
EasyChair Preprint
№ 11751

Model of Agricultural Vehicle Operator’s Seat
with PID Control

Iksan Khosiya Rohman

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 12, 2024



Model of Agricultural Vehicle Operator’s Seat with PID 
Control 

Iksan Khosiya Rohman1 Second Author2 

1 University of Al Azhar Indonesia, South Jakarta, Indonesia 
2 Springer Heidelberg, Tiergartenstr. 17, 69121 Heidelberg, Germany 

ihsankhosyiarohman@gmail.com 

Abstract. Seat needs to be made as comfortable as possible, especially seating in 
a vehicle, especially in vehicles that always run on uneven surfaces such as fields, 
there will be many disturbance inputs that cause discomfort or even make the 
body unhealthy. The use of MSDS as a cushion on the seat is the right choice to 
reduce disturbance input such as a sudden impact, then the damping contained in 
it makes vibration and resonance can be reduced properly, but the system will be 
more if the system is stabli. PID control is one of the control systems that can be 
added to stabilize this system. In this study, we tested 3 MSDS systems and gave 
them PID control so that the system became stable and safe. 

Keywords: Mass-Spring-Damper System, Simulation, Control, PID Control. 

1 Introduction 

Comfort when driving, especially when driving equipment or transportation, is gener-
ally found in the suspension of each system, but not only that, comfort is also found in 
the seat occupied by the operator, so to increase comfort it is necessary to provide 
springs, especially those that can be controlled to reduce disturbances. or bumping from 
uneven surfaces optimally[1]. 

The human body can be exposed to vibrations in various transportation environ-
ments, such as cars, buses, tractors, mining machinery, trains, monorails, ships and 
more. Exposure to these vibrations can cause discomfort and health problems. Evi-
dently, many experiences show that vibrations can be potentially harmful to the human 
body, depending on intensity, frequency, exposure time, sitting posture, body type and 
other factors[2].Vibration from vehicles is also something that affects comfort when 
driving apart from vehicle shaking caused by uneven roads. Vibrations can cause bodily 
injury and deterioration, cause fatigue and increase a person's chances of having an 
accident[3]. Such is the case with tractors. Tractor drivers experience discomfort when 
exposed to excessive low-frequency vibrations while doing a lot of work on the farm, 
causing tractor driver performance to be impaired and leading to underutilization of 
tractor power[4] and heavy truck, heavy truck drivers experience whole body vibration 
(WBV) because they spend most of their time driving for long distances, which will 
result in driver discomfort. Various elements can affect the driver's driving comfort 
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such as road roughness, vehicle suspension system, and seat suspension system. In ad-
dition, the noise and vibration generated from the internal combustion engine also have 
an effect on driver discomfort. As a result, the human body subjected to vibrations can 
experience adverse health disorders such as fatigue, back pain, motion sickness, nerve 
disorders, spline fractures, and fatigue[5]. 

Several suspensions have been created, namely with the application of a mass spring 
damper system[6] and its development to date and most seating system designs can be 
described dynamically as linear systems. However, the human body greatly deviates 
from simple rigid mass but has characteristics such as springs and damping. 

PID control has been widely used in all industrial fields at this time[7]. The three 
PID controls have their own advantages such as proportional control has the advantage 
of fast risetime, then integral control has the advantage of minimizing error, and deriv-
ative control has the advantage of minimizing error and reducing overshoot/undershoot. 
The elements of P, I and D controllers each overall aim to accelerate the reaction of a 
system, produce offsets and produce large initial changes. 

In this research will model the mass spring damper system for operator seating in 
agricultural vehicles with the 1-DOF, 2-DOF and 3-DOF concepts along with PID con-
trol applied to each model to obtain stability when operating. The mass parameter of 
the operator is assumed to be the average mass of operators with male gender whose 
average mass ranges from 60-80 kg, so the middle value taken is 70 kg as the research 
sample. 

2 Literature Review 

2.1 Modelling with Single Degree Freedom 

The mechanical system that will be applied in the first study is with the concept of 
single degree of freedom to model the operator's seat on an agricultural vehicle. As-
sumption 𝑚𝑚1mass of the operator with mass m is mounted on the solid frame of Figure 
1 with a spring and a damper. The mass of the spring in the system can be neglected 
first. The system is excited harmonically by a variable force 𝐹𝐹1 and moves linearly in 
the direction of the spring axis and the damper axis. 
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Fig. 1. System with Single Degree of Freedom 

Dynamic equation of motion which applies to the mechanical system Figure 1 in its 
vector form: 

 𝑚𝑚 𝑎𝑎 = 𝐹𝐹𝑟𝑟 + 𝐹𝐹𝑑𝑑 + 𝐹𝐹(𝑡𝑡) (1) 

Substituting the forces equation of the motion. 

 𝑚𝑚 �̈�𝑥 = −𝐹𝐹𝑟𝑟 − 𝐹𝐹𝑑𝑑 + 𝐹𝐹(𝑡𝑡) (2) 

Where m the mass of the operator. 
𝑚𝑚1 = mass 
a, �̈�𝑥 = mass acceleration. 
𝐹𝐹𝑟𝑟= reaction force on the spring. 
𝐹𝐹𝑑𝑑= damping force. 
𝐹𝐹(𝑡𝑡) = total force. 
The reaction force on a spring can be expressed as follows. 

 𝐹𝐹𝑟𝑟= 𝑘𝑘. 𝑥𝑥 (3) 

And the damping force can be expressed as follows, 

 𝐹𝐹𝑑𝑑 = 𝑐𝑐. �̇�𝑥 (4) 

Total force. 

 𝐹𝐹(𝑡𝑡) = 𝐹𝐹0 sin(𝜔𝜔𝑡𝑡) (5) 

k = spring coefficient. 
c = damping coefficient 
x = spring displacement 
𝜔𝜔 = natural frequency 
Then substituting equations (3), (4), and (5) into equation (2), the equation for a 

single degree of freedom mechanical system is obtained. 

 �̈�𝑥 =  − 𝑐𝑐
𝑚𝑚
𝑥𝑥 ̇ − 𝑘𝑘

𝑚𝑚
+ 1

𝑚𝑚
𝐹𝐹(𝑡𝑡) (6) 

From these equations, kinematic values such as displacement, velocity, and acceler-
ation of the mechanical system can be obtained against time. The SDOF framework can 
be used for modeling the machine. In addition, visualization and analysis are very sim-
ple[9]. 

2.2 Modelling with Two Degree of Freedom 

A mechanical system with two degrees of freedom is a system consisting of two mass 
bodies 𝑚𝑚1 and 𝑚𝑚2 which is mounted on a frame with springs having a spring constant 
𝑘𝑘1 and a damper with a linear damping coefficient 𝑏𝑏1 just like SDOF which contain of 
two SDOF[10]. The two objects are bound to each other by a spring with a spring 
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constant of 𝑘𝑘2 and a damper with a linear damping coefficient 𝑏𝑏2 with negligible spring 
masss[11]. 

 
Fig. 2. System with Two Degree of Freedom concept 

The second-order differential equation of motion of the system associated with the 
mechanical system is depicted in Figure 2. With the equation that can be written as 
follows. 

 𝑚𝑚1 �̈�𝑧1 = −𝑘𝑘1𝑧𝑧1 − 𝑐𝑐1�̇�𝑧1 + 𝑘𝑘2(𝑧𝑧2 − 𝑧𝑧1) + 𝑐𝑐2(�̇�𝑧2 − �̇�𝑧1) + 𝐹𝐹(𝑡𝑡) (7) 

 𝑚𝑚2 �̈�𝑧2 = −𝑘𝑘2(𝑧𝑧2 − 𝑧𝑧1) − 𝑐𝑐2(�̇�𝑧2 − �̇�𝑧1) (8) 

Then processed to solve in MATLAB and get the results of the first-order differential 
by substituting. 

 𝑥𝑥1 = 𝑦𝑦1 (9) 

 𝑥𝑥2 = �̇�𝑦1 (10) 

 𝑥𝑥4 = ẏ2 (11) 

 Then transform equations (7) and (8) into four first-order differential equations. 

  
�̇�𝑥1 = 𝑥𝑥1 

 �̇�𝑥1 = 1
𝑚𝑚1

[−(𝑐𝑐1 + 𝑐𝑐2)𝑥𝑥2 + 𝑐𝑐2𝑥𝑥4 − (𝑘𝑘1 + 𝑘𝑘2)𝑥𝑥2 + 𝑘𝑘2𝑥𝑥3 + 𝐹𝐹(𝑡𝑡)] (12) 

 �̇�𝑥4 = 1
𝑚𝑚2

[𝑐𝑐2𝑥𝑥2 − 𝑐𝑐2𝑥𝑥4 + 𝑘𝑘2𝑥𝑥3 + 𝑘𝑘2𝑥𝑥1] (13) 
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2.3 Modelling with Three Degree of Freedom 

The three degree of freedom system is the same as the previous two systems with the 
addition of one mass with springs and dampers in series. The equation can be written 
as follows. 

 
Fig. 3. System with Three Degree of Freedom 

 𝑚𝑚1�̈�𝑧2 + 𝑐𝑐1�̇�𝑧1 + 𝑘𝑘1 − 𝑐𝑐2(�̈�𝑧2 − �̇�𝑧1) − 𝑘𝑘2(𝑧𝑧2 − 𝑧𝑧1) = 0 (14) 

 𝑚𝑚1�̈�𝑧2 + 𝑐𝑐2(�̇�𝑧2 − �̇�𝑧1) + 𝑘𝑘2(𝑧𝑧2 − 𝑧𝑧1) − 𝑐𝑐3(�̇�𝑧3 − �̇�𝑧2) − 𝑘𝑘3(𝑧𝑧3 − 𝑧𝑧2) = 0 (15) 

The above equation can be transformed into a matrix as below: 

�
𝑚𝑚1
𝑚𝑚2
𝑚𝑚3

� �
�̈�𝑧1
�̈�𝑧2
�̈�𝑧3
� + �

(𝑘𝑘1 + 𝑘𝑘2) −𝑘𝑘2 0
−𝑘𝑘2 (𝑘𝑘2 + 𝑘𝑘3) −𝑘𝑘3

0 +𝑘𝑘3 −𝑘𝑘3
� �
𝑧𝑧1
𝑧𝑧2
𝑧𝑧3
� +

�
(𝑐𝑐1 + 𝑐𝑐2) −𝑐𝑐2 0
−𝑐𝑐2 (𝑐𝑐2 + 𝑐𝑐3) −𝑐𝑐3

0 +𝑐𝑐3 −𝑐𝑐3
� �
𝑧𝑧1̇
�̇�𝑧2
�̇�𝑧3
� = 0    (16) 

Then it can be simplified as follows: 

 [𝑚𝑚]{�̈�𝑧} + [𝑘𝑘]{𝑧𝑧} + [𝑐𝑐]{�̇�𝑧} = 0 (17) 



6 

2.4 PID Control 

PID control is a feedback control method used to regulate a dynamic system. The ab-
breviation "PID" comes from the three key components in this method namely Propor-
tional (P), Integral (I), and Derivative (D). The purpose of PID control is to adjust the 
output variable of a system to approach the desired or reference value as effectively as 
possible, taking into account the difference between the desired and actual values and 
changes in time [12]. The components of PID control are as follows: 

• Proportional Control: serves to accelerate the response 
• Integral Control: serves to eliminate steady error 
• Derivative Control: serves to improve as well as accelerate the transient re-

sponse[13]. 

 
Fig. 4. PID control simulation example used in the experiments 

Before using PID control, tuning is needed first in order to get an initial reference 
which is then carried out further tuning so that it can maximize control. 

In this study, the first tuning to get an initial reference is using the Ziegler-Nichols 
method then after that proceed with fine tuning. 

2.5 PID Tuning with Ziegler-Nichols closed loop method 

John Ziegler and Nathaniel Nichols developed the Ziegler-Nichols open- loop tuning 
method in 1942, and it remains a popular technique for tuning controllers that use pro-
portional, integral, and derivative actions in the industrial sector [14]. 

In the Ziegler-Nihcols tuning method, there is a procedure to perform this tuning so 
as to obtain the values needed when performing advanced tuning. The process is as 
follows: 

• Select proportional control 𝐾𝐾𝑝𝑝 alone. 
• ncrease the value of the proportional gain 𝑘𝑘𝑝𝑝 until the point of instability 

is reached (sustained oscillations), the critical value of gain (𝐾𝐾𝑐𝑐𝑟𝑟 ), is 
reached. 

• Measure the period of oscillation to obtain the critical time constant (𝑃𝑃𝑐𝑐𝑟𝑟). 
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• Once the values for 𝐾𝐾𝑐𝑐𝑟𝑟  and 𝑃𝑃𝑐𝑐𝑟𝑟  are obtained, the PID parameters can be 
calculated, according to the design specifications as shown in table[15]. 

Controller Type 𝑲𝑲𝒑𝒑 𝑻𝑻𝒊𝒊 𝑻𝑻𝒅𝒅 
P 0.5𝐾𝐾𝑐𝑐𝑟𝑟    
PI 0.45𝐾𝐾𝑐𝑐𝑟𝑟  1/1.2𝑃𝑃𝑐𝑐𝑟𝑟   
PID 0.6𝐾𝐾𝑐𝑐𝑟𝑟  0.5𝑃𝑃𝑐𝑐𝑟𝑟  0.125𝑃𝑃𝑐𝑐𝑟𝑟  

 
After PID tuning using the Ziegler-Nichols method, fine tuning is then performed to 

optimize the PID control output of the system. 
Fine tuning is done to optimize the PID control output of a system by changing the 

required values obtained from the previous tuning.[17] As in this research the first tun-
ing uses the Zigler-Nichols method. 

3 Research Method 

3.1 System Parameters 

PARAMETERS SYMBOL VALUE 
Operator mass 𝑚𝑚1 70 kg 
Spring mass 1 𝑚𝑚2 10 kg 
Spring mass 2 𝑚𝑚3 20kg 
Spring coefficient 1 𝑘𝑘1 150 N/m 
Spring coefficient 2 𝑘𝑘2 150 N/m 
Spring coefficient 3 𝑘𝑘3 150 N/m 
Damping coefficient 𝑐𝑐1 25 Ns/m 
Damping coefficient 𝑐𝑐2 25 Ns/m 
Damping coefficient 𝑐𝑐3 25 Ns/m 

3.2 Modeling System 

SDOF System Model 
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Fig. 5. SDOF Seat Model 

The SDOF system model can be modeled as follows. 

 𝐹𝐹(𝑡𝑡) = 𝑚𝑚1�̈�𝑥(𝑡𝑡) + 𝑐𝑐1�̇�𝑥(𝑡𝑡) + 𝑘𝑘𝑥𝑥(𝑡𝑡) (18) 

Then transformed into Laplace form into. 

 𝑚𝑚𝑠𝑠2𝑋𝑋(𝑠𝑠) + 𝑐𝑐𝑠𝑠𝑋𝑋(𝑠𝑠) + 𝑘𝑘𝑋𝑋(𝑠𝑠) = 1
𝑠𝑠
 (19) 

Then we can obtain the transfer function. 

 𝐻𝐻(𝑠𝑠) =  𝐻𝐻(𝑠𝑠)
𝑈𝑈(𝑠𝑠)

= 1
𝑚𝑚𝑠𝑠2+𝑐𝑐𝑠𝑠+𝑘𝑘

 (20) 

Then we substitute the parameters as follows. 

 
𝐻𝐻(𝑠𝑠)
𝑈𝑈(𝑠𝑠)

= 1
70𝑠𝑠2+25𝑠𝑠+150

  (21) 

2-DOF Model 

 
Fig. 6. 2-DOF Seat Model 

The 2-DOF system model can be modeled with the approach of substituting the two 
parameters that have been given. Then the model can be expressed as follows. 

 𝑚𝑚1�̈�𝑥(𝑡𝑡) + 𝑐𝑐1�̇�𝑥(𝑡𝑡) + 𝑘𝑘𝑥𝑥(𝑡𝑡) = −𝑐𝑐1�̇�𝑢 − 𝑘𝑘1𝑢𝑢 (22) 

 𝑚𝑚2�̈�𝑥(𝑡𝑡) + 𝑐𝑐2�̇�𝑥(𝑡𝑡) + 𝑘𝑘𝑥𝑥(𝑡𝑡) = 𝑐𝑐2�̇�𝑢 − 𝑘𝑘2𝑢𝑢 (23) 
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Then transform it into Laplace form. 

 𝑚𝑚1𝑠𝑠2𝑋𝑋1(𝑠𝑠) + 𝑐𝑐1𝑠𝑠𝑋𝑋1(𝑠𝑠) + 𝑘𝑘1𝑋𝑋1(𝑠𝑠) = −𝑐𝑐1𝑠𝑠𝑠𝑠(𝑠𝑠) − 𝑘𝑘1𝑠𝑠(𝑠𝑠) (24) 

 𝑚𝑚2𝑠𝑠2𝑋𝑋2(𝑠𝑠) + 𝑐𝑐2𝑠𝑠𝑋𝑋2(𝑠𝑠) + 𝑘𝑘2𝑋𝑋2(𝑠𝑠) = 𝑐𝑐2𝑠𝑠𝑠𝑠(𝑠𝑠) − 𝑘𝑘2𝑠𝑠(𝑠𝑠) (25) 

Then we can obtain the transfer function by converting it into a matrix first as fol-
lows. 

 �𝑚𝑚1𝑠𝑠2 + 𝑐𝑐1𝑠𝑠 + 𝑘𝑘1 0
0 𝑚𝑚2𝑠𝑠2 + 𝑐𝑐2𝑠𝑠 + 𝑘𝑘2

� �𝑋𝑋1
(𝑠𝑠)

𝑋𝑋2(𝑠𝑠)� = �−𝑐𝑐1𝑠𝑠 − 𝑘𝑘1
𝑐𝑐2𝑠𝑠 − 𝑘𝑘2

�𝑠𝑠(𝑠𝑠) (26) 

Then the transfer function can be written as follows. 

 𝐻𝐻(𝑠𝑠) =
�
𝑋𝑋1(𝑠𝑠)
𝑋𝑋2(𝑠𝑠)�

𝑈𝑈(𝑠𝑠)
= �

−𝑐𝑐1𝑠𝑠−𝑘𝑘1
𝑚𝑚1𝑠𝑠2+𝑐𝑐1𝑠𝑠+𝑘𝑘1

𝑐𝑐2𝑠𝑠−𝑘𝑘2
𝑚𝑚2𝑠𝑠2+𝑐𝑐2𝑠𝑠+𝑘𝑘2

� (27) 

Then we substitute the parameters as follows. 

  

𝐻𝐻(𝑠𝑠) =
�
𝑋𝑋1(𝑠𝑠)
𝑋𝑋2(𝑠𝑠)�

𝑈𝑈(𝑠𝑠)
= �

−𝑐𝑐1𝑠𝑠−𝑘𝑘1
70𝑠𝑠2+25𝑠𝑠+150

𝑐𝑐2𝑠𝑠−𝑘𝑘2
10𝑠𝑠2+25𝑠𝑠+150

� (28) 

3-DOF Seat Model 
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Fig. 7. 3-DOF Seat Model 

The 3-DOF system model can be modeled using the same approach as before with 
the incorporation of parameters. Then the model can be written as follows. 

 

 𝑚𝑚1�̈�𝑥(𝑡𝑡) + 𝑐𝑐1�̇�𝑥(𝑡𝑡) + 𝑘𝑘𝑥𝑥(𝑡𝑡) = −𝑐𝑐1�̇�𝑢 − 𝑘𝑘1𝑢𝑢 (29) 

 𝑚𝑚2�̈�𝑥(𝑡𝑡) + 𝑐𝑐2�̇�𝑥(𝑡𝑡) + 𝑘𝑘2𝑥𝑥(𝑡𝑡) = 𝑐𝑐1�̇�𝑥1 − 𝑐𝑐2�̇�𝑢 + (𝑘𝑘1 − 𝑘𝑘2)𝑥𝑥1 − 𝑘𝑘2𝑥𝑥2 (30) 

𝑚𝑚2𝑠𝑠2𝑋𝑋2(𝑠𝑠) + 𝑐𝑐2𝑠𝑠𝑋𝑋2(𝑠𝑠) + 𝑘𝑘2𝑋𝑋2(𝑠𝑠) = 𝑐𝑐1𝑠𝑠𝑋𝑋1(𝑠𝑠) − 𝑐𝑐2𝑠𝑠𝑠𝑠(𝑠𝑠) + (𝑘𝑘1 − 𝑘𝑘2)𝑋𝑋1(𝑠𝑠) −
𝑘𝑘2𝑋𝑋2(𝑠𝑠) (31) 

 𝑚𝑚3𝑠𝑠2𝑋𝑋3(𝑠𝑠) + 𝑐𝑐3𝑠𝑠𝑋𝑋3(𝑠𝑠) + 𝑘𝑘3𝑋𝑋3(𝑠𝑠) = 𝑐𝑐2𝑠𝑠𝑋𝑋2(𝑠𝑠) − 𝑐𝑐3𝑠𝑠𝑠𝑠(𝑠𝑠) + (𝑘𝑘2 − 𝑘𝑘3)𝑋𝑋2(𝑠𝑠) −
𝑘𝑘3𝑋𝑋3(𝑠𝑠) (32) 

Then we can obtain the transfer function by converting it into matrix form first. 

 �
𝑚𝑚1𝑠𝑠2 + 𝑐𝑐1𝑠𝑠 + 𝑘𝑘1 0 0

0 𝑚𝑚2𝑠𝑠2 + 𝑐𝑐2𝑠𝑠 + 𝑘𝑘2 0
0 0 𝑚𝑚3𝑠𝑠2 + 𝑐𝑐3𝑠𝑠 + 𝑘𝑘3

� �
𝑋𝑋1(𝑠𝑠)
𝑋𝑋2(𝑠𝑠)
𝑋𝑋3(𝑠𝑠)

� =

�
−𝑐𝑐1𝑠𝑠 − 𝑘𝑘1

𝑐𝑐1𝑠𝑠 − 𝑐𝑐2𝑠𝑠 + (𝑘𝑘1 − 𝑘𝑘2)
𝑐𝑐2𝑠𝑠 − 𝑐𝑐3𝑠𝑠 + (𝑘𝑘2 − 𝑘𝑘3)

� (33) 
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Then the transfer function becomes. 

 𝐻𝐻(𝑠𝑠) =

⎣
⎢
⎢
⎢
⎡

−(𝑐𝑐1𝑠𝑠+𝑘𝑘1)
𝑚𝑚1𝑠𝑠2+𝑐𝑐1𝑠𝑠+𝑘𝑘1

𝑐𝑐1𝑠𝑠−𝑐𝑐2𝑠𝑠+(𝑘𝑘1−𝑘𝑘2)
𝑚𝑚2𝑠𝑠2+𝑐𝑐2𝑠𝑠+𝑘𝑘2

𝑐𝑐2𝑠𝑠−𝑐𝑐3𝑠𝑠+(𝑘𝑘2−𝑘𝑘3)
𝑚𝑚3𝑠𝑠2+𝑐𝑐3𝑠𝑠+𝑘𝑘3 ⎦

⎥
⎥
⎥
⎤

 (34) 

Then we substitute the parameters as follows. 

  

𝐻𝐻(𝑠𝑠) =

⎣
⎢
⎢
⎢
⎡

−(𝑐𝑐1𝑠𝑠+𝑘𝑘1)
70𝑠𝑠2+25𝑠𝑠+150
𝑐𝑐1𝑠𝑠−𝑐𝑐2𝑠𝑠+(𝑘𝑘1−𝑘𝑘2)
10𝑠𝑠2+25𝑠𝑠+150
𝑐𝑐2𝑠𝑠−𝑐𝑐3𝑠𝑠+(𝑘𝑘2−𝑘𝑘3)
20𝑠𝑠2+25𝑠𝑠+150 ⎦

⎥
⎥
⎥
⎤
 (35) 

3.3 PID Tuning 

PID Tuning for SDOF 
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Fig. 8. 

 

Fig. 9. SDOF Output without PID control 

In the SDOF model system is stable, but the response time given tends to be long 
and the amplitude is very small, therefore this system is given an automatic PID with 
the syntax in the MATLAB software then the parameters obtained are: 

Table 1. PID Parameters 

PARAMETERS VALUE 
𝒌𝒌𝒑𝒑 1.26 
𝒌𝒌𝒊𝒊 639 
𝒌𝒌𝒅𝒅 432 

After obtaining PID parameters for this system, the system can be given PID control 
according to the previously obtained parameters. 

PID Tuning for 2-DOF 
In the 2-DOF model system, it is found that after being given a step input, the system 

gives an output that looks stable, but when given several parameters for PID tuning, the 
system gives an unstable output. 
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Fig. 10. 2-DOF without PID Control 

Therefore, it is necessary to do tuning for this system in order to be given optimal 
PID control. By using the Ziegler-Nichols method, the required parameters can be ob-
tained as follows. 

Table 2. PID Parameters 

Parameter Value 
𝐾𝐾𝑐𝑐𝑟𝑟  13.5 
𝑃𝑃𝑐𝑐𝑟𝑟  1.153 s 

After obtaining the PID parameters, the system can be given PID control to stabilize 
according to the parameters that have been obtained so that further tuning can be done. 

PID Tuning for 3-DOF 
In the 3-DOF model system when this system is given a step input the system gives 

a response that is quite long but with a very high amplitude, this indicates that this 
system is not stable according to the experiments that have been carried out. 
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Fig. 11. 3-DOF Output without PID Control 

Before PID control is given to this system, tuning is required first as was done in the 
previous system using the Ziegler-Nichols method. After tuning, the required parame-
ters were successfully obtained in this experiment as follows. 

Table 3. PID Parameters 

Parameter Value 
𝐾𝐾𝑐𝑐𝑟𝑟  1158 
𝑃𝑃𝑐𝑐𝑟𝑟  0.193 s 

After obtaining the required parameters, the system can be given PID control to sta-
bilize the system with advanced tuning. 

4 Result 

After all systems have been given PID control, all systems now provide the output as 
desired, namely with a faster response and stabilized at the desired set point of 1 value. 
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Fig. 12. SDOF Comparison with and without PID 

The SDOF system that has been given PID control can produce the desired output. 
Before being given PID this system tends to have a fast time response but oscillations 
occur long enough that it will make the operator uncomfortable when using it and the 
amplitude tends to be very small. After being given PID control with PID parameters 
that have been tuning the system not only has a fast time response, but also dampens 
the oscillations that occur when given input and the system is able to reach the desired 
set point quickly. 
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Fig. 13. SDOF Root locus after PID control 

In the root locus graph, it can be concluded that the value produced by the system 
does not point to the right of the real axis 0, indicating that the system has become a 
stable system both after and before being given PID control for this system. 
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Fig. 14. 2-DOF comparison with and without PID control 

In the 2-DOF system when the system has not been given PID control, this system 
produces a fairly stable output, but the case is similar to the SDOF system where the 
system looks stable but when tested by changing some parameters on this system then 
this system will turn unstable, then oscillations that occur after being given input with 
a long enough duration which is not good for the operator when using it.After being 
given PID control on this system, the system becomes more stable where the response 
time is faster, reduces overshoot and oscillations that occur can be dampened. 
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Fig. 15. 2-DOF Root locus after PID control 

In the root locus graph, it can be concluded that this system has become a stable 
system after being given PID control characterized by the resulting value not going to 
the right of the real axis 0 so that the system is safe to use in real life. 

Then in the 3-DOF system, this system when given input produces a very unstable 
response where the time response is very slow then high overshoot and oscillations that 
get bigger over time. 
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Fig. 16. 3-DOF comparison with and without PID 

After being given PID control this system is able to produce better output than before 
significantly where the time response becomes very fast compared to before then the 
overshoot is reduced very drastically and the oscillations are damped making this sys-
tem stable. 

After being given PID control this system is able to produce better output than before 
significantly where the time response becomes very fast compared to before then the 
overshoot is reduced very drastically and the oscillations are damped making this sys-
tem stable. 
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Fig. 17. 3-DOF Root locus after PID control 

In the root locus graph, it can be concluded that this system is stable after being given 
PID control which can be characterized by the resulting value not going to the right of 
the real axis 0 so that this system is safe for use by operators. 

5 Conclusion 

Based on the research that has been done on 3 mass-spring-damper system models, it 
can be concluded that a system that looks stable is not necessarily fully stable, it would 
be nice to be modified or adjusted parameters or even given control so that the system 
can produce the output as we want. In addition, a stable system has an advantage for its 
users because it can provide comfort and safety when used with a long enough span of 
time, moreover when the system can be controlled according to what we specify then 
we will feel more comfortable when using it so that it can create comfort when using 
it. 
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