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Abstract

This paper presents a practical methodology developed for shape optimization
studies of hydraulic structures using environmental numerical modelling codes. The
methodology starts by defining the optimization problem and identifying relevant
problem constraints. Design variables in shape optimization studies are configuration of
structures (such as length or spacing of groins, orientation and layout of breakwaters,
etc.) whose optimal orientation is not known a priori. The optimization problem is
solved numerically by coupling an optimization algorithm to a numerical model. The
coupled system is able to define, test and evaluate a multitude of new shapes, which are
internally generated and then simulated using a numerical model. The developed
methodology is tested using an example of an optimum design of a fish passage, where
the design variables are the length and the position of slots. Two different objective
functions are tested: i) where a set target is specified and the numerical optimizer is
asked to retrieve the target solution, and ii) where the optimum solution is one that
minimizes the desired velocity between the slots. Example 1) is used as a tool to validate
the developed tool chain, while example ii) provides an example where the optimum
solution is not known a priori. This work uses the numerical model TELEMAC-2D for
the solution of the shallow water equations, coupled with various numerical
optimization algorithms.

1 Introduction

Applications of shape optimization in hydraulic engineering are rare, especially when those
involving cases where optimization was used to inform actual engineering design of real life civil



works. There are examples found in the literature (citations provided in Section 2) where shape
optimization problems are solved, but using the simplest of numerical codes. Use of simple models is
generally not sufficient in completing detailed designs of costly civil works, or evaluating impact of
hydraulic structures in environmentally sensitive areas. The main intent of this work is to present a
methodology that can be applied by end users working on shape optimization problems in the
domains of river and coastal engineering. For example, applications of shape optimization could
include determining the optimal layout of a groin field along a coastline that could address
sedimentation and navigation issues, the shape and orientation of a breakwater protecting a harbour or
a marina subject to various environmental and economic constraints, as well as many others.

A shape optimization study in hydraulic engineering (civil and coastal engineering) requires the
end user to couple a numerical model that captures sufficiently enough physics with an optimization
algorithm, where the optimization process generates different shapes of the structures, simulates the
system (solves the governing equations), and iteratively adjust the shape while respecting predefined
constraints. Carrying out such a simulation requires an automatic way to generate a new shape
(which, in terms of numerical modelling means generating a new model geometry) at each iteration of
the optimization. The numerical optimizer then carries out the iterations until a set criteria is reached
(such as percent change in the objective function value, prescribed number of iterations, etc.). It is the
understanding of the authors that such tools are not widely available or presently used in design of
major civil works in the realm of river and coastal engineering.

1.1 Literature review

This subsection documents past applications the shape optimization in hydraulic engineering.
Although there are exceptions, much of the literature on the subject has been published by academics
working in an applied mathematics field. In the text that follows, select examples of shape
optimization found in the literature are summarized.

Elchahal et al. (2013) presents a methodology developed to optimize the layout of the detached
breakwaters in a port. The paper presents the methodology where evolutionary algorithms are coupled
to a simple phase resolving numerical model (solution of the mild-slope equation) to determine an
optimal layout of breakwaters in a port subject to wave agitation and navigation constraints. The
optimization problem was set to minimize the total cost of the new breakwater(s) while respecting the
constraints imposed. The objective function of the optimization problem was defined in terms of the
layout of the port’s breakwater (i.e., the start and end point of the breakwater).

The study by Erpicum et al. (2009) provides an example of an application of shape optimization in
the design of a guide wall at a channel that feeds a hydropower plant. In the application case provided
the orientation of the intake channel at the reservoir creates an undesirable zone of re-circulation that
capture debris floating on the water surface. The shape optimization problem is thus defined to
modify the flow pattern in the intake channel to avoid deposition of debris near the hydropower plant.
Details on the objective function used in the work have not been provided. The optimization
parameters included the shape of an abutment to add in the intake channel.

Alvarez-Vasquez et al. (2009) presents an example of shape optimization of the design of a fish
flume, a hydraulic structure placed at dams and weirs to assist the upstream migration of fish. The
problem considered is a design of a vertical slot fish flume (i.e., a rectangular channel divided into a
number of compartments or slots). The optimization problem is to determine the optimal position of
the slots such that the flow velocity between the baffles are great enough to attract the fish, but not too
great to cause the fish to wash away. The objective function is defined as a square of the difference



between the velocity of the shape evaluated by the optimizer and the desired velocity specified by the
user. The problem’s constraints were set by specifying the minimum distance between the vertical
slots. A method based on the Nedler and Mead’s (1965) simplex algorithm is used to carry out the
optimization procedure.

A common thread among the above cited studies is that each uses a particular optimizer to
produce an optimal shape. To the best knowledge of the authors, a study has not yet been reported in
the literature where the same shape optimization problem is solved using different numerical
optimizers.

2 Methodology

2.1 General sketch of the shape optimization process

This subsection provides a basic sketch of the shape optimization process that is implemented in
this study. The end goal of this work is to provide end users with tools to carry out shape optimization
problems on their own applications. The general steps of shape optimization studies are:

1. Create a numerical model of a general shape of the problem under study,

2. Devise an objective function for the shape optimization problem, and identify appropriate
problem constraints,

3. Launch the optimization process:

a. Choose an initial state of the optimization problem (i.e., start with some initial
shape, or allow an optimizer to select a starting shape),

b. Simulate the numerical model and obtain a valid solution corresponding to the
chosen shape,

c. Extract model results for the shape simulated, and evaluate the objective
function value (and/or constraints),

d. Allow the optimization algorithm to select a new shape of the problem, and
e. Repeat steps 3b) — 3d) until an optimum is found.

The above procedure requires automation of tasks that are typically not available with off-the-
shelf commercial or even open source numerical models. The methodology requires coupling a
numerical simulation model with an optimization algorithm, which then jointly are able to create and
evaluate the fitness of each generated shape according to the specified criteria. To be able to carry out
such simulations, a tool set is required that can automatically generate new shapes (which requires
creating a new mesh, assigning bathymetry/topography to the mesh, assigning initial and boundary
conditions) that are ready to be used in a numerical model. A scripting set of tools are then needed to
take the generated shape and obtain a valid result using a numerical model. An automated way of
extracting the numerical model results are used to evaluate the objective function, which are given to
the optimizer so that it can select a new shape. The process is repeated until an optimum is found.

2.2 Numerical modeling

The TELEMAC-MASCARET numerical modelling system is used in this work.Most of the
modules in the TELEMAC-MASCARET system use the theory of finite elements to discretize the



spatial domain of the problem (some modules also give the user access to finite volume schemes as
well). Triangular elements are used to define the computational domain on which the governing
equations are solved. Each module in the system provides the end user with various methods that can
be used to solve the governing equations in the computational problem under consideration (flow and
momentum equations for hydrodynamics of free surface flows, spectral action balance for wave
propagation, sediment balance equations for sediment transport, etc.).

2.3 Pre- and post-processing tool chain

The pre- and post-processing tool chain developed in this work uses the PPUTILS toolkit
(Prodanovic, 20117). PPUTILS is an open source library of code developed in the Python
programming language that provides users with command line tools to carry out basic numerical
modelling tasks such as mesh generation, assigning properties to the mesh (bathymetry and friction
zones), generation of initial and boundary conditions, extraction of data from result files and
visualization of model results. Each script in the PPUTILS toolkit is written to efficiently solve only a
particular task. Chaining multiple such scripts allows the user to carry out the required modelling
tasks using select scripts from the PPUTILS library.

2.4 Numerical optimization

Rather than relying on a single numerical optimizer this work has been structured to allow the user
to select among a number of different numerical optimizers. In this work a number of different
libraries of numerical optimizers are used, including: Scipy (2017), Mystic (2017), and Pyswarm
(2017). Mystic optimizers are further described in McKerns et al. (2011). More specifically, the
following numerical optimizers were used:

Nedler and Mead simplex solver (fmin),
Powell’s (modified) level set method (fminpowell),
Uniform random distribution of N solvers (buckshot),

Distribution of N solvers on a regular grid (lattice),

Sequential Least SQuare Programming (SLSQP) optimizer,

1
2
3
4
5. Price and Storn’s differential evolution algorithm (diffev),
6
7. Particle swarm optimizer (PSO),

8

Latin Hypercube Sampling (LHS), also referred to as the brute force method.

Optimizers 1-5 are available from Mystic (2017), optimizer 6 from Scipy (2017), while optimizer
7 is available from the Pyswarm (2017) library. The above optimizers are all available as open source
code.

Note that LHS is not an optimizer, but rather a statistical method to generate a large number of
parameter values from a multi-dimensional space. In our case, the LHS technique was used to
produce a large set of shapes of the fish flume, which were then filtered to remove shapes that did not
meet the problem constraints.



3 Application
3.1 Optimal design of a fish passage

The methodology presented in above is illustrated by a test case of a design of a fish passage (also
referred to as a fish ladder or a fish flume). Fish passage structures are typically designed to enable
fish to pass through a barrier (such as a dam or a weir) by swimming and leaping up on a designed
sloping channel divided into a number of compartments. The velocity of water in the pools has to be
high enough to attract the migrating fish, but cannot be too great to wash the fish downstream or
otherwise harm it or prevent it from using the structure.

The shape optimization problem consists of finding an optimum position of the slots of a typical
fish passage. The geometry of the fish passage used in this example is obtained from Alvarez-
Vasquez (2009), where a similar problem is solved using a numerical flow solver linked to a single
optimizer. The fish passage consists of ten identical compartments, with each having two slots. The
slots are referred to in this work as upper and lower. The optimization problem is to select the position
and length of the upper and lower slots, such that it optimizes the objective function while satisfying
the problem constraints.

A sketch of the fish flume is shown in Figure 1 where relevant dimensions are shown. Other
relevant geometric properties are as provided in Alvarez-Vasquez (2009).
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Figure 1: Geometry definition of the fish flume test case

3.2 Definition of the optimization problem: validation test case

The test case used in this paper focuses on validating the shape optimization tool chain developed.
In this example the test case is defined as one that specifies a target (or desired) shape, and asks the
optimizer to search the available solution space until the desired target is found. Retrieving the desired
target is achieved by carefully defining the problem’s objective function. The optimization process is
then started with some initial state, with an end goal to recover the specified (or desired) shape. Such
a procedure is implemented in the work by Goeury et al.(2017) when testing an automatic calibration
procedure developed using the theory of data assimilation.



The shape of the desired state is specified with the target shape (xu,yu,XL,yL), where the subscript t
denotes the target shape. The geometry specified in the target shape is then used to construct a
TELEMAC-2D model, and obtain a steady state solution. The tool chain developed is used to extract
from the steady state solution of the target shape the x- and y- components of the flow velocity (us,vt)
in the middle compartment, and use it to construct a vector that stacks the values of velocity as
follows:

Yobs = [utvt] )

If the middle compartment has n nodes, the number of elements of the yobs vector will thus be 2n.
The observation vector is therefore defined as the state of the system (measured in terms of two
velocity components) that the optimizer should recover after some number of iterations.

In this work, the optimizer will select and try new shapes during its course of execution. Each
iteration of the optimizer requires a numerical solution of the flow field for a shape where different
position of the slots are evaluated. When the optimizer completes a particular iteration (meaning
computes a flow field for a particular shape), the tool chain extracts from the solution a vector ysim,
defined as:

Ysim = [u v ] 2)

where u and v are x- and y- components of the simulated velocity extracted from a particular shape
from the middle compartment of the flume.

The optimization problem is then defined as follows:

ming(x) = %Zin=1(YSim - YObS)Z (3)
subject to:

L —yu) = Ay “4)
(x, — Xy) = AX (5)

where x = (Xu,yu,XL,yL) are the problem variables (position of the slots) and i = 1,2,3,...,n is the
index of the nodes in the middle (i.e., fifth) compartment of the flume. Note that the optimization
problem is bounded by a rectangular box with coordinates (Xa,ya) on the lower left, and (xv,yb) on the
upper right (see Figure 1).

The constraints of the problem are specified as the gap between the upper and lower groins.
Without specifying the gap between the groins it would be possible for the optimizers to select the
position of the groins where upper and lower slots touch or intersect, a physically meaningless
configuration. The constrained optimization problem is thus defined such that the goal of the
optimizer is to select valid position of both the upper and lower slots such that the objective function
is minimized.

The particulars of the problem simulated here are (in units in meters, unless otherwise specified):
Search space xa = 6.653, xb = 7.260, ya. = 0.050, and y» = 0.243; width of the slots w = 0.063; channel
slope So = 5%; bottom friction f = 57.36 m1/2/s; initial water depth ho = 0.5; discharge in the flume
Qo = 0.065 m3/s; constraint values Ax = 0.1, and Ay = 0.05. The initial and target shapes are defined
in Table 1.



Table 1: Validation test case: initial and target shapes

Shape xu [m] yu [m] xe[m]  yu[m] g []
initial 6.700 0.230 7.230 0.150 0.137
target 6.927 0.147 7.168 0.054 0.0

The objective function defined above seeks to find a solution that is minimized. In case the
optimizer can find a combination of (xu,yu,XL,yL) values that produce a value of the objective function
g(x) =0, it will exactly recover the desired (or target) shape. The optimizer that can do so in least
number of iterations, will be the most favoured in practical applications.

If it can be demonstrated that the optimizers applied in this study can reach the target state (i.e.,
obtain a value of the objective function as close to zero as possible), the source code developed for the
shape optimization tool chain can be validated as correct.

4 Results

Results of the fish flume shape optimization simulations are presented here, in tabular and
graphical form. Note that even though the simulations in this work are completed for the entire flume
(all ten compartments), the results are presented only for the fifth (i.e., middle) compartment. To carry
out the validation of the tool chain, the initial shape of the flume is specified, as is the target shape
(see Table 1). In the validation test case, the observation vector (yobs) is obtained by extracting the x-
and y- velocity components of the target shape, simulated using TELEMAC-2D numerical model.
Table 2 presents the summary of the optimization results for each optimizer used. Figure 2 shows the
generated shape and its associated velocity field plot for the optima produced, while Figure 3 shows
the convergence plot for each optimizer used.

Table 2: Validation test case: summary of optimization results

Optimizer xu [m] yu [m] XL [m] yL [m] g(x) [-] Fun calls [count]
fmin 6.699 0.232 7.259 0.148 0.127 48
fmin_powell 6.935 0.152 7.146 0.062 0.003 170
buckshot 6.663 0.177 7.247 0.062 0.046 187
lattice 6.930 0.151 7.101 0.062 0.005 540
diffev 6.902 0.179 7.260 0.065 0.007 500
SLSQP 6.687 0.181 7.222 0.062 0.046 45

PSO 6.924 0.160 7.251 0.055 0.003 376

LHS 6.914 0.152 7.193 0.052 0.002 19,160

By inspecting the tabular and graphical results of the validation case a number of observations can
be made. These are summarized below:

1. The fmin optimizer was not able to produce a satisfactory result, and was not able to
recover the target shape.



Among all optimizers tested, the fmin_powell optimizer was able to generate an optimal
solution (and thus recover the target shape) with the a good value of the objective
function (i.e., one of the ones closest to zero).

The buckshot optimizer was able to produce a low value of the objective function, but it
seemed to have converged to another local minimum (and did not find the exact target
specified). However, the minimum found by the buckshot optimizer has a surprisingly
similar velocity field as the target shape.

The solution of the lattice optimizer came close to reaching the target shape (the position
of the lower slot in the shape generated by the optimizer is closer to the upper slot than in
the target solution).

The diffev optimizer was able to produce a satisfactory solution after 500 function
evaluations, with a fairly accurate optimal solution despite the fact that the position of the
lower slot is not exactly at the location specified. It is possible that if the optimizer was
allowed to proceed beyond 500 function evaluations, a better solution (i.e., closer to the
target) could have been reached.

The results from the SLSQP optimizer, being the only gradient based optimizer,
converged to another local minimum (similar to the buckshot optimizer), but with much
less computational effort.

The PSO optimizer was able to find the optimum solution, with the least amount of
computational effort. The optimum found is among the best obtained in the study.

The LHS method, also known as the brute force method, was able to recover the target
shape, but with an extremely large number of function calls. The utility of the LHS
method in this example is simply to demonstrate that other optimizers were able to find a
global optimum.
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Figure 3: Validation test case: convergence plots

The particulars of the current problem are such that the objective function used, when evaluated
for distinct (but closely similar) shapes, produces similar numeric values. In other words, the



objective function used is not sensitive to small fluctuation in the position of the slots. Having a
different objective function (and one that is more sensitive to the position of the slots) is anticipated to
be able to produce a result where the target shape would be recovered exactly by all of the optimizers
tested.

5 Conclusions

This report presents a summary of the tool kit developed to study shape optimization problems in
hydraulic engineering by coupling a numerical free surface flow solver with various numerical
optimizers able to deal with non-linear non-convex optimization problems. The general methodology
of shape optimization is presented, as is the summary of the tools developed. An example case study
(optimum design of a fish passage) is provided for the purpose of testing the tools kit developed. The
tool kit couples a numerical flow solver TELEMAC-2D to a number of numerical optimizers able to
solve heavily constrained non-convex and non-linear problems. Seven such numerical optimizers
were tested on a test case that required finding a solution of a four variable constrained optimization
problem. Based on the results obtained, many of the optimizers were able to generate the optimum
solution (and verified through a brute force calculation).

References

G. Elchahal, R. Younes, and P. Lafon (2013), Optimization of coastal structures: Application on
detached breakwaters in ports, Ocean Engineering, 63, 35-43.

S. Erpicum, P. Archambeau, B. Dewals, M. Pirotton, C. Zhang and H. Tang (2009), Automatic
geometrical optimization by way of numerical flow models. Advances in water resources and
hydraulic engineering, Proceedings of 16th IAHR-APD Congress and 3rd Symposium of IAHR-
ISHS, C. Zhang and H. Tang, eds., Springer-Verlag , 1663—1668.

L. Alvarez-Vasquez, A. Martinez, M. Vasquez-Mendez and M. Villar (2009), Numerical
resolution of a shape optimization problem in hydraulic engineering, European Conference on
Computational Fluid Dynamics, P. Wesseling and J. Periaux, eds., TU Delft, 1-13.

J. Nedler and R. Mead (1965), A simplex method for function minimization, Computer Journal, 7,
308-313.

P. Prodanovic (2017), PPUTILS: A practical toolkit for terrain, free surface flow and wave
modeling, https://github.com/pprodano/pputils.

Scipy (2017), A Python-based ecosystem of open-source software for mathematics, science, and
engineering. https://www.scipy.org.

Mystic (2017) ,Highly-constrained non-convex optimization and uncertainty quantification.
https://github.com/ugfoundation/mystic.

Pyswarm (2017), Particle swarm optimization (PSO) with constraint support,
https://github.com/tisimst/pyswarm.



M. McKerns, L. Strand, T. Sullivan, A. Fang, and M. Aivazis (2011), Building a framework for
predictive science, Proceedings of the 10th Python in Science Conference, Austin, Texas.

C. Goeury, A. Poncot, J. Argaud, F. Zaoui, R. Ata and Y. Audouin (2017), Optimal calibration of
TELEMAC-2D model based on a data assimilation algorithm, XXIVth TELEMAC-MASCARET
User Conference, Graz University of Technology, Graz, Austria, 73—80.



