ﬁ EasyChair Preprint

Ne 15279

Performance Evaluation of Multithreaded Systems

Brahmaiah Gandham, Salma Shaik, Rama Murthy Garimella and
Praveen Alapati

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 21, 2024

Performance Evaluation of Multithreaded Systems

Brahmaiah Gandham
Ecole Centrale School of Engineering
Mahindra University
Hyderabad,India
brahmaiah.gandham @gmail.com

Praveen Alapati
Ecole Centrale School of Engineering
Mahindra University
Hyderabad,India
praveena@cse.iitm.ac.in

Abstract—This paper presents a stochastic model-based evalu-
ation of memory access performance in a multi-threaded system,
where M threads independently attempt to access a shared
memory segment. The model assumes that memory access times
follow a Poisson process with exponentially distributed inter-
access times. Key performance metrics, such as the probability of
no contention, the probability of K threads contending, and the
expected delay in accessing memory, are derived and analyzed.
The results show that contention significantly increases with the
number of threads, leading to sharp declines in performance.
Numerical evaluations highlight the exponential increase in
contention and memory access delays as the number of threads
grows, emphasizing the importance of efficient synchronization
mechanisms for scalable multi-threaded systems.

Index Terms—performance evaluation, multi-threading,
stochastic model, memory access, poison process.

I. INTRODUCTION

With the growing prevalence of multi-core and parallel
processing architectures, efficient memory access has become
a critical challenge in designing high-performance comput-
ing systems. In multi-threaded environments, threads often
contend for shared memory resources, leading to delays and
reduced system efficiency. As the number of threads increases,
so does the likelihood of memory contention, which can
significantly degrade overall performance. Understanding the
stochastic behavior of thread contention and access delays is
crucial for optimizing memory management and synchroniza-
tion techniques [1], [2], [7], [9].

In multi-threaded systems, memory access times are often
modeled using stochastic processes, particularly when dealing
with concurrent threads attempting to access shared memory
segments. A widely accepted approach is to model inter-
memory access times using a Poisson process, where the
access intervals follow an exponential distribution [3]. This
approach captures the randomness and independent nature of
memory access attempts, making it suitable for performance
evaluation in parallel computing environments.

Past research has extensively studied contention in shared-
memory systems, often focusing on lock-based synchro-
nization mechanisms or non-blocking algorithms to reduce

Salma shaik
Ecole Centrale School of Engineering
Mahindra University
Hyderabad,India
salma20pcse004 @mahindrauniversity.edu.in rama.murthy @mahindrauniversity.edu.in

Rama Murthy Garimella
Ecole Centrale School of Engineering
Mahindra University
Hyderabad,India

contention and improve efficiency [2], [4]-[6], [10]. How-
ever, while many studies focus on hardware-based solutions
or software-level optimizations, the need for a generalized
stochastic model to evaluate performance remains. This paper
aims to fill this gap by presenting a stochastic model based
on fundamental principles such as Occam’s razor, offering
a minimalistic yet effective approach to analyze memory
contention in a multi-threaded environment.

The primary contribution of this paper is the development
of a probabilistic framework to evaluate key performance
metrics in multi-threaded systems, including the probability
of no contention, the expected number of threads contending
for memory access, and the expected delay in memory ac-
cess. Using this model, we provide insights into how system
performance degrades as the number of threads increases,
emphasizing the exponential growth in contention and delays.
Through numerical evaluations, we demonstrate the practical
implications of these results and highlight the importance
of optimizing thread synchronization mechanisms to mitigate
performance degradation in highly concurrent systems.

This work builds on prior models and expands the un-
derstanding of contention in multi-threaded environments by
offering a stochastic framework that can be adapted to various
memory management scenarios. The results are particularly
relevant for applications in cloud computing, real-time sys-
tems, and parallel scientific computing, where efficient mem-
ory access is critical for performance.

This research paper is structured as follows: Section II
presents an analysis of Stochastic Model-based Performance
Evaluation, followed by Section III, which focuses on Stochas-
tic Model-based Numerical Analysis. Finally, Section IV pro-
vides conclusions regarding the stochastic model.

II. STOCHASTIC MODEL-BASED PERFORMANCE
EVALUATION

In our stochastic model, we consider M threads attempting
to access a memory segment. The following modeling assump-
tions are made based on the principle of Occam’s razor:

1) From the point of view of memory access, the threads
are statistically independent.

2) The inter-memory segment access times are identically
distributed for all threads. The common probability
distribution is exponential with rate .

3) The time horizon for memory access is considered
infinite. Effectively, based on assumptions (1) and (2),
the memory access time points constitute a Poisson point
process.

4) On accessing a memory segment, a thread locks the
access for a certain minimum time 7,;, and a maximum
time 7T pax.

Based on the above modeling assumptions, we first consider

the simple case:

The thread memory access times occur at the beginning
of the time slot of length T, or Ti,.x. A common clock
synchronizes the M threads, and hence effectively the time
axis is slotted into slots of length Ti,x Or Tinin-

A. Performance Measures

We now evaluate the following performance measures based
on the above modeling assumptions:

1) Probability that during a slot no contention occurs:
e MATwin (M NTppin)*

1!
(or M ANTjaxe™ MATmar)

P(no contention) =

0 = M AT pipe M i

2) Delay probability distribution for number of slots
required for successfully accessing a memory slot
(random variable 7):

Based on well-known facts related to the Poisson pro-
cess, the discrete probability mass function is given by:

plz=m} = (1-0)"0

Hence, the discrete random variable Z has a geometric
probability mass function with success probability 6.
3) Probability that K threads contend for memory
access during the current slot:
e M (M AT in) ™ ;
- Kl o
4) Probability that the delay in memory access exceeds
L slots:

K>1

P(delay > L) = Zp(z =7)
j=L

5) By chebyshev inequality:

E tedDel
Plaelay > 1) < ZopectedDelay

B. Synchronization Effects

We realize that synchronization of threads requires addi-
tional effort. Without synchronization, the probability that
there is no contention drops to a lower value. We now provide
the detailed calculation.

C. Inter-Memory Access Time

The inter-memory access time is assumed to follow an
exponential distribution. The probability density function is:

fm (y) =)‘eiky

The expected value of Z is:

E(z)=—
() =5
For example, if the inter-memory access time is 10 ms, then

in one second, the number of memory requests A is:

D. Parameters for performance evaluation

e A or equivalently %

e Thin: Minimum time for which the memory segment is
locked.

e Thax: Maximum time for which the memory segment is
locked.

e Vary K, i.e., number of contending threads.

Let’s now vary the number of threads M from 1, 2, 4, 8, 16,
32, and 64 and calculate the corresponding values for the three
performance metrics (i.e they are in geometric progression):

We will use the following assumptions:

A = 100 (accesses per second) each thread accesses the
memory segment once every 10 ms. 7},,;,, = 0.01 seconds (10
ms).

III. STOCHASTIC MODEL-BASED NUMERICAL ANALYSIS
TABLE I

PROBABILITY OF NO CONTENTION DURING A TIME SLOT FOR DIFFERENT
VALUES OF M.

M (threads) Phio_contention
1 0.36788
2 0.27067
4 0.07326
8 0.00269
16 1.75 x 10~6
32 4.88 x 10~13
64 1.42 x 10—27

Table 1 shows how the probability of no contention during
a time slot varies as the number of threads (M) increases.
With only 1 thread, the probability of no contention is around
0.36788, meaning there is no competition since only one
thread is accessing memory. As the number of threads in-
creases to 2, this probability drops to 0.27067, reflecting a
greater likelihood of contention as more threads attempt to
access memory simultaneously. For 4 threads, the probability
decreases drastically to 0.07326, showing that contention
becomes increasingly likely as the thread count rises. By the
time M = 8, the probability of no contention is almost
zero (0.00269), and with 16 or more threads, it effectively
approaches zero. This trend highlights that with a larger
number of threads, contention is almost inevitable.

TABLE II
PROBABILITY OF K THREADS CONTENDING FOR MEMORY ACCESS
DURING A TIME SLOT.

M (threads) | K = 1 Probability | K = 2 Probability
I 0.36788 0.18394
2 0.27067 0.27067
4 0.07326 0.14652
8 0.00269 0.01075
16 1.75 x 10—6 1.40 x 10~5
32 4.88 x 10~13 7.81 x 10~12
64 1.42 x 10—27 4.54 x 10~26

Table 2 evaluates the probability of exactly 1 or 2 threads
contending for memory access during a time slot, based on
varying thread counts. When M = 1, only one thread is
present, so the probability of 1 thread contending is 0.36788.
For M = 2, the probability of both 1 thread and 2 threads
contending is equal (0.27067 for each), reflecting the balanced
likelihood of one or two threads attempting access. As the
number of threads increases, the probability of only 1 thread
contending decreases sharply; for M = 4, it is 0.07326, and
for M = 8, it is only 0.00269. In contrast, the probability
of 2 threads contending grows as more threads are added,
though beyond a certain point (e.g., M = 16 or more),
contention between multiple threads becomes almost certain,
and the probability of only 1 or 2 threads contending becomes
negligible.

TABLE III
EXPECTED DELAY IN SLOTS FOR SUCCESSFULLY ACCESSING MEMORY.

M (threads) | Expected Delay (slots)
1 2.718
2 3.694
4 13.65
8 371.74
16 571428.57
32 2.05 x 1012
64 7.04 x 1026

Table 3 shows the expected number of slots required to
successfully access memory (i.e., the delay), depending on
the number of threads contending. With just 1 thread, the
expected delay is 2.718 slots, meaning that memory access
is relatively quick. As the number of threads increases, the
delay grows exponentially. For 2 threads, the delay is 3.694
slots, while for 4 threads, it jumps to 13.65 slots, indicating
a sharp rise in contention. By the time M = 8, the expected
delay becomes very large, at 371.74 slots. For 16 or more
threads, the delay becomes impractically long—571,428 slots
for M = 16, and it reaches astronomical values for M = 32
and M = 64. This exponential increase in delay shows
how quickly system performance deteriorates when many
threads contend for memory access, making it clear that higher
thread counts lead to severe delays without proper contention
management.

The table reveals how the probability that the delay in
memory access exceeds a given number of slots changes as
the number of threads increases. For a single thread (M = 1),

TABLE IV
PROBABILITY THAT THE DELAY IN MEMORY ACCESS EXCEEDS L SLOTS
FOR UP TO 8 THREADS.

L Threads=1 Threads=2 | Threads=4 | Threads=8
1 1.000000 1.000000 0.999465 0.233594
2 0.632121 0.729329 0.926202 0.230911
4 0.252581 0.387946 0.795386 0.225565
8 0.040327 0.109766 0.586544 0.214959
16 0.001028 0.008787 0.318876 0.194086
32 | 6.68 x 1077 0.000056 0.094014 0.153663

there is no contention, resulting in a probability of 1.0 for
exceeding 1 slot, as the thread always has direct access to
memory. As the delay threshold L increases, the probability
drops quickly, becoming negligible by L = 32.

With two threads (M = 2), contention slightly increases,
but the system still handles delays well. The probability of
delays exceeding L = 1 slot remains 1.0, though it gradually
declines for higher values of L. By L = 16, the probability
decreases to 0.008787, indicating minimal delay, even with
two contending threads.

At four threads (M = 4), contention becomes more ap-
parent. The probability of delays exceeding L = 1 slot is
0.999465, and by L = 8, it is more likely that delays exceed
this threshold than not, with a probability of 0.586544. Sig-
nificant delays become more likely with moderate contention,
as the system struggles to manage more threads.

With eight threads (M = 8), contention is more significant.
The probability of delays exceeding L. = 1 slot drops to
0.233594, meaning that about 23% of the time, a delay of
more than 1 slot occurs. For L = 8, the probability is still high
at 0.214959, reflecting frequent delays. Even for L = 32, the
probability remains at 0.153663, showing that delays of this
magnitude are not uncommon with high contention.

Overall, as the number of threads increases, the likelihood
of experiencing delays beyond a given number of slots rises
sharply due to increased contention for memory resources.
This highlights the importance of efficient synchronization
and resource management in multi-threaded environments to
prevent significant performance degradation.

Figures 1 and 2 show the relationship between interval
time and execution time in a multi-threaded environment. By
varying the interval time between successive memory requests
while maintaining a fixed number of threads and memory
requests, we aim to quantify the impact of this parameter on
overall performance.

Our findings indicate a strong linear correlation between
interval time and execution time. As the interval time in-
creases, the total execution time also increases proportionally.
This suggests that the time spent waiting for memory requests
significantly contributes to the overall execution cost.

The observed relationship can be attributed to several fac-
tors, including thread scheduling overhead, memory access
latency, and synchronization costs. When threads are forced to
wait for longer intervals, they are more likely to be preempted
by other ready threads, leading to increased context switching.

3.0

~
n
L

Total Execution Time (seconds)
N
=}
|

1.5

T
2 4 6 8 10 12 14
Interval Time (seconds)

Fig. 1. Execution time by varying the interval time (number of memory
requests is 10)

50

45 1

~N w w o
w =} a =]
L L L L

Total Execution Time (seconds)

N
=}
L

15

10

4.5 1

w &
wn o
L |

Total Execution Time (seconds)
w
[=]
|

2.5+

2 4 6 8 10 12 14
Locking Time (seconds)

Fig. 3. Execution time by varying the locking time (number of memory
requests is 10)

60

554

W o £y wu
v} =1 o =1
L L L L

Total Execution Time (seconds)

w
=]
L

254

T
0 5 10 15 20 25
Interval Time (seconds)

Fig. 2. Execution time by varying the interval time (number of memory
requests is 100)

Additionally, longer intervals can increase the likelihood of
cache misses and memory bus contention, further contributing
to performance degradation.

These results underscore the importance of carefully con-
sidering interval time when designing and optimizing multi-
threaded applications. By selecting appropriate interval times
and employing techniques such as thread pooling and asyn-
chronous programming, developers can effectively mitigate the
negative impact of memory access latency and improve overall
performance.

Figures 3 and 4 show the relationship between locking
time and execution time in a multi-threaded environment. By
varying the locking time while maintaining a fixed number of
threads and memory requests, we aim to quantify the impact
of this parameter on overall performance.

Our findings indicate a strong linear correlation between

0 5 10 15 20 25
Locking Time (seconds)

Fig. 4. Execution time by varying the locking time (number of memory
requests is 100)

locking time and execution time. As locking time increases,
the total execution time also increases proportionally. This
suggests that the time spent on locking operations significantly
contributes to the overall execution cost.

The observed relationship can be attributed to increased
contention among threads competing for shared resources
and the overhead associated with locking mechanisms. When
threads are forced to wait for longer periods to acquire locks,
they are less likely to make productive use of their allocated
CPU time, leading to decreased system throughput.

These results underscore the importance of carefully consid-
ering locking strategies when designing and optimizing multi-
threaded applications. By minimizing locking operations, us-
ing appropriate locking mechanisms, and identifying and ad-
dressing performance bottlenecks, developers can significantly
improve the responsiveness and efficiency of their applications.

2.5

2.0 1

1.5

1.0 1

Total Execution Time (seconds)

0.5

2 4 6 8 10 12 14 16
Number of Threads

Fig. 5.
is 10)

Execution time by varying the threads (number of memory requests

25 1

20

15

10

Total Execution Time (seconds)

2 4 6 8 10 12 14 16
Number of Threads

Fig. 6.
is 100)

Execution time by varying the threads (number of memory requests

Figures 5 and 6 the relationship between the number of
threads and execution time in a multi-threaded environment.
By varying the number of threads while maintaining a fixed
number of memory requests, we aim to quantify the impact
of this parameter on overall performance.

Our findings indicate a strong linear correlation between
thread count and execution time. As the number of threads
increases, the total execution time also increases proportion-
ally. This suggests that the overhead associated with thread
management and synchronization significantly contributes to
the overall execution cost.

The observed relationship can be attributed to increased con-
tention among threads competing for shared resources and the
overhead introduced by thread creation, context switching, and
synchronization mechanisms. When threads are forced to wait
for longer periods to access shared resources or synchronize

with other threads, they are less likely to make productive
use of their allocated CPU time, leading to decreased system
throughput.

These results underscore the importance of carefully con-
sidering thread count when designing and optimizing multi-
threaded applications. By identifying the optimal number of
threads for a given workload and employing strategies to
minimize contention and synchronization overhead, developers
can effectively harness the benefits of parallelism and improve
application performance.

A. Approach for Contention Minimization

We have realized that synchronization of threads minimises
the contention probability. We now explore new ideas for
further reduction of contention probability. The threads look-
ing to access memory segment sense whether the desired
memory segment is locked by a thread. If yes, they wait for a
random amount of try and try to access the memory. It can be
reasoned that with this approach contention probability will
be minimised.

In multi-threaded environments, thread synchronization
plays a crucial role in minimizing contention when multiple
threads attempt to access shared resources, such as memory
segments. We have observed that effective synchronization
techniques can significantly reduce the probability of con-
tention, thereby enhancing overall system performance. How-
ever, there is still potential for further reducing contention
probability through innovative approaches.

To advance our contention minimization strategy, we pro-
pose a mechanism whereby threads attempting to access a
shared memory segment first ascertain whether that segment
is currently locked by another thread. This can be achieved
through a lightweight status check or flagging mechanism that
indicates the lock state of the memory segment. If a thread
detects that the desired memory segment is locked, it does not
immediately enter a blocking state. Instead, it will implement
a randomized backoff strategy.

The randomized backoff mechanism entails the following
steps:

1) Lock Status Check: When a thread identifies that its
desired memory segment is locked, it does not immedi-
ately wait in a queue. Instead, it assesses the lock state
first to avoid unnecessary blocking.

2) Random Wait Time: Upon confirming the segment is
locked, the thread will wait for a random amount of
time before attempting to access the memory segment
again. This time interval can be calculated using a
uniform random distribution within a defined range.
The randomness introduces variability in the timing of
subsequent access attempts among competing threads,
which helps to alleviate the bottleneck caused by multi-
ple threads trying to access the same memory segment
simultaneously.

3) Re-attempt Access: After the random wait period, the
thread will again check the lock status of the memory
segment. If it finds the segment still locked, it repeats

the randomized waiting process. If the memory segment
is available, the thread can then proceed to access it.

4) Adaptive Backoff: To enhance the effectiveness of
this approach, the random wait time can be adjusted
dynamically based on the contention level. For instance,
if a thread experiences repeated failures in acquiring the
lock, it may increase its wait time, thereby reducing
the likelihood of repeated contention with other threads.
Conversely, if the segment becomes frequently avail-
able, the thread may decrease its wait time to improve
throughput.

This approach leverages the principles of probability and
randomness to minimize contention effectively. By allowing
threads to stagger their attempts to acquire locks, we can
significantly reduce the likelihood of simultaneous access
requests that lead to contention. Consequently, this method
not only decreases the wait time for threads trying to access
locked memory segments but also improves overall system
efficiency by ensuring that threads are not idle while waiting
for access.

The proposed approach for contention minimization fo-
cuses on adaptive synchronization through random backoff
strategies, which offer a promising avenue for enhancing
performance in multi-threaded environments. By intelligently
managing access attempts, we can further optimize resource
utilization and improve responsiveness in systems where con-
tention is a significant concern.

B. Improvements to the Stochastic Model

It is realistic to consider the model in which if a memory
segment is accessed, it is highly like that the adjacent memory
segments are also needed by the thread and they will be ac-
cessed. It is reasonable to assume Markov dependence between
accessed segments. We are currently developing the improved
stochastic model and associated performance evaluation.

In the context of multi-threaded applications, understanding
and predicting memory access patterns is crucial for opti-
mizing performance and reducing contention. Traditionally,
stochastic models have been used to analyze memory access
behaviors, but we recognize the need to enhance these models
to better reflect real-world scenarios. One significant improve-
ment is to incorporate the concept of spatial locality, par-
ticularly the Markov dependence between accessed memory
segments.

1) Rationale for Markov Dependence: When a thread
accesses a specific memory segment, it iS not merely an
isolated event. Empirical observations indicate that threads
often require not only the primary segment they are accessing
but also adjacent memory segments. This phenomenon is
known as spatial locality, which refers to the tendency of
threads to access memory locations that are physically close
to one another within a short time frame.

To model this behavior accurately, we propose integrating a
Markov dependence assumption into our stochastic model. In
this framework, the access pattern of a thread can be viewed
as a Markov process, where the probability of accessing a

particular memory segment depends on the segments that have
been accessed in the recent past. This dependency can be
represented mathematically as follows:

P(Xn‘Xn—laXn—Qv---7Xn—k) :P(X7L|XTL—1)7 (1)

where X,, represents the memory segment accessed at time
n, and the condition indicates that the future access depends
only on the most recent access. This simplification captures
the essential nature of memory access patterns while enabling
more efficient computations.

2) Development of the Improved Stochastic Model: In de-
veloping our improved stochastic model, we aim to capture
the following aspects:

1) State Representation: Each state in our model corre-
sponds to a specific memory segment, and the transi-
tions between states reflect the probability of accessing
neighboring segments after a given segment has been
accessed. By defining transition probabilities based on
historical access patterns, we can create a more accurate
representation of how threads navigate memory.

2) Transition Probabilities: The transition probabilities
can be estimated using real access logs or simulated en-
vironments. By analyzing historical data, we can derive
the likelihood of moving from one memory segment to
adjacent segments. This empirical approach ensures that
our model aligns closely with actual thread behaviors.

3) Performance Evaluation: Alongside the model’s devel-
opment, we are focusing on performance evaluation to
quantify the improvements brought about by incorpo-
rating Markov dependence. We will conduct a series of
experiments to compare the performance of traditional
models against our improved stochastic model. Key
performance metrics will include average access latency,
contention rates, and overall throughput.

4) Simulation Framework: To facilitate the testing of our
model, we will establish a robust simulation framework
that allows us to manipulate various parameters, such as
the degree of locality and contention levels, in order to
observe their effects on memory access patterns. This
will help us to validate the accuracy and reliability of
our improved model in various scenarios.

3) Implications for System Performance: By refining our
stochastic model to account for Markov dependence among
memory accesses, we anticipate several positive outcomes.
First, we expect reduced contention due to better predictions of
memory segment requirements, leading to fewer simultaneous
access attempts on adjacent segments. Second, our enhanced
understanding of access patterns may inform better resource
allocation strategies, allowing the system to preemptively load
relevant memory segments into cache, thereby improving data
access times.

The improvements to our stochastic model will provide
a more nuanced understanding of memory access behavior
in multi-threaded environments. By incorporating Markov

dependence and evaluating the model’s performance, we aim
to contribute to more efficient memory management strategies,
ultimately enhancing system performance and responsiveness.

IV. CONCLUSION

The stochastic model developed in this work offers a
detailed analysis of memory access contention in a multi-
threaded system. Our results show that as the number of
threads increases, the likelihood of contention rises rapidly,
leading to exponentially increasing delays in memory access.
For low thread counts, contention is minimal, but with larger
thread numbers, performance degradation becomes severe.
This underscores the need for efficient memory management
and synchronization techniques, especially in systems with
high concurrency. Future work may explore more sophisticated
synchronization methods or memory management algorithms
to mitigate contention and improve performance in highly
parallel systems.

REFERENCES

[1]1 C. Breshears, The Art of Concurrency: A Thread Monkeys Guide to
Writing Parallel Applications, Sebastopol, CA, USA:OReilly Media,
2009.

[2] Scott, Michael & Brown, Trevor. (2024). Shared-Memory Synchroniza-
tion. 10.1007/978-3-031-38684-8.

[3] Sherry Sahebi, Mengfan Yao, Siqian Zhao, and Reza Feyzi
Behnagh. 2024. MoMENt: Marked Point Processes with Memory-
Enhanced Neural Networks for User Activity Modeling. ACM Trans.
Knowl. Discov. Data 18, 6, Article 155 (July 2024), 32 pages.
https://doi.org/10.1145/3649504

[4] Goetz, Brian & Peierls, Tim & Bloch, Joshua & Bowbeer, Joseph &
Holmes, David & Lea, Doug. (2006). Java Concurrency in Practice.

[5] Vijayalakshmi Saravanan, S. Kaushik, P. Sai Krishna, and D. P. Kothari.
2013. Performance analysis of multi-threaded multi-core CPUs. In Pro-
ceedings of the First International Workshop on Many-core Embedded
Systems (MES *13). Association for Computing Machinery, New York,
NY, USA, 49-53. https://doi.org/10.1145/2489068.2489076

[6] Michael, M.M. (2010). Memory Management in Concurrent Algorithms.
In: Touili, T., Cook, B., Jackson, P. (eds) Computer Aided Verification.
CAV 2010. Lecture Notes in Computer Science, vol 6174. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14295-6_4

[7]1 Xin Wei, Liang Ma, Huizhen Zhang, Yong Liu, Multi-core-
, multi-thread-based optimization algorithm for large-scale
traveling salesman problem, Alexandria Engineering Journal,
Volume 60, Issue 1, 2021, Pages 189-197, ISSN 1110-0168,
https://doi.org/10.1016/j.2ej.2020.06.055.

[8] Gepner, Pawel & Kowalik, Michal. (2006). Multi-Core Processors: New
Way to Achieve High System Performance. PARELEC 2006 - Pro-
ceedings: International Symposium on Parallel Computing in Electrical
Engineering. 9-13. 10.1109/PARELEC.2006.54.

[9] Saugata Ghose. General-Purpose Multicore Architectures. 2024.
arXiv:2408.12999. Available online: https://arxiv.org/abs/2408.12999.

[10] Minwen Ji, Edward W. Felten, and Kai Li. 1998. Performance measure-
ments for multithreaded programs. SIGMETRICS Perform. Eval. Rev.
26, 1 (June 1998), 161-170. https://doi.org/10.1145/277858.277900

