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Abstract: We consider two frequently arising problems in the modeling 

of a communication network related to the construction of a graph of a 

communication network that satisfies certain conditions. An algorithm is 

proposed to which the solution of both problems related to the class of 

greedy algorithms can be reduced. The question of the uniqueness of the 

solution of the tasks is investigated. A positive result of solving the 

problem is obtained and sufficient conditions for uniqueness are 

identified. The research and development of the corresponding software 

are of practical importance in the design of real communication 

networks. 

1. Introduction 

Consider the task of building a communication network based on the disparate 

fragments of a communication network. Such a task often arises during network 

modernization and is accompanied by a set of analytical studies to identify and 

achieve the required technical characteristics by the communication network. In this 

case, we will consider the construction of a connected graph of a communication 

network on the basis of existing disconnected subgraphs of the network with the 

requirement to minimize construction costs, which corresponds to the minimum 

value of the sum of the lengths of the edges of the simulated graph. 

In fact, the situation under consideration is the task of constructing a spanning 

tree of minimum weight [1]. We will solve this problem using the heuristic greedy 

algorithm. Two varieties of this problem will be considered (hereinafter we will call 

them Task 1 and Task 2), which is of rather high practical significance in the field 

of the theory of communication networks [2]. When constructing a mathematical 

model of a communication network in terms of solving tasks 1,2, it is proposed to 

use one general algorithmic module based on a greedy algorithm. In addition, the 

following publications will provide rigorous proof of the uniqueness of a solution 
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under certain conditions (see below for sufficient conditions for uniqueness). Note 

that in the general case, according to Kirchhoff's theorem [1, p. 57], there can exist 

more than one spanning tree in a connected graph. To find the skeleton of minimum 

weight, Kruskal and Prima algorithms can be used [1, p. 60]. In our case, the existing 

graph of the communication network needs to be completed to such a graph for 

which all newly constructed edges would be elements of a spanning tree, which for 

the constructed graph is determined using the above algorithms. The following 

algorithms can be considered as adaptations of the Kraskal algorithm to the task of 

constructing an optimal communication network with the introduction of novelty of 

uniqueness conditions for the optimal solution. Adaptation is subject to the Kruskal 

algorithm being applied to some complete graph constructed on the basis of the 

existing graph of the communication network. 

 

2. Task 1. Construction of a communication network based on a given 

source communication network that satisfies the condition of connectivity and 

the minimum total length of the completed communication lines 

The problem statement looks like this. Let be 𝐺 =< 𝑉, 𝐸 > source graph of 

the communication network. We have an optimization problem of the following 

type: 

∑ 𝜌(𝑟𝑖
𝑁

𝐺′

𝑖=1
) → min                                                                                            (1) 

∀𝑑𝑖 ∈ �̂� 𝑓(𝑑𝑖) > 0, 𝑖 ∈ [1, 𝑁�̂�]                                                                   (2) 

Here ir  is building a line of communication, )( ir is the length of the 

communication line ir , Rri )(  it is a function of the geographical distance between 

points with specified geographical coordinates determined by the incident vertices 

of the communication line ir , �̂� = {𝑑𝑖}
𝑖=1

𝑁�̂�  is a set of all possible information 
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i vvd  is the information direction of 

communication, where ( )
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iv V (identifier) and ( )
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iv V (identifier) form an offsetting 

pair, )( idf  is reliability of the information direction of communication id  [3-5], 𝑑𝑖 ∈

�̂�,  1,0)( idf , Rdf i )( . In other words, you need to build a connected graph for a 

given source graph with the minimum total length of the completed edges. The 

optimal solution of the problem is found using a greedy algorithm. Among pairs of 

graph vertex ( 1v , 2v ), где 1v ∈ 𝑉, 2v ∉ 𝑉, not yet included in the set of edges, such is 

chosen, the first one, vertex 1v  and 2v  in an already constructed graph belong to 

different connected components (i.e. ( ) 0f d  , where ˆd D , ),( 21 vvd  ), and, the 

second one, among all such pairs, one is selected for which the value ),( 21 vv  is 

minimal. 

 



3 Algorithm for solving Task 1 

Step 1. For all edges of the original graph, put the weight coefficient equal to 

zero. 

Step 2. We set the set of edges to be :M   

Step 3. We set the auxiliary set of vertices to  1vV  , Vv 1
. 

Step 4. We set :V V V   , i.e. exclude a vertex Vv 1
 from the set V . 

Step 5. If 𝑉 =⊗, then end. Else go to step 6. 

Step 6. Choosing a pair of graph vertices ),( 21 vv  satisfying the condition:  

1) 𝑣1 ∈ 𝑉′ and 𝑣2 ∈ 𝑉 

2) (𝑣1, 𝑣2) ∈ 𝐸 

3) 𝑣1 ≠ 𝑣2 

4) (𝑣1, 𝑣2) ∉ 𝑀 

If there exists a pair of graph vertices, then we assume  

1) 𝑉: = 𝑉 − {𝑣2}, 

2) 𝑉′: = 𝑉′ ∪ {𝑣2}, 

3) 𝑀: = 𝑀 ∪ {(𝑣1, 𝑣2)} 

4) 𝐸: = 𝐸 − {(𝑣1, 𝑣2)} 

Step 7. Choosing a pair of graph vertices ),( 21 vv  satisfying the condition:  

1) 𝑣1 ∈ 𝑉′ and  𝑣2 ∈ 𝑉 

2) 𝑣1 ≠ 𝑣2 

3) (𝑣1, 𝑣2) ∉ 𝑀       

4) 𝜌(𝑣1, 𝑣2) is minimum among all 𝜌(𝑣1, 𝑣2) satisfying the condition 

(𝑣1, 𝑣2) ∈ 𝐸 

If there exists a pair of graph vertices, then we assume 

1) 𝑀: = 𝑀 ∪ {(𝑣1, 𝑣2)}, 

2) 𝐸: = 𝐸 − {(𝑣1, 𝑣2)} 

3) 𝑉: = 𝑉 − {𝑣2}, 

4) 𝑉′: = 𝑉′ ∪ {𝑣2}.  

Step 8. If V , then end, M is the desired set of edges of the graph, which 

provides connectivity and the minimum total length. Else go to step 6. 

 

Statement 1. The algorithmic complexity of the algorithm for solving task 1 

is 𝛰(|𝑉|3 × |𝐸|).  

Proof. To join the next vertex, you need to look through the list of all available 

edges of the original graph, therefore, the complexity will be proportional to |𝐸| (in 

fact, it is possible to optimize the enumeration of edges by viewing only those that 

do not yet connect the vertices in the graph already constructed). Consider the 

procedure for enumerating the vertices of a graph to attach another vertex. Let be 𝑛 

is a number of vertices in a graph and 𝑖 is a number of vertices already attached. To 

join the next (𝑖 + 1)-th vertex the analysis of pairwise vertices from sets of 

cardinalities 𝑖 and 𝑛 − 𝑖. From here the number of pairs analyzed will be  

∑ [𝑖(𝑛 − 𝑖)]𝑛
𝑖=1 . Convert this expression. We get 



𝑛 ∑ 𝑖 − ∑ 𝑖2𝑛
𝑖=1 = 𝑛2(𝑛 + 1)/2 − 𝑛(𝑛 + 1)(2𝑛 + 1)/6𝑛

𝑖=1 = 𝑛(𝑛 + 1)(𝑛 −
1)/6.  

Therefore, we have the cubic complexity of the power of the set of vertices. 

Given the proportionality of the algorithmic complexity of the cardinality of the set 

of edges of the graph |𝐸|, we obtain the asymptotic 𝛰(|𝑉|3 × |𝐸|). 

The following statement is proved, which gives the sufficiency of uniqueness 

of the optimal solution to Task 1. 

 

Statement 2. If the distances between non-incident vertices of the graph 

are different, then this algorithm leads to the only optimal solution to Task 1.  

Note that the difference in pairwise distances between the vertices of the graph 

is easily achieved due to the high resolution of the real number (for example, for the 

floating-point number format in the IEEE 754 standard, the possible range of 

numbers is from 4,94⋅10−324 to 1,79⋅10308), which represents the distance between 

the vertices and takes place on real-time communication networks.  

Consider another problem that often arises when designing / modeling a 

communication network. Namely, this is the task of optimal binding of consumer 

nodes to nodes of communication providers. Optimality here will also be considered 

with respect to the minimum total length of the ribs being completed. Thus, a graph 

should be composed of many subgraphs (not necessarily interconnected), such that 

each subgraph must contain exactly one element of the set   MI
N

i

M

iM sI
1

 , and the total 

length of the edges should be minimal. 

4. Task 2. Building bindings of nodes-consumers of the communication 

network to nodes-providers, satisfying the condition of the minimum total 

length of the completed communication lines 

The statement of the problem is as follows. Let be ,G V E   source graph of 

the communication network, moreover, ZM IIV  , where    MI
N

i

M

iM sI
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 - is the set of 

nodes of communication providers, NN
MI  ; M

is - communication provider node; 

  ZI
N
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iZ sI
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 - many communication consumer nodes, NN
ZI  , Z

is - many 

communication consumer nodes, NN
ZI  . Optimization task: 
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)(iV   contains exactly one element from the set   MI
N

i

M
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 , and no element

M

M

i Is  can be included in different sets )(iV  и )( jV  ( ji  ). That is, there is a 

bijective correspondence of elements of sets   MI
N
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
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Moreover )(iE  it contains at least one edge incident 
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M

i Is   )..1(
MINi  .                                                                       (5) 

This task can also be successfully solved using the greedy algorithm. For this, 

it is necessary to carry out algorithmic adaptation of the solution of problem 2 to the 

solution of task 1. As a result, the algorithm will be as follows. 

5 Algorithm for solving Task 2 

1. For all edges of the graph, put the weight coefficient ( , )v v    equal to zero. 

2. We assume that there are many edges to be completed :M   

3. We assume an auxiliary set of vertices 
MIV   , that is, a set of vertices 

corresponding to provider nodes. 

4. We assume 
ZIV  , that there are many peaks corresponding to consumer nodes. 

5. Next, we use the algorithm for solving task 1, starting from step 5. 

The implementation of this algorithm will ensure that the requirements (3-5) are 

met. Algorithmic complexity will also be 𝛰(|𝑉|3 × |𝐸|) (see Proposition 1). 

Concerning task 2, it can also be proved that the greedy algorithm given will give 

the only optimal solution if all pairwise distances between the vertices are different. 

6. Conclusion 

Thus, based on two facts - low algorithmic complexity, acceptable for modern 

computing resources, as well as the proven ability to provide the only optimal 

solution in this case, the probability of which can be reduced to unity, greedy 

algorithms are an effective tool for building and / or upgrading networks 

communication. The proposed algorithms were implemented in the construction of 

real large-scale communication networks, and can accordingly be used in solving 

problems of constructing a complete communication network with the condition of 

minimizing the built-up communication lines, and in solving problems of optimal 

connection of communication network consumer nodes to provider nodes. 
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