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Abstract: 

We consider facility planning and design in the single-row facility layout problem (SRFLP) for double-floor spaces to 
minimize land and material handling costs by efficiently arranging facilities along a given transport side of double-floor 
spaces. Previously, this problem has been solved based on a mixed-integer linear programming formulation. Our fast (1+1) 
EA operates by initially constructing a solution that aligns with the characteristics of SRFLP. It then proceeds to determine 
mutations using a heavy-tailed distribution function. To generate new solutions, we employ local insert and swap operators 
and incorporate a restart strategy into the process. We demonstrate the practical value of the fast (1+1) EA for DF-SRFLP on 
numerical experiments (9-80 facility-scale datasets) and real-world instances, including assembly workshops (size 14) and 
footwear manufacturing workshops (size 54). The experimental results show that under the numerical experiments: the solve 
time of the MILP solver (GUROBI 10.0.1) grows exponentially with the problem size, while (1+1) EA is relatively stable. 
And the large-scale, MILP solver is not able to give suitable values in a reasonable time. In a practical application involving 
a 14-scale assembly line shop, the 1+1 EA achieves a layout that reduces material handling costs by 24 % compared to the 
original layout form. Furthermore, in the context of a 54-scale shoe factory, our proposed algorithm not only successfully 
addresses the DF-SRFLP but also offers a valuable reference for establishing an improved layout.  
Keywords: facilities planning and design; Double-floor Single-row facility layout Problem; Mixed-integer linear 
programming; Fast evolution algorithm; Real-life cases. 

1 Introduction 

The Facility Layout Problem (FLP) aims to find the optimal facility layout to optimize production or service objectives 
while meeting practical constraints (Pourvaziri et al., 2021). An efficient manufacturing layout improves system efficiency, 
and an unreasonable layout increases the production cycle and delivery time. Material handling cost (MHC) is a crucial 
indicator, accounting for 20-50% of the total operating cost and 15-70% of the total manufacturing cost(Chwif et al., 1998). 
A reasonable layout can reduce these costs by 10-30%(Hosseini-Nasab et al., 2018), and unreasonable planning will increase 
operating costs, affecting the efficiency of the production system by more than 35% (Gong et al., 2021). Therefore, the FLP 
is essential in designing modern production systems and has been widely concerned by researchers and entrepreneurs. 

Single-row facility layout problem (SRFLP) is a well-known facility layout problem (FLP) that seeks to rationalize 
several facilities to follow one side of a transport path to minimize the weighted sum of material handling cost (MHC) between 
facilities. Due to its simple and compact layout structure, SRFLP plays an essential role in industrial manufacturing and 
cellular environments (Keller & Buscher, 2015; Wang et al., 2001), such as semiconductor production line layout, multi-
product flow line layout(Nagarajan et al., 2018), automated workshop layout guide car, and machine layout of flexible 
manufacturing system (Kothari & Ghosh, 2012; Tubaileh & Siam, 2017). In addition, some other fields are also widely used, 
such as hospitals, schools, office buildings (Simmons, 1969), supermarkets and warehouse layouts (Picard & Queyranne, 
1981). However, when the scale of the facilities to be arranged is large, the single-row layout will occupy a large land area 
(The entire production line layout is too long). As the current land supply is expensive (Karateke et al., 2022), huge land cost 
overhead and limited land use area make the layout engineering of large-scale facility groups more difficult (Ahmadi et al., 
2017). Therefore, more and more countries and regions have begun to consider double-floor or multi-floor layouts from the 
perspective of land cost and space utilization (Ahmadi & Akbari Jokar, 2016; Che et al., 2017). The application scenarios of 
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multi-floor layout overlap with SRFLP, such as hospitals, office buildings, factories, and warehouses (Hahn et al., 2010). 
As of now, SRFLP and multi-floor facility layout problem (MFLP) have been considered by designers or engineers, 

respectively, in many scenarios (C. Guan et al., 2021; C. Guan, Zhang, & Li, 2019; C. Guan, Zhang, Liu, et al., 2019; Izadinia 
& Eshghi, 2016; S. Liu, Zhang, Guan, Liu, et al., 2021; Zhu et al., 2020). Although the combination of the two layout modes 
has been applied in reality, the combined application of these two layouts has not been researching reported yet. In this study, 
we extend SRFLP to double-floor layouts (The particular type of the MFLP) and develop a model for the double-floor single-
row facility layout problem (DF-SRFLP). Both DF-SRFLP and double-row facility layout problem (DRLP, which includes 
basic double-row facility layout problem, corridor allocation problem (CAP) (Amaral, 2012), and parallel row ordering 
problem (PROP) (Amaral, 2013)) arrange facilities in two rows in the space. DF-SRFLP extends the second row vertically, 
while the DRLP extends horizontally. However, the material handling structure of DF-SRFLP is very different. The interaction 
between the two rows (two floors) of DF-SRFLP is only through the elevator, while the layout of the DRLP is different. 
Although PROP can also be seen as a multi-floor form of SRFLP (Gong et al., 2021), the difference in its multi-floor form is 
that the type and number of facilities on each floor are fixed, and the elevator is located at the starting point of the facilities. 
This feature makes its problem complexity lower than that of DF-SRFLP. DF-SRFLP is not necessarily superior to the three 
forms of DRLP in material handling structure. However, within the limited layout area, DF-SRFLP has tremendous 
advantages. The application of DF-SRFLP is shown in (Figure. 1. (a)~(d)). 

 
Figure 1. The actual application of the layout mode combined with SRFLP and MFLP.  

SRFLP and the MFLP have been proven to be NP-hard problems (Tubaileh & Siam, 2017). The DF-SRFLP problem 
combined with the two also has the property of NP-hard. While proposing DF-SRFLP, we also considered the tools used 
vertically moving materials between the two floors. As a critical consideration in the multi-floor layout, we adopted a vertical 
conveyor (J. Liu et al., 2022) (reciprocating lifting freight elevators) to avoid congestion. However, this leads to existing 
multiple types of calculating material handling distances between facilities, making the large-scale problem-solving of DF-
SRFLP challenging. To address this challenge, we design a (1+1) Evolutionary Algorithm based on the heavy-tailed 
variational probability that can be used to solve DF-SRFLP. The algorithm prototype is a fast genetic algorithm (FGA) 
proposed by Benjamin (Doerr et al., 2017). He proved the ability of FGA to accelerate the solution of combinatorial 
optimization problems, such as the minimum vertex cover problem in bipartite graphs. Therefore, the algorithm proposed in 
this study is called Fast Evolutionary Algorithm (FEA). Finally, in addition to solving numerical instances, this study applies 
DF-SRFLP to two production workshops to combine theory and practice better. 

2 Problem Description 

The DF-SRFLP aims to solve the problems of limited land area for facility layout and congestion and waiting time waste 
in a single vertical transport channel. This layout form arranges the given multiple facilities on double floors properly. Unlike 
the basic SRFLP, the DF-SRFLP starts with the middle of two elevators and arranges the facilities of each floor on both sides 
of the elevators in sequence. Two one-way reciprocating elevators are vertical transportation tools between the two floors. In 
this study, we minimized the MHC between facilities by minimizing the land area. In practical situations, the width of most 
facilities is usually kept consistent width, so the length of the facilities is used as a measure instead of area. The material 
handling route (MHR) under this layout is shown in Figure 2. 

Figure 2 has two subgraphs, (a) and (b). The two subgraphs represent the MHRs and the route calculation method under 
different conditions. Figure 2 (a) shows the MHRs of the two facilities in different areas. This situation includes different 
areas on the same floor and different areas on different floors. Figure 2 (b) shows the MHRs between facilities in the same 
area. This situation is the same as in Figure 2 (a), with cases of the same or different floors. It can be seen from the calculation 
formula at the bottom of the picture that the most challenging situation to calculate is {F1, A2} → {F2, A2} because, compared 
with other situations, the material handling distance between facilities in this situation is asymmetric. At the bottom of the 
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Figure 2, different colours arrows indicate different MHRs. The red arrow indicates the running direction of the freight elevator. 
The height h between the two floors and the elevator width e is set as fixed values, and the corridor width is not considered. 
Based on the actual layout characteristics, the other basic assumptions of the DF-SRFLP as follows:  

7 3

15 2

L2
2

4

86 9

{F2, A1}

3

15 2

L2
1

w

4

867 9

1L∆

               

        

          
   

       
     

1L∆

      

2 0L∆ =

 

  

  

  

 

Figure 2. DF-SRFLP layout form, freight elevators and different types of material handling paths. 

3 Fast evolution algorithm with Parallel frame 

In order to efficiently obtain a better solution on a larger facility scale, we use FGA as the algorithm framework and 
continue to use its mutation strategy of heavy-tailed distribution in the algorithm. The proposed algorithm includes several 
steps: initial solution generation, neighbourhood search, and restart operation. Furthermore, a parallel computing framework 
was used to speed up the solving of DF-SRFLP. The original FGA has been shown to have a speed-up effect in combinatorial 
optimization problems. Based on this, we call the algorithm proposed in this paper FEA. 

3.1 Encoding and decoding 

In the basic SRFLP, encoding and decoding are represented by a non-repeating sequence of integers from 1 to n. In DF-
SRFLP, according to the characteristics of the problem, the sequence is cut based on the basic SRFLP encoding, and we call 
the serial number of cut positions the split points. We need three split points because a sequence is to be divided into four 
fragments. That is the split point t between the upper and lower floors, the split point t1 on the left and right sides of the 
elevator on the first floor, and the split point t2 on the left and right sides of the elevator on the second floor. The specific 
meaning and operation of the split point are shown in Figure 3. 

Taking the problem of the number of facilities n=9 as an example, a feasible solution Sol= [2 4 3 1 8 6 7 9 5], where t=5, 
t1=2, t2=2. That is, the sequence of facilities arranged on the left side of the elevator on the first floor is [2 4], and the sequence 
of facilities on the right side of the elevator on the first floor is [3 1]; the sequence of facilities arranged on the left side of the 
elevator on the second floor is [8 6], and the sequence of facilities arranged on the sequence of facilities on the right side of 
the elevator on the second floor is [7 9 5]. It should be noted that the starting point of all facility layouts is the midpoint 
between the two elevators. Therefore, the left area of the elevator on the first floor in Figure 3 is viewed as [4, 2] from left to 
right. Similarly, the visual order from left to right of the left area of the elevator on the second floor is [6, 8]. 
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Figure 3. encoding and decoding of DF-SRFLP and SRFLP. 



3.2 initial solution procedure 

As we all know, an excellent initial solution can effectively improve the performance of an Algorithm and get high-
quality solving results. According to the attribute of the objective function of the SRFLP, it is a good rule to make a pair of 
facilities with the smallest material handling volume (the best is zero) have the farthest material handling distance. Based on 
this, we design for initial solution generation in FEA. 

According to the coding of DF-SRFLP, we construct a 1xn-dimensional empty array Solinitial. We select the facility pair 
p-q with the smallest cij and place the facility pair p-q in the leftmost and rightmost two vacancies of unplaced facilities in 
Solinitial superior. But currently, there are two placement plans: p is placed at position i, q is placed at position n - i; q is placed 
at position j, and p is placed at position n-j. The two plans are compared by calculating the MHC between the facilities already 
placed. And the smallest MHC scheme is selected for placement. Then update the row p and column of cij in the selected 
matrix to inf until Solinitial has no vacancies. The initial solution generation process is shown in Figure 4. 

8 3

8 3

8 7

8 2 9 7

8 2 3 4 9 7

2 5 6 4 9 7

2 5 10 1 6 4 9 7

2 9 9 2

3 4 4 3

5 66 5

10 1 1 10

Objective value:8.00595Objective value:6.00335

Objective value:2.01551 Objective value: 12.01193

Objective value: 6.04439Objective value: 2.04277

Objective value: 0.07463 Objective value: 2.07825

5 6
inf in

                                  

                                   
 1     

1 inf f

5 inf inf inf inf
6 inf inf i

0

0 inf

                         

nf inf

inf inf

ij

ij

c

n

c

n

 
 
 
 =
 
 
 
 
 



 

 

   

 



 

    

 



            
inf inf

                  
inf inf

ij

n n

c

×

 
 =  
  





  



    

  

Figure 4. Initial solution generation process. 

3.3 Local search with Heavy-Tailed Mutation Strategy 

In the classic (1+1) EA, the mutation probability, or the number of mutations for local search is fixed, but this leads to 
the limitation that the algorithm cannot break through the local optimum. Therefore, in FEA, we randomly mutate the number 
of local searches each time according to a power law distribution with an exponent greater than 1. We use swap and insert as 
operators to search the neighbourhood, which are classic and highly effective mutation operations in SRFLP. We set the 
maximum number of iterations of the neighbourhood search as n/2. Note that setting the maximum number of iterations is 
only an upper limit for the times of the neighbourhood search in the local search operation, that is: loop iterations of mutation. 
The specific calculation method for the loop iterations of mutation is as follows: 
The loop iterations of mutation is represented by ε, ε∈[1, n/2] . ε follows a power-law distribution function in a heavy-tailed 
distribution probability: 
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The normalization process is performed according to the power law distribution probability, and the processing formula is as 
Eq. (1). In Eq. (1), P[ε=φ] represents the power-law distribution probability of any number of ε. In Eq. (2), Pε represents the 
normalized probability of P[ε=φ] at ε times. Then generate a random r in the [0,1] interval. If r satisfies Pε-1<r<Pε, the number 
of local search operations is ε. 

3.4 Neighbourhood search operator and restart strategy 

(A) Neighbourhood search operator 
We have established a specific relationship between e and two operations, we call these operations Swap_ε and Insert_ε. 

At each iteration within the maximum number of loops ε, both operations have a 50% probability of being selected. The rules 
for finding neighbourhood solutions for the two procedures are as follows: 



Swap refers to the mobile exchange of facilities at a and b positions. In Swap_ε, a=ε, …, n; b=1, 2, 3, …, n; a ≠ b. The 
positions of a and b are exchanged once to generate a new solution.  

Insert usually refers to the movement of the facility from position a to position b. In Insert_ε, a=ε, …, n; b=1, 2, 3, …, 
n; a ≠ b. a position facility moves b position once to generate a new solution.  

After searching the neighbourhood solutions for each operation, find the best solution in the neighbourhood solutions as 
the input solution for the following process. 
(B) Restart strategy 

One of the primary challenges faced by the FEA is overcoming local optima. The inherent structure of FEA results in a 
relatively limited capacity to overcome local optima. To enhance the overall performance of FEA, a restart operation has been 
incorporated. The restart operation follows specific rules: when the number of iterations, denoted as re, reaches the maximum 
threshold Re without any changes in the solution, the k rand permutation operation is applied to mutate the best parent solution, 
Xparent, obtained in the current search. Subsequently, the generated solution replaces the initial solution of the current parent 
solution, facilitating the subsequent restart process. 

3.5 Parallel computing structure 

DF-SRFLP encoding and decoding are described in Section 3.1. There are three key problem parameters, t, t1, and t2. 
The settings of these three parameters significantly impact the speed and quality of the algorithm. Usually, the split point 
parameter is used as a loop, and such three parameters form three loop nests to form a serial structure. Because of this, the 
solution speed of the algorithm is also significantly reduced. In our current research. We use t as the allocation parameter of 
workers in parallel computing, and the specific parallel framework is shown in Figure 5. The parallel operation of this 
framework is like parallel feature extraction, and the method has been well applied in similar hyper-heuristic methods for 
solving FLP (J. Liu et al., 2023). 
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Figure 5. parallel computing frame. 
The Pseudocode of Generating the Set Sp of Separation Point Parameter Combination in Parallel Computing. 

Pseudo-code of set Sp generation 
kt←1 
Create a set Sp  
/* The set Sp holds the combination of separation points [t, t1, t2] */ 
for t=floor(n/2)-2: floor(n/2) 

t1_start=max (1, floor(t/2)-3) 
t2_start=max (1, floor((n-t)/2)-3) 
for t1= t1_start: floor(n/2) 

for t2= t2_start: floor((n-t)/2) 
Sp(kt)= [t, t1, t2] 
kt ←kt+1 

end 
end 

end 

4.6 Algorithm flow 

The complete algorithm flow chart is shown below. 
Pseudo-code of FEA 
Input cij, li, θ, tmax, n, Re,  
Generate the set Sp  
/* num_Sp is the number of separation points stored in Sp */ 
parfor count=1: num_Sp -1 

[t, t1, t2] ←Sp(count) 



Initialization parameters re ← 1. 
Initialization set XPARENT. 
/* XPARENT is an empty set, XPARENT is used to store the best-known facility sequence and cost before the restart 
operation for each combination of parameters */ 
Generate initial solution Xparent (Solinitial, The symbol used in the Sect 4.1 is Solinitial,) and costparent 
while time< tmax 

while re<Re 
X← Xparent; 
Determine the parameter ε according to Eqs. (29)and (30) 
While k<ε 

r←rand; 
if r<0.5 

Execute Swap_ε operation for X, generate Xoffspring 
else  

Execute insert_ε operation for X, generate Xoffspring 
end 
k←k+1 
X ← Xoffspring 

end 
If costoffspring < costparent 

costparent ← costoffspring 
Xparent ← Xoffspring 
re←1 

else 
re←re+1 

end 
end 
XPARENT = [ XPARENT ; Xparent ,costparent]; 
Execute the restart operation /* n/2 rand permutation operation for Xparent */ 
re←1 
Update time 
 

end 
Filtering the best solution costtempbest and Xtempbest from XPARENT 
G(count)=[ Xtempbest, costtempbest]; 

End 
Filtering the best solution costbest and Xbest from G 
Output costbest Xbest 

4 Computational experiments 

The FEA proposed in this study is implemented using Matlab. The experiments were conducted on a 13th Gen Intel(R) 
Core (TM) i5-13400 2.50 GHz 16G 10-core processor. The experimental evaluation consists of two parts. Firstly, we verified 
the accuracy and stability of the FEA algorithm through numerical instances, comparing it with SRFLP in terms of layout 
schemes and MHC, revealing their distinctions. In the second part, we applied DF-SRFLP to two real-life cases to explore its 
practical application value. 

The algorithm parameters used in this study were determined through a combination of established values and a trial-
and-error method. For instance, the parameter β was set to 1.5 based on previous studies on FEA. However, adjusting other 
parameters involved conducting extensive experiments to optimize their values. It is important to note that the primary focus 
of this study was to introduce the FEA algorithm to address the facility layout problem, specifically DF-SRFLP. Despite 
efforts to fine-tune the parameters, the stochastic nature of the simulated data introduces a level of uncertainty, and complete 
optimality of the parameters cannot be guaranteed. Each instance was tested ten times to mitigate the impact of accidental 
errors. 

4.1 FEA for solving the benchmark instance of DF-SRFLP 

(A) Experiments with instances of size 9 ≤ n ≤15  
We utilized the FEA algorithm to solve the five test instances in Table 1. The resulting solutions obtained from the FEA 

algorithm are summarized and presented in Table 1. Columns 4 to 10 in Table 1 detail the FEA solution results. For problem 
instances of size n ≤ 15, the algorithm parameters are set to Re=3, tmax =10. 



Table 1. The solution results of S9, S10, S11, Am13a, Am15 instances solving by FEA. 

instacnce Gurobi  EA       
f  f max Avg num_Sp SD Time/s Global facility sequence 

S9 0.05563 10.38 0.05563 0.05563 0.05563 10 0 10.05 5 8 | 3 2 | 1 9 |6 7 4 

S10 0.06147 23.03 0.06147 0.06147 0.06147 13 0 20.05 8 | 1 3 9 | 2 6 | 4 5 10 7 

S11 1.014033 247.84 1.014033 1.014033 1.014033 16 0 20.05 7 2 |5 6 11 | 1 10 9 | 4 3  8 

Am13a 1.008997 456.44 1.008997 1.008997 1.008997 25 0 30.11 11 5 10 | 12 2 1 | 6 7 9 | 3 8 4 13 

Am15 1.01178 31147.17 1.01178 1.01178 1.01178 32 0 40.10 12 11 9 | 13 2 1 | 8 4 3 |14 7 5 6 15 10 

Table 1 demonstrates that the FEA algorithm can obtain objective values same as optimal global solutions within a 
reasonable amount of time, comparable to the solutions obtained by the exact solution optimizer. The result indicates the 
correctness of the algorithm's solution results. The Standard Deviation values (SD) for all ten solution instances are recorded 
as 0, indicating that FEA exhibits high stability in solving DF-SRFLP. Moreover, it is evident from the solution times that 
FEA holds a significant advantage over the exact algorithm. The solution time of FEA is not only affected by the parameters 
considered to be set but also by the number of combinations num_Sp in the split point set SP. For example, in the S9, num_Sp 
is 10, and the operating environment is ten cores, so the solution time is 10.05s. The floating is mainly due to the transmission 
of data information within the computer. Other scales can be deduced like this. Subsequently, we conducted tests on 
calculation instances of varying scales. 
(B) Experiments with instances of size 30 ≤ n ≤49  

Considering that DF-SRFLP has yet to be reported, FEA cannot make comparison with other algorithms. After verifying 
the correctness of the designed FEA, we solved the calculation instances of two DF-SRFLP layout modes between scales 30 
and 49 to observe the influence of different facility types on the solution results. The first type involved equal facility lengths, 
called Single-row Equidistant Facility Layout Problem (SREFLP). Thus, in the proposed double-floor layout mode, we 
referred to it as the double-floor single-row Equidistant facility layout problem (DF-SREFLP). In N-30-01, Ste36-01, N-40-
01, Sko42-01, and Sko49-01, the facility lengths were equal to 1. The second type consisted of benchmark instances with 
varying facility lengths, termed the double-floor layout for DF-SRFLP (Double-floor Facility Single-row Facility Length 
Problem). For the DF-SREFLP benchmark instances, where the facility length is 1, we can infer that the distances difference 
between the upper and lower floor is either 0 or 1. Consequently, the t value in Sp is fixed at floor(n/2). The results of FEA 
solving these two calculation instances are presented in Table 3. The problem sizes range from 25<n<49, and the algorithm 
parameters are Re=10 and tmax=30. 
Table 2. Results of FEA solving for instances of size 30 ≤ n ≤ 49 in DF-SREFLP and DF-SRFLP. 

DFSREFLP      DFSREFLP      
Instance f_min △ MHC MHC-SD Time/s Insatance f_min △ MHC MHC-SD Time/s 
N25-01 1.013132 1 13132 0 62.30 N25-05 0.027264 0 27264 0 158.25 

N-30-01 0.021558 0 21558 0 71.02 N-30-05 1.015724 1 157240 0 154.06 

Ste36-01 0.00027586 0 27586 0 62.97 Ste36-05 0.000148379 0 148379 505.92 157.74 

Sko42-01 0.055774 0 55774 70.20 65.18 Sko42-05 1.0322703 1 322703 210.62 173.93 

Sko49-01 1.008359 1 83592 75.67 75.67 Sko49-05 1.00874954 1 874954 584.4 157.72 

It can be seen from the table that for DF-SREFLP, the SD values of MHC in the solution results of N25-01, N-30-01, 
and Ste36-01 are all 0, and the SD values of SKo-42 and Sko-49 are both 70 about. This shows that FEA is relatively stable 
in solving the DFSREFLP. For DF-SRFLP, the SD values of MHC in the solution results of N25-01 and N-30-01 are all 0, 
but the SD values of Ste36-05, SKo-42 and Sko-49 fluctuate. However, because the magnitude of MHC is relatively large, 
the magnitude of SD of MHC is within an acceptable range. In terms of time, the solution time of DF-SREFLP at the same 
scale is significantly less than that of DF-SRFLP, which is consistent with the conclusion in Table 1; that is, the num_Sp has 
a significant influence on the solution time of the algorithm. The two examples of DFSREFLP and DFSREFLP provide a 
reference for the case solution in the case study. 
(C) Experiments with instances of size 60≤ n ≤80  

After verifying the accuracy and stability of the algorithm, to prove the potential of the proposed algorithm in solving 
large-scale instances of DFSRFLP and to illustrate that FEA is also effective in essential SRFLP instances, 12 slightly larger-
scale Benchmark instances are solved (60<n<80). The solution results are shown in Table 3. In most previous SRFLP works, 
cij and dij are symmetric in the objective function. Therefore, the range of facility i and facility j is 1≤ i< j≤ n. For DF-SRFLP, 
the material handling distance from i to j maybe differs from its reverse distance. Therefore, the range between facility i and 



facility j is 1 ≤ i, j ≤ n. To better compare the difference between DF-SRFLP and SRFLP, we put the two times the value of 
the best SRFLP target obtained by FEA in the fifth column of Table 3. The optimal permutation sequence obtained by solving 
DF-SRFLP is placed in Appendix.1. The solution parameters of this algorithm are Re=10; tmax=60. 
Table 3. Results of FEA solving for instances of size 60 ≤ n ≤ 80 in SRFLP and DF-SRFLP.   

SRFLP   DRSFLP   
No. Instance Best -know value FEA-solutions MHCSRFLP        

Double direction fmin MHCDRSFLP Reduce % 
1 A-60-01 1477834 1477834 2955668 0.01854872 1854872 37.24  
2 A-60-02 841776 841776 1683552 1.0106214 1062140 36.91  
3 A-60-03 648337.5 648337.5 1296675 1.00804719 804719 37.94  
4 A-60-04 398406 398406 796812 0.00509792 509792 36.02  
5 A-60-05 318805 318805 637610 1.00406924 406924 36.18  
6 A-70-01 1528537 1528537 3057074 1.0190548 1905480 37.67  
7 A-70-02 1441028 1441028 2882056 0.01771776 1771776 38.52  
8 A-70-03 1518993.5 1518993.5 3037987 0.01878941 1878941 38.15 
9 A-70-04 968796 968796 1937592 1.01223536 1223536 36.85  
10 A-70-05 4218002.5 4218002.5 8436005 0.005212165 5212165 38.22  
11 A-80-01 2069097.5 2069097.5 4138195 0.002593043 2593043 37.34  
12 A-80-05 1588885 1588885 3177770 1.02002642 2002642 36.98  

Best -know value come from the report of Gintaras Palubeckis. (Palubeckis, 2017) 

Numerical results in Table 4 show that for the SRFLP instances of 60<n< 80, the proposed algorithm achieves the best-
known values in current public reports. At the same time, we found that the overall MHC of SRFLP instance can be up to 
38.52% (Reduce = (MHCSRFLP        

Double direction -MHCDRSFLP)/ MHCSRFLP*100%) less than that of SRFLP compared with DF-SRFLP. This is 
attributed to the problem of the layout structure in DF-SRFLP. It is evident that the double-floor layout greatly folds the space 
and reduces the material handling distance between some facilities. However, it is because of this structure that the calculation 
of the model and the solution of the algorithm are difficult to solve by SRFLP. 

4.2 Simulation Test of DRSRFLP on Existing Cases 

In this section, we investigate two types of manufacturing cases derived from the assembly line workshop(Kovács, 2020) 
and the shoe factory case. The prototype of the first instance is an unequal area instance, while the prototype of the second 
instance is a dynamic layout instance(Ulutas & Islier, 2015). After processing the facility lengths, the first instance is classified 
as a DF-SRFLP in Section 5.1 (B), while the second instance is classified as a DF-SREFLP in Section 5.1 (B) based on equal 
facility lengths -SREFLP problem.  
(A) Automotive assembly case 

The first case is a manufacturer of auto parts assembly. The workshop contains 14 workstations. For this, we drew Figure 
6 concerning its original workshop layout. In Figure 6, we use arrows to represent the flow of materials between different 
workstations. The length of the facility and the unit material handling cost between the facilities are shown in Table 4 and 
Table 5 Because the scale of 14 is relatively small, we use FEA to solve it. At the same time, GUROBI is used for solving. 
The solution results of this layout are placed in Table 7, and the layout diagram of DF-SRFLP is drawn, as shown in Figure 
6. 

1 2 3 4 5 6 7 8 109 12 13 1411

Stop Stop Stop

Process flow of parts on an assembly line

Loading and unloading of raw materials and cargo  
Figure 6. Materials handling direction between different workstations. 
Table 4. Facility length. 

Workstation Dimensions (m × m) Workstation Dimensions (m × m) 



1, 2, 3, 4, 6, 8, 10, 11, 13 2×1 7, 9 1×1 
5, 14 4×1 12 1×3 

Table 5. Material handling flow of auto parts assembly. 
From to Table - Material Handling Flow. (m, n) c m: Initial facilities; n: Terminal facilities; c: flow; 
(1,2) 5 (1,5) 1 (1,6) 5 (2,3) 5 (3,4) 5 (4,5) 5 (5,6) 6 (6,12) 11 
(7,8) 4 (8,9) 4 (9,10) 4 (10,11) 4 (11,12) 4 (12,13) 15 (13,14) 15 (Others m, Others n) 0 

Table 6. Results of the optimized auto parts assembly line layout case. 
      Gurobi FEA  
Objective value MHC θ Area Sequence  Time/s Time/s SD 
1.002765 276.5 10000 1 7 | 6 5 1 4 3 2 | 8 | 9 10 11 12 13 14 365 297.61 11.27 0 

It can be seen from Table 6 that the value of Gurobi and the solution value of FEA are both 276.5. Furthermore, the 
difference between the layout length of the upper floor and the lower floor is 1. Overall, MHC is reduced by 24% relative to 
the original layout. The layout of DF-SRFLP is successful. Combining Figure 7 (a) and Figure 7 (b), in DF-SRFLP, the 
location of Facility 1 is between Facility 2 and Facility 6 because Facility 1 has a strong logistics relationship with Facility 2 
to Facility 6. Although facility 7 is far from facilities 8~10, facility 7 is close to the elevator entrance. This optimization result 
is due to our limited floor space. 
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Figure 7. The original layout and DF-SRFLP for auto parts assembly cases. 
(B) shoe manufacturer 

The second case is provided by Ulutas B (Ulutas & Islier, 2015).. The actual application scenario of this case is a shoe 
factory. The original layout of this case was a static layout, which was designed as a dynamic layout in 2015 after optimization. 
Compared with large-scale equipment used in heavy industry, it is more suitable for the light industry to exist in the form of 
the double floor layout or MFLP. Here we use it as a static layout for DF-SRFLP design. The main goal of the layout remains 
to minimize MHC while keeping the area to a minimum. The general shoemaking process is as follows: Clicking, Closing, 
Bottom stock preparation, Lasting, Making and Finishing. The direction of material flow and the names of facilities are shown 
in Figure 8. 
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Figure 8. Material handling flow direction in shoe manufacturer. 

Table 7 presents the values of cij, representing the Unit transportation cost per unit distance for material handling between 
facilities in the footwear factory. As the facilities in the factory have the same area, we assume they have the same length as 
the elevator. Due to the complexity of the problem, the exact algorithm cannot handle a case of size 54 within a reasonable 
timeframe. Hence, we employed the FEA algorithm to solve this case. The results obtained from the FEA algorithm are 
summarized in Table 8. To better display the layout results, we draw the optimized layout diagram. The algorithm parameters 
used for this calculation instance align with those applied to the 60-scale instance discussed in Section 5.1 (B). 
Table 7. Table material handling flow for the shoe factory. 

From to Table - Material Handling Flow. (m, n) c m: Initial facilities; n: Terminal facilities; c: flow; *100 
(W, 2) 43.5 (W, 3) 18.5 (W, 15) 302 (W, 16) 345 (W, 45) 49 (2, 4) 43.5 (3, 5) 18.5 (4, 6) 45 (5, 6) 40 
(6, 7) 85 (7, 8) 42.5 (7, 9) 42.5 (8, 10) 85 (9, 10) 27 (10, 11) 10 (10, 12) 10 (10, 13) 5 (10, 14) 4 
(11, 15) 4.5 (12, 15) 29 (13, 15) 22.5 (14, 15) 51.5 (15, 17) 302 (16, 17) 34.5 (17, 18) 34.5 (18, 19) 262 (19, 20) 262 
(20, 21) 262 (20, 22) 262 (22, 23) 262 (23, 24) 262  (24, 25) 262 (25, 26) 345 (26, 27) 345 (27, 28) 262 (28, 29) 113 
(29, 30) 262 (30, 31) 262 (31, 32) 257 (32, 33) 345 (33, 34) 262 (34, 35) 345 (35, 36) 262 (36, 37) 144 (37, 38) 144 
(38, 39) 281 (39, 40) 220 (40, 41) 323 (41, 42) 345 (42, 43) 345 (43, 44) 345 (44, 45) 345 (45,46) 49 (46, 47) 345 
(47, 48) 70 (48, 49) 345 (49, 50) 70 (50, 51) 262 (51, 52) 345 (52, 53) 345 (53, S) 345 (Others m, Others n) 0 

Table 8. Table material handling flow for the shoe factory. 
Objective value MHC Sequence [Floor, Area] 
0.000039899 3989900 {1, 1} = [28 27 26 25 24 23 22 21 20 19 18 17 16 1 15 14 12]; {1, 2} = [13 37 38 39 40 41 42 43 44 45]. 

{2, 1} = [29 30 31 32 33 34 35 36 2 4 5 6 7 9 8 10 11]; {2, 2} = [3 46 47 48 49 50 51 52 53 54]. 

DF-SREFLP MHC=3989900

Material handling position Elevator Shoe house Warehouse AGV

S53525150494847463293031323334353624567981011

4544434241403938371328272625242322212019181716W151412

Floor 2

Floor 1

 
Figure 9. optimized layout diagram for shoe manufacturer. 

We can analyse Figure 9 by combining Table 7, Table 8, and Figure 8. From Figure 9, it can be observed that facilities 
15 and 16 are arranged around the warehouse. This is because, among the direct material receiving facilities (2, 3, 15, 16, and 
45) on the level below the warehouse, facilities 15 and 16 have significantly higher cij than other facilities. Facility 3 is not 
put together with Facility 5 because the layout area of the facility should be reduced as much as possible, but Facility 3 is 
placed at the entrance of the freight elevator, on the same floor as Facility 5, so that it is convenient to receive materials from 
Facility 1 and the transportation between Facility 3 and Facility 5 also become more convenient. It is also the influence of 



these factors that facility 28 and facility 29 are distributed on two floors, but both facilities are placed next to the freight 
elevator, so the cost of material handling is reduced to a certain extent. Overall, it is reasonable for DF-SRFLP. 

5 Conclusion 

This study establishes an application framework for DF-SRFLP considering key factors such as building Area and 
Longitudinal freight tools. In this framework, the mixed integer linear programming model of DF-SRFLP is developed, and 
the constraint scale relationship of the model is analysed. To solve this layout problem faster, a fast evolutionary algorithm is 
introduced, which has been proven to perform well in solving similar problems. We successfully solved 27 benchmark 
instances (9<n<80) by applying the algorithm. The application of this method provides new ideas and tools for solving the 
double-floor single-row layout problem. Meanwhile, the framework was successfully applied to two actual cases: a small case 
of an assembly line (14 facilities) and a larger-scale case of a shoe factory (54 facilities). By solving these actual cases, the 
applicability and practicability of the framework for DF-SRFLP and in actual scenarios are further verified, and it also 
provides a valuable reference for layout decisions in actual manufacturing. 

Although this research has made progress in the double-floor single-row layout, there are still directions for further 
exploration and improvement. Future research can further optimize the model and explore effective exact solving algorithms 
and strategies to improve the problem-solving effect. Second, the fast evolution algorithm is improved and extended to 
increase its performance and adaptability in facility layout problems. Also, consider introducing more practical constraints, 
such as facility dependencies and process flow, to simulate actual production environments more accurately. At the same time, 
the research focus is shifted to the multi-objective double-floor single-row layout problem, and how to optimize the design 
while satisfying multiple performance indicators is explored. This will further enhance the practicality and scope of 
application of the double-floor single-row layout. 
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