pre-train the short-scale convolution filters
and use the trained parameters as the initialization parameters for the model for
all node classification tasks. We use phase parameters q as hyperparameters in
experiment to set the appropriate direction strength for each dataset. We choose
several popular graph neural networks as our baselines, including MagNet [50],
APPNP [8], GraphSAGE [13], GIN [47], GAT [42], ChebNet [5], GCN [19], as
well as DGCN [41] and DiGraph [40]. According to [45], These graph neural
networks, can be divided into spatial-based as well as spectral-based GNNs and
specialized directed graph GNNs. For all baseline models, we choosed best hy-
perparameters from literature and used the best result as baselines. We set the
number of convolution layers to 2 for all models and set the order of the Cheby-
shev polynomial to 1. In our experiments, we train all models for 4000 epochs
using the Adam optimizer.

4.3 Experimental Results and Analysis

Fig. 2. Validation MAE on QM8 dataset during the training process

Results and Analysis on Improved Lanczos Algorithm The validation
MAE during the experiment on the QM8 dataset is shown in Fig. 2. It is evident
that AdaLanczosNet with our improved Lanczos algorithm has better stabil-
ity during the training process compared to AdaLanczosNet with the original
Lanczos algorithm. The test MAE is shown in Table 2, obliviously, our im-
proved algorithm achieved lower classification error by correctly modifying the
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Table 2. Test MAE on QM8 dataset.

Method Test MAE(×10−3)
Origin AdaLanczosNet 11.77(±0.8)

AdaLanczosNet with our imporment Lanczos Alg 9.89(±0.04)

Table 3. Node classification accuracy on real world datesets.

Method
DataSet

Telegram CiteSeer Cora-ML Wisconsin Cornell Texas
GCN 73.4(±5.8)% 66.0(±1.5)% 82.0(±1.1)% 55.9(±5.4)% 59.0(±6.4)% 58.7(±3.8)%

ChebNet 70.2(±6.8)% 66.7(±1.6)% 80.0(±1.8)% 81.6(±6.3)% 79.8(±5.0)% 79.2(±7.5)%

APPNP 67.3(±3.0)% 66.9(±1.8)% 82.6(±1.4)% 51.8(±7.4)% 58.7(±4.0)% 57.0(±4.8)%

SAGE 56.6(±6.0)% 66.0(±1.5)% 82.3(±1.2)% 83.1(±4.8)% 80.0(±6.1)% 84.3(±5.5)%

GIN 74.4(±8.1)% 63.3(±2.5)% 78.1(±2.0)% 58.2(±5.1)% 57.9(±5.7)% 65.2(±6.5)%

GAT 72.6(±7.5)% 67.3(±1.3)% 81.9(±1.0)% 54.1(±4.2)% 57.6(±4.9)% 61.2(±5.0)%

DGCN 90.4(±5.6)% 66.3(±2.0)% 81.3(±1.4)% 65.5(±4.7)% 66.3(±2.0)% 71.7(±7.4)%

Digraph 82.0(±3.1)% 62.6(±2.2)% 79.4(±1.8)% 59.6(±3.8)% 66.8(±6.2)% 64.9(±8.1)%

DigraphIB 64.1(±7.0)% 61.1(±1.7)% 79.3(1.2)% 64.1(±7.0)% 64.4(±9.0)% 64.9(±13.7)%

MagNet 87.6(±2.9)% 67.5(±1.8)% 79.8(±2.5)% 85.7(±3.2)% 84.3(±7.0)% 83.3(±6.1)%

Our Method 92.5(±4.7)% 69.1(±1.7)% 81.7(±1.5)% 87.4(±5.8)% 86.7(±4.3)% 89.4(±8.2)%

q 0.15 0.0 0.0 0.05 0.25 0.15
longscale [15, 25, 35, 45] [10, 20, 30, 40] [10, 25, 30, 45] [10, 20, 25, 35] [5, 10, 15, 25] [5, 10, 15, 20]

LanczosStep 125 1500 1400 125 90 90

orthogonal basis. Through experiments, we can clearly observe that the loss
of orthogonality caused by rounding errors during the iteration process of the
Lanczos algorithm has a significant impact on both training stability and final
classification accuracy.

Results and Analysis on MSDGCNN Our multi-scale directed graph con-
volution neural network achieved outstanding performance in node classification
tasks on multiple datasets as shown in Table 3. We achieved the best classifica-
tion accuracy on the large-scale CiteSeer dataset. Although we did not achieve
the highest classification accuracy on the Cora-ML dataset, our method outper-
formed MagNet which only uses short-scale convolution filters by nearly 2%. This
indicates that our long-scale convolution filter constructed by improved Lanc-
zos algorithm is effective. In experiment on four small-scale datasets (including
Wisconsin, Cornell, Texas and Telegram), our method achieved the best node
classification accuracy. Experimental results on the real-world directed graph
datasets demonstrate that the MSDGCNN has better overall performance com-
pared to most other state-of-the-art GNNs.
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5 Conclusion

We improved the Lanczos algorithm by using the modified Gram-Schmidt or-
thogonalization technique combining orthogonalization check method, and the
result on QM8 dataset demonstrated that our improved algorithm has better
stability. Similarly, our designed Multi-scale Directed Graph Convolution Neu-
ral Network (MSDGCNN) which aggregates larger scale information of a node
with lower computational overhead showed outstanding performance on numer-
ous real-world directed graph datasets. However, from the results of experiments
on MSDGCNN, it can be observed that increasing the convolution scale of the
convolution layer has limited contribution to improving the accuracy of node
classification tasks on large-scale sparse graphs, and increasing the convolution
scale will further increase the training time and difficulty at same time. Further-
more, there is still a need for further discussion on how to utilize spectral-based
graph convolution neural networks to handle multi-graph structures with multi-
ple types of edges between nodes.
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