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Class Description Samples
1 Alfalfa 46
2 Corn-notill 428
3 Corn-min 830
4 Corn 237
5 Grass/Pasture 483
6 Grass/Trees 730
7 Grass/pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20

10 Soybeans-notill 972
11 Soybeans-min 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Bldg-Grass-Tree-Drives 386
16 Stone-steel towers 93

TABLE I: Class Descriptions and Sample Counts

make it a valuable benchmark for evaluating classification
algorithms and conducting experiments in the field of remote
sensing.

A. Class Reduction Approach

In this section, we will explain our approach to class
reduction for hyperspectral image classification using the (IP)
dataset. Our methodology is based on the physical charac-
teristics of spectral reflections at different wavelengths. The
original classes (16 in total) are consolidated into 6 classes
that share similar spectral responses. This reduction simplifies
the classification, making it more efficient and interpretable.
Table 1 provides a brief description of each class in the original
dataset, aiding in the understanding of the dataset’s content
and potential applications. Additionally, as per your request,
we have included Table 2, which shows the class descriptions
and the sum of samples for the reduced classes.

III. DIMENSIONALITY REDUCTION

Dimensionality Reduction addresses the challenges asso-
ciated with analyzing multivariate data. When working with
extensive datasets, it becomes necessary to reduce dimension-
ality. The primary objective of dimensionality reduction is to
represent the data in a lower-dimensional space while pre-
serving some of its essential properties. Equation 1 illustrates
the reduction of a high-dimensional dataset n into a lower-
dimensional space m.

X =


x1

x2

...
xn

 reduce dimensionality Y =


y1
y2
...
ym

 (1)

where
n > m

Dimensionality reduction plays a crucial role at the intersec-
tion of various fields, including data mining, databases, statis-
tics, pattern recognition, text mining, visualization, artificial

intelligence, and optimization. It serves as an essential tech-
nique to manage and analyze complex data. Dimensionality
reduction encompasses several approaches, including super-
vised methods like Linear Discriminant Analysis (LDA), Sup-
port Vector Machines (SVM), and Hopfield Neural Networks
(HNN), as well as unsupervised techniques such as Principal
Component Analysis (PCA), Singular Value Decomposition
(SVD), and Independent Component Analysis (ICA). In this
paper, we focus on unsupervised PCA and supervised LDA for
dimensionality reduction in the context of image dataset[13].

A. Principal Component Analysis
PCA stands as a widely recognized technique for dimen-

sionality reduction, revered in a multitude of fields. Its primary
objective is to diminish the dimensionality of a dataset while
conserving the maximum possible variance [11]. The essence
of PCA lies in its identification of orthogonal axes, termed
principal components, that best encapsulate the dataset’s vari-
ance characteristics.

These principal components are ordered, with the first cap-
turing the most substantial variance, followed by the second,
and so on. By judiciously selecting a subset of these principal
components [14], one can effectively represent the data in a
lower-dimensional space.

a. For the covariance matrix:

Σ =
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)T (2)

b. For the eigenvalue decomposition (eigenvalues and eigen-
vectors):

Σv = λv (3)

• Where Σ is the covariance matrix.
• Xi represents individual data points.
• X̄ is the mean (average) of the data points.
• v is an eigenvector.
• λ is the corresponding eigenvalue.
c. For projecting data onto the principal components:

Y = XW (4)

• where Y is the matrix of projected data.
• X is the original data matrix.
• W is the matrix of eigenvectors chosen as principal

components.
PCA has demonstrated its efficacy in diverse domains,

spanning image processing, face recognition, and data com-
pression. It proves especially indispensable when confronting
high-dimensional datasets, offering efficient means for data
representation and visualization. Figure 2 illustrates the vi-
sualization of the first three principal components obtained
from Principal Component Analysis (PCA). These principal
components are essential for reducing the dimensionality of
hyperspectral data and enable an efficient representation of
the information contained within the image. Figure 1 demon-
strates how these principal components capture significant data
variance, thereby contributing to the understanding of essential
features within the hyperspectral image.
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Class Description Samples (Sum of Parent Classes)
1 Alfalfa 46
2 Corn-notill-Wheat 428 + 830 + 237 + 205 = 1700
3 Grass-Pasture 483 + 730 + 28 = 1241
4 Hay-windrowed 478
5 Soybeans-notill-Oats 972 + 2455 + 593 + 20 = 4020
6 Woods-Bldg-Grass-Stone 1265 + 386+ 93 = 1744

TABLE II: Ground Truth Details for the Reduced Indian Pines (IP) Dataset

B. Linear Discriminant Analysis (LDA)

In contrast to PCA, (LDA) is a dimensionality reduction
technique tailored for supervised classification. LDA departs
from unsupervised approaches by incorporating class labels in
its quest to unearth a lower-dimensional space that maximizes
the separation between distinct classes.

LDA’s core objective revolves around discovering linear
combinations of features, aptly referred to as discriminants,
that foster clear demarcation between class clusters, all while
minimizing within-class variance [3]. As a result, LDA finds
its niche in applications such as pattern recognition, face
verification, and medical diagnosis.

The field of remote sensing has extensively explored LDA,
leveraging its capabilities for tasks like land cover classifi-
cation, hyperspectral image analysis, and target detection. Its
unique ability to enhance class separability renders LDA an
invaluable tool within the realm of remote sensing.

a. To calculate the between-class scatter matrix (SB):

SB =

c∑
i=1

Ni(mi −m)(mi −m)T (5)

• where c is the number of classes.
• Ni is the number of samples in class i.
• mi is the mean of samples in class i.
• m is the overall mean of all data.
b. To calculate the within-class scatter matrix (SW ):

SW =

c∑
i=1

Ni∑
j=1

(xij −mi)(xij −mi)
T (6)

• where xij is the j-th sample in class i.
c. To calculate the generalized inverse of the within-class

scatter matrix times the between-class scatter matrix (S−1
W SB):

SW
−1SB (7)

d. To obtain the eigenvectors (vi) and eigenvalues (λi) of
SW

−1SB:

SW
−1SBvi = λivi (8)

• where vi is an eigenvector.
• λi is the corresponding eigenvalue.
e. To project the data onto the linear discriminant compo-

nents (y):

y = XV (9)

• where y is the matrix of projected data.
• X is the original data matrix.
• V is the matrix of eigenvectors chosen as linear discrim-

inant components.
The Figure 3 presents the visualization of the first three prin-
cipal components obtained from Linear Discriminant Analysis
(LDA). These principal components are crucial for reducing
the dimensionality of hyperspectral data and aiding in the
differentiation between various classes

IV. METHODOLOGY
A. K-Nearest Neighbors (KNN)

The KNN algorithm is a non-parametric method commonly
used for classification, relying on the proximity of training
examples in the feature space. The KNN classification process
involves partitioning data into a test set and a training set. For
each row in the test set, the K nearest training set instances
are determined using the Euclidean distance metric, and the
classification is decided through a majority vote. In cases
where there is a tie for the Kth nearest neighbor, all tied
candidates are included in the voting process. A noteworthy
characteristic of KNN is its reliance on the entire training
dataset during the testing phase, where decisions are made
based on the entirety of the training data [6].

The mathematical expression of the (KNN) algorithm can
be formulated as follows:

a. Let X be the training dataset with features xi and class
labels yi for i = 1, 2, . . . , N , where N is the number of
training examples.

b. Let x be a test example that we want to classify.
c. Calculate the Euclidean distance between x and each

training example xi:

distance(x,xi) =

√√√√ d∑
j=1

(xj − xij)2 (10)

- Where d is the number of features.
d. Select the K training examples with the shortest distances

to x.
e. Perform a majority vote among the class labels of these

K neighbors.
- The most frequent class among the K neighbors is

assigned to the test example x as its predicted class. In case
of a tie, all classes are considered.

The choice of the parameter K and the distance metric
used (such as Euclidean distance) are important considerations
when applying KNN to classification tasks.
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(a) Band 23 (b) Band 124 (c) Bande 95

Fig. 1: The visualization of the three randomly selected bands over 220.

(a) Band 1 (b) Band 2 (c) Band 3

Fig. 2: Visualization of the selected bands after PCA.

(a) Band 1 (b) Band 2 (c) Band 3

Fig. 3: Visualization of the selected bands after LDA.

B. Support Vector Machines (SVM)

SVM is a parametric classification approach used to tackle
classification challenges in datasets where the relationships
between variables are not explicitly known.

SVM is rooted in statistical learning theory and was initially
designed to classify linearly separable data with two classes.
However, it has since been extended to handle nonlinear and
multi-class datasets effectively. The core principle of SVM in-
volves identifying the hyperplane that optimally discriminates
between the two classe[5].

In our specific case, we employed the Gaussian kernel
function, also known as the radial basis function (RBF) kernel.
This choice of kernel allows SVM to effectively capture
complex, nonlinear relationships within hyperspectral data.

The mathematical expression for the RBF kernel function
is given by:

K(x, x′) = exp

(
−∥x− x′∥2

2σ2

)
(10)

• K(x, x′) is the RBF kernel function.
• x and x′ are the input data points.
• σ is a parameter that controls the width of the kernel and

influences the flexibility of the decision boundary.

To accommodate nonlinear data relationships, SVM em-
ploys kernel functions that map the data into a higher-
dimensional space[9]. The optimization process in SVM aims
to maximize the margins between support vectors and establish
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Fig. 4: Illustration of Support Vector Machine

an optimal decision function based on the hyperplane in the
transformed feature space[6].

This choice of the RBF kernel and the optimization process
in SVM enable it to perform effective classification even in
cases with complex, nonlinear data relationships.

C. Random Forest (RF)

We delve into the methodology of (RF) for hyperspectral
image classification. RF is a powerful ensemble learning
technique built upon the principle of employing decision
trees as elementary classifiers and aggregating their results to
create a robust collective learning model [4]. RF classifiers
are renowned for their resilience against overfitting, ease
of parameterization, and computational efficiency (Kavzoglu,
2017).

The primary objective of the RF classifier is to construct
a multitude of decision trees using a bootstrapped sampling
approach. During this process, the training dataset used for
creating tree models within the decision forest is selected ran-
domly from the original training dataset. Roughly two-thirds
of the randomly sampled dataset are utilized for constructing
the decision tree structure, while the remaining portion is
reserved for validating the generated decision tree models.
To classify an uncertain sample, the class label is determined
using the majority voting principle, where each tree model in
the decision forest contributes its prediction.

The mathematical expression of the RF algorithm can be
described as follows:

Let N be the number of decision trees in the forest, D
be the training dataset, and x be an uncertain sample to be
classified.

For each decision tree ti in the forest i = 1, 2, . . . , N :
a. Randomly select a bootstrapped dataset Di from D with

replacement.
b. Train ti on Di.
To classify x:
c. Aggregate predictions from all decision trees:

ŷi = ti(x) for i = 1, 2, . . . , N (11)

d. Determine the final class label for x through majority
voting:

ŷ = argmaxy

N∑
i=1

I(ŷi = y) (12)

Where:
• N is the number of decision trees in the forest.
• D is the training dataset.
• x is the uncertain sample to be classified.
• ti represents an individual decision tree.
• Di is the bootstrapped dataset for tree ti.
• ŷi is the prediction of tree ti for x.
• ŷ is the final class label for x.
• y represents class labels.
• I(·) is the indicator function.

D. Model Parameter Tuning (K-Fold Cross-Validation)

In our study, we employed cross-validation techniques to
meticulously tune the parameters of our hyperspectral image
analysis models. This approach helps mitigate the risk of
overfitting, especially in datasets with size constraints.

For the RF model, we focused on optimizing key parameters
such as the number of decision trees in the forest, the maxi-
mum tree depth, and the minimum samples required to split a
node. These parameters play a pivotal role in determining the
model’s complexity and its susceptibility to overfitting [4]. We
systematically explored a range of values for each parameter to
identify optimal values that would yield superior classification
performance.

In the case of the KNN model, we fine-tuned the number
of neighbors (K) to consider during classification. The choice
of K directly influences the model’s flexibility and sensitivity
to noise. Therefore, we conducted experiments by adjusting K
to find the value that offers the best generalization capacity.

For the SVM model with the Gaussian kernel function, we
scrutinized two crucial parameters: the regularization coeffi-
cient (C) and the kernel width. The C parameter controls the
tolerance to classification errors, while the kernel width affects
the model’s flexibility. Through careful parameter tuning, we
aimed to discover the optimal combination that would yield
superior classification performance.

To assess and compare the performance of each model at
each stage of the parameter tuning process, we employed K-
fold cross-validation with K set to 5 . Performance measures
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Fig. 5: Classification after PCA Dimensionality Reduction with Various Classifiers

Fig. 6: Classification after LDA Dimensionality Reduction with Various Classifiers
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TABLE III: Classification Overall Accuracy and Kappa Values with Dimensionality Reduction (OA: Overall Accuracy, Ka:
Kappa)

Reduction Method Classifier OA (%) Ka (%)

PCA
KNN 0.941 0.904
RF 0.955 0.926

SVM 0.938 0.896

LDA
KNN 0.938 0.898
RF 0.945 0.938

SVM 0.926 0.905

TABLE IV: Classification overall accuracies and F-score values of datasets with PCA and LDA

LULC Classes SVM RF KNN
PCA LDA PCA LDA PCA LDA

Class 1 0.949 0.941 0.963 0.96 0.951 0.950
Class 2 0.912 0.899 0.944 0.91 0.921 0.913
Class 3 0.937 0.918 0.959 0.951 0.949 0.934
Class 4 0.939 0.929 0.960 0.943 0.946 0.945
Class 5 0.875 0.850 0.888 0.88 0.863 0.858
Class 6 0.901 0.848 0.952 0.962 0.914 0.941
OA (%) 0.938 0.926 0.955 0.945 0.941 0.938

such as the mean R-squared scores were used as evaluation
criteria[8].

1) Hyperparameters: For our parameter tuning process, we
considered the following hyperparameters for each classifica-
tion model:

KNN:
• Number of neighbors (K)
RF:
• Number of decision trees in the forest (numTrees)
• Minimum samples required to split a node

(MinLeafSize)
SVM with Gaussian Kernel:
• Regularization coefficient (C)
These hyperparameters were systematically adjusted and

optimized during the K-fold cross-validation process to en-
hance the classification performance of our models[8].

V. APPLICATION,RESULTS AND DISCUSSION

In this section, we present the results of our analysis. We
began by selecting the top 10 features for both PCA and
LDA to reduce dimensionality. After applying k-fold cross-
validation, where k = 5, we determined the optimal hy-
perparameter settings for the three classifiers that maximized
the mean accuracy. Specifically, for the K-Nearest Neighbors
(KNN) classifier, the optimal value of K was found to be 1. In
the case of the Random Forest classifier, we identified the best
hyperparameters as numTrees = 150 and MinLeafSize = 1.
For the Support Vector Machine (SVM) classifier, the optimal
hyperparameter was C = 10.

Subsequently, with these tuned hyperparameters, we trained
the three classifiers using 75% of the available data, corre-
sponding to 15,769 pixels. The classifiers’ performance was
evaluated on the test data, constituting 25% of the dataset
and comprising 5,256 pixels. In this section, we present the
results of our analysis, focusing on the overall accuracy and

kappa values achieved by the three classifiers: KNN, RF, and
SVM. We assess the performance of these classifiers under
two dimensionality reduction techniques: PCA and LDA).

To evaluate the classifiers’ performance, we employed
standard confusion matrices, which allowed us to calculate
classification accuracies across different classes. The results
for overall accuracy and kappa values are summarized in Table
III.Moreover, F-score is computed from user and producer
accuracies. The predicted overall accuracies and F-score values
for all datasets, methods and classes as described in Table IV.

Whether it is LDA or PCA, the performance metrics,
especially overall accuracy (OA) and the kappa coefficient
(Ka), are promising for all three algorithms. We can observe
that RF outperforms the other two with an OA of 95.5% and a
Ka of 92.6%. It is closely followed by KNN and SVM, which
are nearly equal. KNN achieves an OA of 94.1% and a Ka
of 90.4%, while SVM shows an OA of 93.8% and a Ka of
89.6%.

VI. CONCLUSION

In the realm of hyperspectral image analysis, the application
of dimensionality reduction techniques has emerged as a pow-
erful ally. This approach not only streamlines the processing of
voluminous data but also mitigates the risk of computational
errors. In this study, we explored the potential of LDA and
PCA in enhancing the performance of various classifiers on
hyperspectral data.

Our results revealed that both LDA and PCA have made
impressive strides in optimizing the accuracy and efficacy
of classifiers. Remarkably, PCA, with its relatively simpler
method of computing principal eigenvectors, delivered out-
standing outcomes, albeit with slight differences in the evalu-
ated metrics compared to LDA.

It’s worth noting that our chosen classifiers are inherently
non-linear. However, when dealing with linear classifiers, LDA
emerges as the more fitting choice due to its mathematical
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underpinnings. The subtleties of these outcomes underscore
the importance of selecting the right dimensionality reduction
technique, depending on the nature of the problem and the
classifier being employed.

Random Forest consistently achieves high classification
accuracy with both PCA and LDA dimensionality reductions,
making it a robust choice for hyperspectral image classifi-
cation. K-Nearest Neighbors also performs well, especially
in combination with PCA. Support Vector Machines, while
effective, exhibit slightly lower performance. These results
underscore the importance of the judicious choice of the
classifier and the potential of PCA and LDA to enhance
classification accuracy in hyperspectral data

In closing, our study underscores the indispensable role
of dimensionality reduction in enhancing the efficiency and
accuracy of multispectral image analysis. Whether it’s the
streamlined simplicity of PCA or the mathematical rigor of
LDA, these techniques equip us with invaluable tools to
navigate the complexities of high-dimensional data. As we
venture further into the realm of remote sensing and image
analysis, it is clear that dimensionality reduction will continue
to be a cornerstone for achieving robust, precise, and insightful
results.
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