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Abstract 

 

Recent years observed massive growth in wearable technology, everything 

can be smart: phones, watches, glasses, shirts, crutches, etc. These 

technologies are prevalent in various fields: from wellness, sports, and fitness 

to the healthcare domain. The spread of this phenomenon led the World 

Health Organization to define the term 'mHealth' as "medical and public 

health practice supported by mobile devices, such as mobile phones, patient 

monitoring devices, personal digital assistants, and other wireless devices". 

Furthermore, mHealth solutions are suitable to perform real-time wearable 

biofeedback systems: sensors in the body area network connected to a 

processing unit (smartphone) and a feedback device (loudspeaker) to 

measure human functions and return them to the user as (bio)feedback 

signal.  

Considering the COVID-19 pandemic emergency, never as today, we can 

say that the integration of mHealth systems in our society may contribute to a 

new era of clinical practice. After reporting a brief description of mHealth 

system architecture, this chapter explores several opportunities where 

innovative mHealth solutions could improve assessment and rehabilitation 

strategies for ageing people and persons with Parkinson's disease. This 

chapter presents solutions that need a therapist's supervision in a clinical 

context and others that can be self-administered and require only a 

smartphone as a stand-alone system. Finally, the Discussion highlights the 

challenges for future research and development of innovative mHealth 

systems. 

 

 

Keywords: Mobile Health applications (mHealth apps), Wearable Inertial 

Sensors, Assessment, Rehabilitation, IoT, Gait, Biofeedback. 
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1 Introduction 

The evolution of mobile phones and electronic technology leads to continuous 

miniaturization, making the mobile phone a really wearable device. The use of 

mobile and wireless technologies to support health objectives can transform the 

face of health service delivery across the globe [1]. In 2011, the spread of this 

phenomenon had led The Global Observatory for eHealth of the World Health 

Organization to define the term 'mHealth' as "medical and public health practice 

supported by mobile devices, such as mobile phones, patient monitoring devices, 

personal digital assistants, and other wireless devices" [2]. In 2021, the number of 

smartphone users worldwide will grow to 3.8 billion, and today 45% of people in 

the world have smartphones [3]. This figure is up considerably from 2016 when 

there were 2.5 billion users, 34% of that year's global population [4].  

mHealth apps appeared later, and they address a broad array of mHealth 

applications and the use of mobile phones, e.g., to monitor biological signals or 

support healthy lifestyles. Thus, mHealth apps allow mobile devices as healthcare 

systems: for prevention, assessment, therapeutic support, and rehabilitation of 

motor and non-motor functions [5]–[7]. Importantly, the deployment of mHealth 

can be achieved using the various sensors available inside smartphones (as a 

stand-alone system) or in conjunction with external wearable sensors (as an 

integrated system). 

Nowadays, mHealth reality is considered the biggest technological breakthrough, 

and its potential is increasing together with the utility of mHealth apps [8]. In the 

context of the on-going COVID-19 pandemic, these technologies have become 

more relevant than ever, thanks to the advantages they provide [9]. In fact, 

mHealth platforms, with appropriate information technology (IT) and health 

literacy, can empower patients to manage their condition better themselves [9]. 

For example, patients with diabetes can monitor their blood glucose through 

mobile apps improving both the quality of medical services and their safety [10]. 

In the following section of this chapter, Section 2. "mHealth System Architecture 

connected with apps", a generic system architecture to understand mHealth 

components and workflow better is described. Section 3. "mHealth apps - 

Requirements in the Healthcare field" reports the main requirements related to 

mHealth systems. Section 4. "mHealth apps for Clinical Assessment" and Section 

5. "mHealth apps for Neuromotor Rehabilitation" present an overview of mHealth 

solutions for the clinical assessment and rehabilitation of the principal neuromotor 

dysfunctions experienced by older adults (OA) and persons with Parkinson's 

disease (PD). Finally, the Discussion highlights the challenges for future research 

and development of innovative mHealth systems. 
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2 mHealth System Architecture connected with apps 

As a result of the growing demand for mHealth system, important research and 

development efforts have been carried out during the last years both by academia 

and industry in this area, driving great breakthroughs on enabler technologies, 

such as wireless communications, micro- and even nano-electronics, or sensing 

techniques and materials [11], [12]. Advances in microelectronics and wireless 

communications have made Body Area Networks (BAN), which represent the key 

functional component in a mHealth systems [5], [13]. BAN are composed of tiny 

smart sensors deployed in, on, or around a human body. These sensors are 

distributed on the human body consequently with the different physiological 

parameters or/and body function to measure. Thus, their location is an important 

aspect. It is possible to detect brain activity (Electroencephalography - EEG) using 

a sensor near the scalp. Then, with surface Electromyography (sEMG), it is 

possible to acquire the myoelectric activity of the specific muscles involved in the 

execution of selected motor tasks [14]. Besides, wearing on the shoes Inertial 

Measurement Units (IMUs), which contains tri-axial accelerometer, gyroscope, 

and (optionally) magnetometer, it is possible to characterize the motor behavior 

during gait [15]. Lastly, in the management of type 1 diabetes, patients use sensors 

able to detect blood glucose (BG) in real-time without finger-pricks required [16].  

Similarly for other main biosignals, as reported by Dias et al. [5]: Hearth Rate 

(HR), Skin Perspiration (SP), Respiration Rate (RR), Oxygen Saturation (OS). 

Importantly, locating the same sensors described above in inappropriate places 

would not correctly detect the physiological parameters and features reported. 

In common, these sensors are connected with a portable processing unit, like a 

smartphone in mHealth systems connected with apps, to exchange information 

with clinicians and/or send it as feedback to the patient. A schematic mHealth 

architecture is designed based on literature review, where the BAN are composed 

of various sensors properly located in the human body, Figure 1. 
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Fig. 1. Schematic mHealth system architecture connected with apps, adapted from [5], [13], 

[17], [18]. PU (red), Portable Unit (for example a Smartphone). List of sensors node (blue): 

EEG, Electroencephalography; BG, Blood Glucose; RR, Respiration Rate; HR, Hearth 

Rate; SP, Skin Perspiration; BP, Blood Pressure; OS, Oxygen Saturation; IMU, Inertial 

Measurement Unit; sEMG, Surface Electromyography. 

2.1  Sensor Node 

At first, the sensor architecture or, better, the sensor node is described: a sensor 

network that is capable of performing some processing, gathering sensory 

information, and communicating with the data-logger present in the network [19], 

Figure 2. 

Fig. 2. Schematic overview of a sensor node. 

 

The main components of a sensor node are a microcontroller, transceiver, 

external memory, power source, one or more sensors, consisting of a transducer 

and A/D converter: 

 

• Transducer:  varies its electrical properties to varying environmental 

conditions. Usually MEMS technology (Micro Electro Mechanical 

Systems) ensures higher efficiency, lower production costs, and less 

power consumption than other types of sensors such as piezoelectric. 

However, depending on the application, a piezoelectric transducer can be 

more accurate: to analyze human movement in high dynamic tasks, it is 

common to prefer piezoelectric accelerometers [20], [21]. 
 

• A/D Converter - Analog to Digital Converter: converts the transducer's 

voltage value to a digital value. The A/D converter's resolution implies a 

quantization of the input: this necessarily introduces a small amount of 

error/noise. Furthermore, an ADC converts the input periodically, 

sampling the data: this limits the input signal's allowable bandwidth. 
 

• Micro-controller: it manages and controls the hardware of the sensor 

node, can perform local online signal processing (filtering/amplify the 

signal, data fusion, feature extraction). 
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• Transceiver: it connects the sensor node to the network. It can be an 

optical or radio-frequency device. 
 

• External memory: it is needed to store the program's binary code 

running on the sensor node. 
 

• Power supply: source of power for communication (usually most 

affecting factor), sensing, and data processing. 

2.2  Portable processing Unit (PU) 

The portable processing unit (PU), also denominated as data-logger, is where 

all the information is gathered, containing the outputs and inputs of the mHealth 

system [5]. The communication between a node sensor and the data-logger is 

normally made through wireless protocols, avoiding loose wires around the body 

leading to a higher comfort and movement liberty. As Figure 1 shows, PU can be 

a common smartphone with a custom application installed on it. PU can receive 

data from online monitoring devices and store it in a local memory. This two-way 

communication allows other devices to establish a wirelessly connection to a main 

device, which stores the data of several sensors. This system can also be helpful to 

label the timing of important events using external devices [13], [17], [22]. The 

wireless protocols most popular in mHealth systems are Radio Frequency 

Identification (RFID), ANT/ANT+, Bluetooth, Wi-Fi, ZigBee and LoRa (Long 

Range radio).  

RFID is widely used primarily for tracking and identification purposes: a reader 

or interrogator sends a signal to a tag or label attached to an object to be identified 

[23]. ANT/ANT+ is a proprietary protocol stack designed for ultra-low-power, 

short-range wireless communications in sensor networks, especially for health and 

fitness monitoring systems [23]. It ensures low power consumption by using a low 

data rate and can operate for more extended periods. Bluetooth is a short-range 

radio-frequency based connectivity between portables and fixed devices requiring 

low-power consumption and with a low-cost. It is widely implemented in 

commercial devices like smartphones and laptops. The new Bluetooth technology 

named Bluetooth Low-Energy (BLE) has even a lower power consumption with a 

smaller form factor. Interestingly, in Android devices, the data rate is highly 

dependent on the model used, with a maximum of around 10 Mbps. Using 

Bluetooth connectivity, one master device can communicate at a maximum with 

seven slave nodes, forming a star-type network structure. Wi-Fi protocol lower 

layers were adopted, allowing higher data throughput for low-power requirements 

applications, not as low as the Bluetooth technology but can also be a good 

connection protocol to use, mainly when a higher distance of communication is 

needed [5]. ZigBee is another technology used for low power and low data rate 
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communication protected using the Advanced Encryption Standard. This feature 

makes ZigBee ideal for medical applications because it can consume less energy 

than Bluetooth versions earlier than 4.0, but with a lower data transferring rate [5]. 

LoRa technology is a long distance coverage, low cost and low power 

consumption wireless protocol. LoRa network architecture is deployed in a star-

of-stars topology where gateways relay messages between end-devices and a 

central network server. The maximum number of nodes that can communicate 

with a gateway module depends on its specifications, usually defined by the 

number of packets it can support [24]. It has the disadvantage of low data rate but 

a huge advantage of scalability and customization of several parameters such as 

frequency channel, transmission power, and data rate. In the construction of a 

wearable device, the communication protocol is crucial to identify the number and 

the distances of the devices involved. Besides, there is also the need to minimize 

energy consumption [25] and consider the wireless technologies available in 

commercial devices (such as smartphones). 

Table 1 summarizes some of the main features of these wireless protocols. 

Mobile telecommunications technologies can also be used to transmit real-time 

data. However, it is essential to implement strong encryption and authentication 

technology to ensure a secure transmission channel over the long-range 

communication medium for the safeguarding of personal medical information 

[23]. Alternatively, it is also possible to handle sensors node inside the PU: for 

example, using only a smartphone as a stand-alone system, thus exploiting their 

built-in sensors [6]. 

 

Wireless Protocol 
Max Nodes 

Supported 
Range Max Data Rate 

Power 

Consumption 

RFID 1 1-3 m 640 Kbps 200 mW 

ANT/ANT+ 65 533 30 m 60 Kbps 1 mW 

Bluetooth 
1 master 

+ 7 slaves 
1-100 m 3 Mbps 2.5 - 100 mW 

BLE 
1 master 

+ 7 slaves 
1-100 m 10 Mbps 10 mW 

Wi-Fi 255 200 m 54 Mbps 1 W 

ZigBee 65 533 100 m 250 Kbps 35 mW 

LoRa 

HIGH (depends 

on gateway & 

single packet) 

50 km 700 bps 
LOW 

(customizable) 

 

 

Tab. 1. Wireless protocols main features. Adapted from Dias et al. [5], Majumder et al. 

[23]. 
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2.3 Offline Monitoring 

 

All data from vital signs can be stored in a portable unit (micro-SD memory 

card for example), for future use in medical analysis or just as a personal record. 

The data can be stored while a real-time monitoring is occurring. The main aim of 

such monitoring is to record vital data for clinic diagnosis and prediction by 

clinicians [5]. For example, sleep issues such as apnea, can be analyzed through 

saved data from the patient: a home sleep monitoring allows to monitor sleep in a 

familiar environment resulting in reliable data acquisition [22], [26]. Off-line 

monitoring allows a high level of data processing to give much more information 

that is valuable to the end-users and clinicians, for example, using data mining 

techniques to have more in-depth knowledge representation [26]. 

2.4 Real-Time Monitoring and Biofeedback System 

With mHealth systems it is possible to perform clinical monitoring outside a 

medical environment, alert the patient in case of any physiological problem or 

monitor himself, and be updated on his vital signs during daily activities [17]. On 

the other hand, in a medical environment mHealth systems allows the patients 

monitoring inside the boundaries of a specific area, normally a Hospital, where the 

patients can move while their vital information is being wirelessly transmitted to a 

remote monitoring center and thus made available to clinicians [5]. These live 

systems can also be configured with a set of alarms for each patient helping in the 

detection of some required anomaly. The vital signs can also be recorded in 

Medical Information Systems to be later analyzed by clinicians [5], [13], [27]. 

However, the biggest advantage of mHealth systems in real-time monitoring is the 

possibility of patient's monitoring at home and outdoors, using internet 

communications. This feature allows the patient to have a normal life while being 

monitored, with his vital signs continuously or intermittently transmitted to a 

remote monitoring center, with health support and, if needed, inform the patient of 

his medical status [5].  

    Furthermore, vital signs and physiological parameters can also be transmitted to 

portable devices, such as smartphones and smartwatches, to visualize and analyze 

persons' health status, allowing the so-called Biofeedback (BF) process. BF is 

defined as a process in which a system or agent accurately measures and feeds 

back, to persons and their therapists, information with educational and reinforcing 

properties about their physiological processes in the form of analog or binary, 

auditory, and/or visual feedback signals. The objectives are to help persons 

develop greater awareness of, confidence in, and an increase in voluntary control 

over their physiological processes that are otherwise outside awareness and/or 

under less voluntary control [28].  With BF the information fed back to the 

patients adds or reinforces their physiological sensory channels: thus, BF was also 
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defined as augmented feedback [29]. With such self-monitoring systems [5], 

clinicians must carefully teach patients how to use them at home, in particular, 

how to understand and react to BF alerts [28]. For example, this is what already 

happens in the treatment of type 1 diabetics' subjects. Several artificial pancreases 

have been developed to help manage type 1 diabetes [30], [31]. To obtain 

satisfactory results, the clinician's contribution to patient education is crucial [10], 

[32]. In the last decades, self-monitoring and BF systems were used in many areas 

such as instrumental conditioning of autonomic nervous system responses, 

psychophysiology, behavior therapy, and medicine, stress research and stress 

management strategies, electromyography, consciousness, 

electroencephalography, cybernetics, and sports [28].  Nowadays, thanks to 

mHealth and technological progress, BF systems will become more achievable. 

3   mHealth apps – Requirements in the Healthcare field 

Healthcare systems have recognized the advantages of using Information and 

Communication Technologies (ICT), including mHealth app systems, to improve 

the quality of care, and they are now working, although at a different pace 

worldwide, to turn traditional into smart healthcare [33]. To meet the increasing 

demands of an aging population with chronic diseases and comorbidities, 

technology appears to be to shift from clinic-centric to patient-centric healthcare 

[34]. Nevertheless, to accelerate the shift toward the brave new world of mHealth, 

technology must be appropriately designed with the aid of end-users. Many 

mHealth technologies have failed to innovate the current clinical practice because 

they ignored the interaction between technology, human characteristics, and socio-

economic environment [35]. As an alternative to the technical industrial mindset, 

User-Centered Design has proven to be an effective tool to realize products and 

services for the Healthcare sector. User-Centered approach has to be included in 

the design process since the starting phases to develop a product or system that is 

effective due to the close relationship with the users' requirements and the high 

capacity of satisfaction of their needs [36]–[38]. 

In general, many important factors should be considered when developing a 

mHealth app [39], [40]. First, the main characteristics related to functionality and 

adoption of mHealth app are: wearability, monitoring duration, connectivity 

configuration, and maintainability of the system developed [40]–[42]. Last but not 

least the user's willingness and motivation: in this aspect, clinicians have a crucial 

role [42], [43]. 

Besides, there is the need to identify the key stakeholders. In evaluating a 

mHealth system, they are clinicians, developers, patients whose management may 

be affected, and people responsible for purchasing and maintaining the system 

[44]. Each may have different needs and requests to be satisfied, Figure 3. 
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Fig. 3. Different stakeholders may have different needs and requests to be satisfied in the 

evaluation of a mHealth system. Adapted from Friedman et al. [44]. 

 

For example, from the developer's point of view, the algorithms used in the 

system must be validated, robust and well-written. In general, nobody should use a 

system or device that elaborated inaccurate measurements: the features 

implemented should be validated and tested within the proposed usage context 

[42]. 

Moreover, as already mentioned, the usability and user-friendliness of the apps 

are a fundamental determinant for technology adoption, in particular, among older 

adults [36]–[38], [45], [46]. In particular, usability is defined in the official 

International Organization for Standardization (ISO) guidelines as "the extent to 

which a system, product or service can be used by specified users to achieve 

specified goals with effectiveness, efficiency and satisfaction in a specified 

context of use" [47]. In addition, perceived usefulness and ease of use causes 

people to accept or reject information technology [45]. The first is defined as the 

"degree to which a person believes that using a particular system would enhance 

his or her functions". The latter, in contrast, refers to "the degree to which a person 

believes that using a particular system would be free of effort" [45].  

Furthermore, when measuring aspects of one's health, the accuracy of the 

results relies on the correct administration of the test. Thus, any usability problem 

associated with using a mobile app should be identified and addressed before it is 

made available to end-users. This is usually done through several iterations of 

testing with target user groups, ideally until no major usability problems exist with 

regards to using the apps and administering the test. Usability studies are most 

often carried out in a lab setting, convenient, and offer a high degree of control 

instead of field-based usability testing [44]. However, field-based testing, which, 

in this context, would be a home setting, provides insight into how the system is 
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used under more realistic situations [44]. Depending on the system being tested 

and the development phase, usability should ideally be tested in both lab and home 

settings [48]. 

The use of smartphone apps as stand-alone systems provides a feasible solution 

in a fully wearable system. They have the significant advantages of pervasiveness, 

ubiquity, and exploitation of common apps usage experience. Moreover, the 

choice of off-the-shelf smartphones would also keep the mHealth system costs 

low, also increasing its compatibility with external commercial devices. On the 

other hand, there are several challenges associated with the development of 

mHealth apps: 
 

• Design for all model and system available with the same performance 

(different smartphones have different capabilities); 

• Built-in sensors do not have priority in the mobile operating system, OS 

(smartphones were born to handle calls and/or messages); 

• Safety measures in order to ensure the patients' safety and privacy, 

developing strategies to ensure data are only accessible to those 

authorized to access [40]; 
 

In particular, to date, there is a lack of standardized regulation methods to 

evaluate the content and quality of mHealth apps [49]–[51]. The quality 

assessment of mHealth apps is challenging as it is difficult to identify the core 

components of quality and appropriate measures to assess them [52]. Besides, the 

different smartphone models available in the market make this assessment more 

complicated. For example, smartphone built-in inertial sensors do not have a fixed 

sample frequency: frequency changes dynamically around a fixed value depending 

on the OS requests, and it varies across the different smartphone models [53]. 

Moreover, some features are only available in certain smartphones and not in 

others (or in other cases, the feature could be limited): BLE connection could be 

absent in some smartphones or limited to only few megabytes in others, not 

allowing data exchange with external sensors [54]. 

On a more general ground and from a healthcare system perspective, 

introducing guidelines for app development and use may be highly effective in 

improving the quality standards. In the US, the FDA regulates mHealth within the 

existing framework for medical devices [55]. Only a limited number of apps meet 

the definition of medical device and are, as such, subject to the US FDA 

regulation [55]. In Europe, the new regulations on medical devices (MDR [EU] 

2017/745) describe whether mHealth products must be medical devices [56]. As a 

result, apps that support a medical diagnosis and have medical use must be CE 

marked as medical devices [57]. While the implementation of the new, more 

stringent MDR might lead to the development of more high-quality apps and 

improved patient safety, it might also limit the development and release of new 

apps and software on the market. Classifying a device as class IIa or higher 

requires evaluation by a notified body, which can be very costly and, therefore, a 

barrier to entry for app developers [57]. 
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4   mHealth apps for Clinical Assessment 

The health state's measurement is essential in both clinical practice and research to 

assess and monitoring the severity and progression of a patient's health status, the 

effect of treatment, and alterations in other relevant factors. The miniaturization of 

sensing, feedback, and computational devices has opened a new frontier for 

movement assessment and rehabilitation [58]. Wearable systems are portable and 

can enable individuals with various movement disorders to benefit from analysis 

and intervention techniques that have previously been confined to research 

laboratories and medical clinics [58]. 

4.1  Older Adults 

The clinical assessment of frail older adults (OA) is challenging, as they often 

have multiple comorbidities and diminished functional and physiological reserves 

[59]. Besides, the physical illness or adverse effects of drugs are more pronounced 

resulting in atypical presentation, cognitive decline, delirium or inability to 

manage routine activities of daily living (ADLs) [60]. ADLs include the 

fundamental skills typically needed to manage basic physical needs, comprised the 

following areas: grooming/personal hygiene, dressing, toileting/continence, 

transferring/ambulating, and eating [61]. Successful ADLs' performance is a 

significant health indicator that can predict mild cognitive impairments, dementia, 

and mortality in older adults [62], [63]. Hence, it is crucial to measure ADLs in 

older adults effectively. Several types of approaches have been used to quantify 

the level of independence in ADLs. ADLs may be measured by self-report, 

proxy/caregiver/informant report, and/or direct observation filling ad hoc 

scale/questionnaire [64]–[66]. These tools obtain a general sense of the level of 

assistance needed and the most appropriate setting for the patient [61]. Self-report 

measures are convenient to administer and are frequently used when direct 

observation is not possible or when individuals are relatively cognitively intact. 

However, they may be less valid when individuals have poor insight into their 

functional impairments [67], [68]. Informant-based ratings are commonly 

completed by caregivers who know the patient well, but how also may be biased 

by their own burden in caring for the individual or by over or underestimating the 

patient's true functioning [61]. The use of performance-based measures can 

provide objective data about ADL functioning and they may be able to detect 

change over time [69], but generally require more training to administer as 

compared with self or informant reports [61]. The need to improve these 

measurements and to objectively quantify how subjects engaged in physical 

activity (PA) led to the recent spread of wearable-accelerometer devices (or 

activity trackers) [70]. These devices allow daily monitoring of the behavior of the 

OA, also enhancing their aptitude for PA [71]. Historically, these accelerometry-
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based solutions employ summary threshold metrics to assess PA. To date, novel 

measures, such as fragmentation, allow for a deeper understanding of the 

quantities and patterns of daily PA, which are most informative for health 

outcomes [72]. 

Besides, falls are a major threat to the health and independence of OA. 

Quantitative methods for assessing fall risk factors are necessary to effectively 

implement preventative measures and reduce falls' incidence and severity [73]. In 

the last years, research groups developed different mHealth apps to monitor fall 

risk factors [73]. In general, mHealth app systems, due to their ubiquitous nature, 

offer the potential to provide fall risk screening in community settings [73] as an 

alternative to a qualitative approach. 

 Moreover, to objectively evaluate specific items of ADLs related to fall risk, in 

particular gait and balance [73], different instrumented tests can be performed, 

Table 1: 

 

 DESCRIPTION 

Turn 180° 

test [74] 

A measure of dynamic postural stability, asking a patient to take few steps and 
then turn around by 180° to face the opposite direction. Count the number of 

steps taken to complete a 180° turn 

Timed-Up-

and-Go test 
(TUG) [75] 

A measurement of mobility. A person is asked to stand up from a seated 

position, walk for 3 m, turn and walk back to a chair and sit down. Measure 
the time taken in seconds 

Tandem 

stand test 

[76] 

A measure of balance and ankle strength. A person is asked to stand in a near 

tandem position with their bare feet separated laterally by 2.5 cm with the heel 
of the front foot 2.5 cm anterior to the great toe of the back with their eyes 

closed. A person can hold arms out or move the body to help keep the balance 

but do not move the feet 

Alternate 

Step test [77] 

A measure of strength, balance, coordination, and stair climbing. It provides a 
measure of mediolateral stability. A person should be asked to place alternate 

whole left and right barefoot onto a 19 cm high stepper for a total of eight 

times. 

10-Meter 

Walk test 

(10MWT) 

[78] 

A measure of walking speed over a short duration. It requires a 20-m path that 

includes 5 m for acceleration and deceleration. Practically, a full 20-m 

walkway is not always available, thus there are several shorter distances 
commonly used to assess walking speed including 3-, 4-, and 6-m assessments 

Sit-to-Stand 

test (StS) [79] 

A measurement of functional mobility, balance, and lower limb strength. 

A person should be able to stand up and sit down five times with crossed arms 

from a 45-cm straight-backed chair 

 

Table 1. Gait and Balance Assessment Tools. Adapted from Singh et al. [59]. 

 

To date, thanks to the great advances in wearable technologies these 

instrumented tests are feasible not only in clinical, but also continuously at home 

in a self-administrable way [80]. This is crucial for the prevention of movement 

dysfunctions in OA. For example, a solution that permits objective evaluation of 

body posture and gait in OA is the mHealth systems proposed by Bergquist et al. 

[48]. They developed three smartphone apps for self-administering an 

instrumented version of the 'Timed Up and Go' test (Self-TUG, Figure 4), the 

'Standing tandem' test (Self-Tandem), and the 'Five times sit-to-stand' test (Self-
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STS). The app uses the inertial sensors of the smartphone and real-time verbal 

instructions to guide the user during the test (Figure 4-C). The usability test of the 

apps was performed with target elderly groups [48]. 

 

 
 

Fig. 4. The Self-TUG app. A) Home screen. B) Instructions tab to report how to correctly 

set-up and perform the test. C) The inertial sensors of the smartphone and real-time verbal 

instructions guide the user during the test. D) The total duration of the test automatically 

detect by the app. Adapted from Bergquist et al. [48]. 

 

Thus, mHealth solutions also allow pervasive and self-administered systems, 

feasible in daily life situations [48]. Nevertheless, the usability of the solutions 

proposed might be critical: it is essential to follow a User-Centered-Design (UCD) 

approach [37], [38], also considering that fine motor skills issues (such as tremor) 

in older people may hinder their interaction with these wearable systems [81]. In 

this perspective, Gabyzon et al. [82] developed and examined the feasibility of a 

tablet app to assess touchscreen ability in OA. This aspect is crucial for the correct 

interaction with modern devices. In general, a combination of self-report and 

performance-based measures of ADL performance may be the best way to fully 

capture the picture of disability for a given OA [83]. 

4.2  Persons with Parkinson's disease  

Parkinson's disease (PD) is a complex disorder expressed through many motor 

and nonmotor manifestations, which cause disabilities that can vary both gradually 

over time or come on suddenly. In addition, there is a wide interpatient variability 

making the appraisal of the many facets of this disease difficult [84]. Two kinds of 

A) C) 

B) D) 
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measures are used for the evaluation of PD. The first is subjective, inferential, 

based on rater-based interview and examination or patient self-assessment, and 

consist of rating scales and questionnaires. These evaluations provide estimations 

of conceptual, non-observable factors (e.g., symptoms), usually scored on an 

ordinal scale [84]. The new second type of measure is objective, factual, based on 

technology-based devices capturing physical characteristics of the pathological 

phenomena (e.g., sensors to measure the frequency and amplitude of tremor) [84].  

Recently, there has been a growing interest in developing an objective 

assessment of the symptoms in PD, and its health-related outcomes, using new 

technology-based tools, worn or operated by patients either in a healthcare or 

domestic environment [84]. The most important new technologies to aid in the 

treatment monitoring of PD patients are based on the use of inertial measurement 

units (IMU). Most commercially available IMUs have a triaxial accelerometer and 

a triaxial gyroscope, although a magnetometer is also commonly included. Over 

time, sensors have become more sophisticated, and they can be worn 

unobtrusively and can be attached to almost any body part to measure movement. 

These wearable devices can record not only the orientation, amplitude, and 

frequency of movements [85]. These data allow clinicians to assess, for example, 

the presence and severity of the cardinal features and complications of PD (i.e., 

tremor, bradykinesia, and dyskinesias) [86]. Kinesia [87], a wireless system for 

automated assessment of PD tremor, uses an IMU placed on the patient's index 

finger or the heel and can differentiate between a healthy subject and a patient 

with bradykinesia. Kinesia system can also record tremor with high reliability and 

agreement with MDS-UPDRS rest and postural tremor items (one of the most 

common clinical scale used to provide an overall idea of the motor status of 

persons with PD) [87], [88]. Objective gait and balance quantification are 

important for the overall evaluation of the motor status of the PD patient [85]. 

However, as these symptoms in PD can be both episodic (Freezing of Gait - FOG, 

hesitation, difficult turning) and continuous (slow gait) associated with variability 

in performance, clinical examination at a point of time is often inadequate in 

elucidating the full spectrum of problems [84]. Thanks to the great advances in 

wearable technologies, various sensor-based and wearable technologies are now 

being used for the assessment and monitoring of movement patterns during 

clinical visits and the daily lives of PD patients [84], [85]. In addition, wearable 

sensors, frequently worn in the lower body segment, have emerged as a novel tool 

to quantitatively assess FOG during real life with more reliability than clinical 

measures alone [89], [90]. For example, a solution that permits objective 

evaluation of body posture and gait in PD subjects is the mTUG/mSWAY system 

[91], [92]. To date, numerous smartphone applications have been designed 

specifically for patients with PD. Existing applications include those devised for 

assessment of motor, cognitive, and psychological symptoms, as well as those 

intended to adjust and control treatment [93]. For example, Lopane et al. [94] 

implemented a system that allows optimizing the levodopa therapy in PD subjects 

according to disease progression to establish the minimum dose required over 
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time, Figure 5. Thanks to its integrated technology-based platform composed of a 

tablet app, a smartphone app, and a digital blood pressure monitor, the protocol 

can be performed under a physician's supervision, but also self-administer at home 

[94]. This mHealth system includes the following assessment tests that can be 

tailored and scheduled into a single assessment protocol: 
 

- alternate finger tapping test (tablet app); 

- reaction time test (tablet app); 

- actual intake of the levodopa test dose (tablet app); 

- measurement of the blood pressure (digital blood pressure monitor); 

- measurement of the Timed Up and Go (TUG) test (smartphone app); 

- identification of dyskinesia and the measurement of the tremor at rest 

(smartphone app). 
 

Those two devices automatically connect to the tablet when the assessment 

protocol starts [94]. 

 

Fig. 5. Menu of the tablet app. A) Settings. B) Audio/video instructions. C) Design the 

assessment protocol. D) Start an assessment protocol. E) Demo of the alternate finger 

tapping test. F) Demo of the reaction time test. Adapted from Lopane et al. [94]. 

 

Thus, mobile devices seem to be a useful tool for the detection, assessment, and 

potential care of patients with PD [95]–[97]. However, high-quality studies are 

lacking, although they are certainly feasible, due to smartphones' accessibility and 
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ease of use [85]. In conclusion, clinical scales are the most widely employed 

standards for the evaluation of patients with PD [85]. Their limitations include 

subjectivity and the inability to monitor the disease continuously [85]. New 

sensors and wearable devices provide objective, accurate, and reproducible 

measurements that can overcome these barriers and complement the use of 

traditional methods. However, the use of these new technologies is still limited in 

practice because most of the studies performed to date were heterogeneous and 

non-standardized [85]. 

5   mHealth apps for Neuromotor Rehabilitation 

Neurorehabilitation aims to cement patients' existing skills, retrieve any lost 

skills, and promote the learning of new abilities, allowing people to function at 

their highest possible level despite their physical impairment. A variety of factors 

may have a significant effect on neurorehabilitation and influence motor learning 

processes. These factors include verbal instructions, characteristics, and variability 

of training sessions, the individual's active participation and motivation, positive 

and negative learning transfer, posture control, memory, and feedback. All of 

these factors are clinically applicable, and they provide the basis for emerging or 

established lines of research having to do with retraining sensorimotor function in 

neurological patients [98]. The miniaturization of sensing, feedback, and 

computational devices has opened a new frontier for movement assessment and 

rehabilitation [58], [99]. Wearable systems are portable and can enable individuals 

with a variety of movement disorders to benefit from analysis and intervention 

techniques that have previously been confined to research laboratories and 

medical clinics [58]. 

5.1  Older Adults 

Rehabilitation can play an essential strategic role to counteract impairments 

and disability which characterize the aging process. Correct rehabilitative 

programs must be approached on the functional limitation and residual abilities of 

older adults (OA). Leading a more active lifestyle and regular physical activity 

including aerobic and resistance exercises have been demonstrated to improve 

cardiovascular, respiratory, musculoskeletal, and cognitive wellbeing in OA [100]. 

Physical activity interventions for people with an intact cognition are well 

documented and shown to be effective in improving balance and reducing falls 

[73]. A comprehensive physical activity guideline for all adults, including OA, 

was published by the American College of Sports Medicine (ACSM) [101]. 

People with dementia are two to three times more likely to fall and multimodal 
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interventions that combine cognitive, as well as motor therapy, should be 

performed [102]. Physical activity is beneficial for reducing overall morbidity and 

mortality in OA [103]. The physical activity recommendations intended for all 

older adults may need to be modified for particular health conditions and 

disorders, using specific types of exercise to correct or ameliorate identified 

impairments and functional limitations [103]. Physical therapists, exercise 

physiologists, and physicians specializing in rehabilitation can help to tailor the 

exercise prescription to meet patient needs. In addition, health care providers are 

perceived as respected sources of health information and should take an active role 

in promoting physical activity. Primary care clinicians should emphasize the 

importance of physical activity for health maintenance, ask patients if they are 

physically active, and advise them to become physically active [103]. 

Innovatively, a recent European project (www.preventit.eu) developed and tested 

a personalized mHealth solution aimed at behavioral change in OA, in order to 

decrease the risk for age-related functional decline. 

Fig. 6. A beta version of the PreventIT app. 

 

The project consists of a smartphone and smartwatch app to motivate older 

persons to exercise, and that shows how to integrate mobility exercises in daily 

living activities, Figure 6. This app, created by a multidisciplinary team, was 

already developed in its final version [104] and a feasibility study was performed 

[105]. Results indicated that the developed interventions were feasible and safe. 

Participants liked the concept of lifestyle-integrated activities, managed to change 

their daily routines towards increased activity, and were positive about the app 

[105]. 
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5.2  Persons with Parkinson's disease 

Despite optimal medical management, most patients with Parkinson's disease 

(PD) continue to experience a wide range of motor and nonmotor symptoms 

[106], [107]. All of these influence activities of daily living and affect the patient's 

quality of life [108], [109]. Examples of motor symptoms that respond 

insufficiently to medication or surgery include impairments in speech, postural 

stability, and freezing of gait. Additional disability arises from the presence of 

nonmotor symptoms (e.g., cognitive impairment, depression, or psychosis), that 

are sub-optimally controlled with current medical management [106], [110]. This 

situation creates treatment challenges, not only in advanced disease stages, but 

even early on in the course of PD [111]. Moreover, although it is recommended to 

early start rehabilitation, it should be considered that PD is a chronic progressive 

disorder and the intervention must be adjusted to changing clinical conditions and 

tailored to the individual patients' needs [112], [113]. A widely held belief holds 

that nonpharmacological management might offer symptomatic relief of motor or 

nonmotor symptoms that are otherwise difficult to treat. Hence, a multidisciplinary 

approach involving non- and pharmacological treatment is the standard nowadays 

[114]. 

The use of external sensory cues (e.g., auditory, visual) to reinforce attention 

toward the task [115] is an effective gait-rehabilitation strategy for persons with 

PD; the cues stimulate the executive voluntary component of action [116]–[118] 

by activating the attentional-executive motor control system and bypassing the 

dysfunctional, habitual, sensorimotor BG network [116], [117], [119]–[122]. This 

strategy helps people with PD improve gait consistency and rhythmicity.  

One of the most innovative developments in the quantitative assessment and 

management of PD symptoms is the use of wearable technologies during gait 

[123], which are able to overcome traditional open-loop cue, providing 

customized cueing: stimuli are triggered when gait deviates from normal, thus 

providing patients with immediate feedback on their performance. These closed-

loop stimuli (audio [124]–[126], visual [127], [128], audio-visual [129] or 

proprioceptive [130]) are known as intelligent inputs [124]. Closed-loop systems 

are based on the Knowledge of Performance [29], which is indicated as one of the 

optimal techniques for motor rehabilitation in PD subjects [131]. In contrast to 

open-loop systems, in closed-loop systems the external information does not 

necessarily become part of the participants' movement representation (as 

explained by the “guidance hypothesis”), thus possibly decreasing the 

development of cue-dependency [132]. The possibility of real-time biofeedback 

represents an important step toward the maximum benefit and clinical impact of 

wearable sensors. Wearable systems also permit data collection in a more 

naturalistic environment [124], [129]. Casamassima et al. [133] developed a 

unique mHealth system (CuPiD-system) made of wearable sensors and a 

smartphone that provides real-time verbal feedback to improve the dynamic 

balance and gait performance of people with PD [124], [134]. 
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Thanks to advances in technologies, visual feedback is possible through Smart 

Glasses (SG) [135]. SG represents an ideal modality to provide personalized 

feedback and assistance to people with PD in daily living situations. Indeed, 

McNaney et al. [136] reported that participants with PD were generally positive 

about SG as an everyday assistive device; however, usability issues and social 

stigma still hinder its general acceptance. 

Innovatively, Imbesi et al. [137] proposed a wearable gait rehabilitation 

solution by integrating the Vuzix Blade SG [138] into the smartphone-based 

CuPiD-system [133], Figure 7. 

Fig. 7. Schematic representation of the mHealth system. Adapted from Casamassima et al. 

[133]. 

  

 

Although, the potential of real-time biofeedback in gait rehabilitation through 

wearable devices is underexploited [85], these new real-time systems seem to 

increase adherence to treatment, self-management, and quality of life [139], 

allowing also personalized and tailored rehabilitation on the individual patients' 

need [124]. 

6   Discussion and Future scenario 

Considering the pandemic emergency, never as of today, we can say that the 

integration of mHealth apps in our society may contribute to a new era of clinical 

practice. After reporting a brief description of mHealth system architecture, this 

chapter explored several different opportunities where innovative mHealth 

solutions could improve assessment and rehabilitation strategies for ageing people 

and persons with Parkinson's disease. This chapter reported solutions that need 

medical support in a clinical context and others that can be self-administered and 

require only a smartphone as a stand-alone system. 
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However, the primary aim of a mHealth system is to improve the person's quality 

of life and increase his autonomy and independence. The huge development of 

technology in recent years leads to the manufacturing and use of miniature, low-

cost sensors and powerful devices that open the way to non-invasive, non-

intrusive, and continuous monitoring of an individual's health condition. 

     There are many challenges for future research and development to improve the 

performance and acceptance of the mHealth system. 

First, to achieve widespread acceptance among the people, the systems need to be 

affordable, easy-to-use, unobtrusive. Nevertheless, many patients continue to 

depend on the clinician's support. They would request direct contact with them, 

and they would reject solutions that might create any distance between them and 

their clinician. Inclusive design principles might be helpful for designers to collect 

and elaborate on patients' requirements, next to the technical and technological 

ones, to improve these aspects.  

Second, the new regulations on medical devices in Europe (MDR [EU] 2017/745) 

might lead to more high-quality mHealth systems, improving patient safety. On 

the other hand, it might limit the development and release of new solutions and 

software on the market [49]. 

Besides, the privacy and security of the sensitive medical information of the 

user must be guaranteed. More efforts are needed to develop algorithms to ensure 

highly secured communication. 

Third, as we witness a digital transformation of the healthcare system, mHealth 

technologies are expected to become better integrated into the clinical workflow, 

especially to provide telemedicine. Thus, thanks to the Internet connection, 

mHealth systems can increase healthcare access and improve cost-effectiveness. 

During the COVID-19 pandemic, this transformation of the healthcare system has 

been dramatically accelerated by new clinical demands, including the need to 

assure continuity of clinical care services. For example, healthcare professionals 

could use mHealth systems to monitor patients' conditions remotely and 

continuously mitigate or prevent hospital surges.  

     In man's continuous aspiration to improve his well-being, we have to face the 

exponential growth of technology. Thus, we must deal with unknown challenges, 

unexpected situations and generate new uncertain solutions. In general, we are 

used to taking a predictable path, the so-called comfort zone. That is why we are 

used to choosing the options we already know. The challenge of future research, 

including the development of mHealth systems, requires a mental shift from linear 

and predictable to bold and spontaneous, handling the incoming technologies to 

the best of our abilities. 
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