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Abstract

In order to obtain asymptotical synchronization, we combine diffusive
linear bidirectional coupling with partial replacement on the nonlinear terms
of the second system, a coupling version that was less explored. All these
bidirectional coupling schemes are established between Lorenz systems or
Rössler systems with chaotic behavior/with control parameters that lead to
chaotic behavior.

The sufficient conditions of global stable synchronization are obtained
from a different approach of the Lyapynov direct method for the transversal
system. In one coupling we apply a result based on classification of the
symmetric matrix AT +A as negative definite, where A is the matrix char-
acterizing the transversal system. In the remaining couplings the sufficient
conditions are based on (the) increase/accretion of derivative (quero dizer
majoração da derivada) of an appropriate Lyapunov function assuming
yet the limitation of certain variables. In fact, the effectiveness of a cou-
pling between systems with equal dimension follows of the analysis of the
synchronization error e(t) and, if the system variables can be bounded by
positive constants, the derivative of an appropriate Lyapunov function can
be increased.(quero dizer majorada) as required by the Lyapynov direct
method.

In what follows we will always consider two chaotic dynamical systems,
since they are sufficient to study the essential in the proposed coupling
schemes. Our motivation for researching chaos synchronization methods
is to explore their practical application in various scientific areas, such as
physics, biology or economics.
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1 Introduction

The ability of nonlinear oscillators to synchronize with each other is a
basis for the explanation of many processes of nature. Therefore, chaos syn-
chronization is thus a robust property expected to hold in mademan devices
and plays a significant role in science. However, the possibility of two (or
more) chaotic systems oscillate in a coherent and synchronized way is not
an obvious phenomenon, since it is not possible to reproduce exactly the ini-
tial conditions andinfinitesimal perturbations to them/the initial conditions
lead to divergence of nearby starting orbits. Contrary to expectation, when
ensembles of chaotic oscillators are coupled, the attractive effect of a suit-
able coupling can counterbalance the trend of the trajectories to diverge. In
many cases there are (coupling) parameters that control the strength of cou-
pling between the systems, and the stability results of synchronous chaotic
state depend on them.

Coupled dynamical systems are constructed from simple, low-dimensional
dynamical systems and form new and more complex organizations. The
chaotic dynamics introduces new degrees of freedom in ensembles of cou-
pled systems. However, when two or more chaotic oscillators are coupled
and synchronization is achieved, in general the number of dynamic degrees
of freedom for the coupled system effectively decreases.

Asymptotical synchronization. Let X be a compact subset of Rm

with m ≥ 3 and consider (two) identical m-dimensional dynamical systems
S1 and S2 defined on X by the nonlinear autonomous ordinary differential
equations (ODE) u̇1 = f(u1;a) and u̇2 = f(u2; a), respectively, where a is a
vector of real control parameters.

Let u1 (0) and u2 (0) be (some) initial conditions for which, at certain
value of a, S1 and S2 evolve to an asymptotically stable chaotic attractor A.
The solutions u1 (t) and u2 (t) of the systems, starting at u1 (0) �= u2 (0) in
the attraction basin B(A), are/represent independent trajectories in A after
a period time of transient motion. This evolution is characterized by a pos-
itive Lyapunov exponent. Dynamical systems S1 and S2 are asymptotically
synchronized if

lim
t→+∞

‖u1 (t)−u2 (t)‖ = 0, (1)

and are fully synchronized if ‖u1 (t)−u2 (t)‖ = 0 for t > tsync, with tsync ∈ R
called synchronization time.

The evolution of the difference e (t) = u2 (t) − u1 (t) between nearby
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starting orbits is described by

ė (t) = u̇2 (t)− u̇1 (t) = f(u2 (t) ; a)− f(u1 (t) ; a). (2)

In case of asymptotical synchronization, this difference is the synchroniza-
tion error and the system (2) is designated as transversal system (or error
system). By (1), S1 and S2 achieve asymptotical synchronization if the
transversal system (2) has an asymptotically stable equilibrium point at
e (t) = 0.

When asymptotical synchronization is achieved, the dynamics of u1 (t)
and u2 (t) in A, on the 2m-dimensional phase space, are restricted to the
m-dimensional smooth invariant manifold

M≡ {(u1,u2) ∈ X ×X | u1 = u2} ⊂ R
2m,

where occurs the synchronized dynamics defined by the symmetric synchro-
nous chaotic state.

Transversal stability of the coupled system. The problem of syn-
chronization can be understood as a problem of asymptotical stability of the
chaotic attractor A (embedded in M) in the 2m-dimensional phase space
of the coupled system (Fujisaka and Yamada [1], Pikovsky [2], Pecora and
Carroll [3]).

It is necessary to distinguish between stability under tangent or transver-
sal perturbations to (the) synchronization manifoldM. As stated by Pecora
et al. [4], the limit (1) must be satisfied for all the initial conditions in a
neighborhood of the equlibrium point e (t) = 0. Since the system (2) char-
acterizes the dynamics in the transversal direction toM, it is necessary to
analyze if small transversal perturbations toM are reduced or amplified by
the evolution of S1 and S2. If they are reduced thenM is transversely stable
and the synchronous chaotic state u1 = u2 is stable. So, the synchronization
stability is designated as transversal stability.

Usually the following criteria are applied:
(i) Criterion based on the eigenvalues of (the) Jacobian matrix corre-

sponding to the flow overM, suggested by Fujisaka and Yamada ([1],[5]); it
requires that the largest eigenvalue is negative for the early stable synchro-
nization;

(ii) Criterion based on the construction and study of an appropriate
Lyapunov function L (e (t)) (Lyapunov direct method) for the vector field of
transversal perturbations toM, developed by He and Vaidya [6]; it requires
that L must be positive definite in a neighborhood of M (L (e (t)) ≥ 0),
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except in M where is null (L (0) = 0), and its derivative is negative semi-
definite (L̇ (e (t)) ≤ 0) and null inM (L̇ (0) = 0);

(iii) Criterion based on the estimation of Lyapunov exponents, developed
by Pecora and Carroll [3], which indicate if small transversal perturbations
ei (t), for 1 ≤ i ≤ m, decrease or not; it requires that the largest transversal
Lyapunov exponent is negative.

The criterion (ii) allows to prove the following/next proposition about
global asymptotical stability of transversal system defined by (2).

Proposition 1 Let A be the matrix characterizing the transversal system
of a coupling between identical systems S1 and S2. If there is a constant
δ < 0 such that the symmetric matrix AT + A is negative definite and
AT +A ≤ δI for any u1 and u2 in the phase space X, then the dynamics
of the transversal system is globally stable and the systems S1 and S2 are in
stable synchronization.

Proof. Consider the Lyapunov function defined by L(e (t)) = [e(t)]T · e(t).
Its derivative is given by

dL

dt
(e) =

d
(
eT
)

dt
· e+ eT ·

de

dt
= eT ·AT · e+ eT ·A · e,

and verifies

L̇ (e) = eT
(
AT +A

)
e ≤ δ

(
eT · I · e

)
= δ

(
eT · e

)
< 0

for all e �= 0. The Lyapunov direct method guaranties the global asymptot-
ical stability of transversal system

2 Coupling schemes between continuous chaotic
dynamical systems/chaotic dynamical systems
defined by ODE

2.1 Diffusive linear bidirectional coupling

According Fujisaka and Yamada ([1],[5]), a natural way to introduce a
dissipative coupling between identical chaotic systems S1 and S2 is to add
symmetric linear coupling terms to the expressions that define them. This
coupling mechanism is designated by diffusive linear coupling and plays a
central role in chaos control. By this bidirectional coupling between S1 and
S2 it is defined the coupling system

u̇1 = f(u1; a) +D1 (u2 − u1) ∧ u̇2 = f(u2;a) +D2 (u1 − u2) , (3)
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where D1 and D2 are coupling diagonal matrices of order m with diagonal
elements ρ1,i and ρ2,i that are positive or zero, respectively.

If all the pairs
(
ρ1,i, ρ2,i

)
of corresponding diagonal elements are non-

zero, that is, if ρ1,i �= 0 and/or ρ2,i �= 0 for i = 1, . . . ,m, the coupling is said
total. If in the diagonal matrices D1 and D2 there are pairs

(
ρ1,i, ρ2,i

)
of

corresponding diagonal elements null, that is, if ρ1,i = 0 e ρ2,i = 0 for some
1 ≤ i ≤ m, is carried out only a partial coupling. In this case it is not made
the coupling of some equations of the coupling system (3).

Stability of coupling system. In total coupling the evolution of syn-
chronization error e = u2 − u1 is characterized by the transversal system

‖ė (t)‖ = ‖f(u2 (t) ;a)− f(u1 (t) ; a)‖ − (d1 + d2) · ‖e (t)‖ ,

where d1 + d2 denotes the sum of the diagonal elements ρ1,i and ρ2,i of
matrices D1 and D2. The distance between the individual trajectories of
(systems) S1 and S2 is given by equation

‖e(t)‖ = δ0e
λmaxt,

where λmax is the value of the largest positive Lyapunov exponent and δ0 ≥ 0
is an infinitely small initial distance between the trajectories. By deriving
it is obtained the relation

‖f(u2 (t) ; a)− f(u1 (t) ;a)‖ = λmaxδ0e
λmaxt

and, given the equality
δ0 ‖e (t)‖ = e−λmaxt,

the equation

‖ė (t)‖ = λmaxδ0e
λmaxt − (d1 + d2) · ‖e (t)‖

can be written as an ordinary differential equation of separate variables
whose solution is

‖e (t)‖ = e0e
λmaxte−(d1+d2)t = e0e

[λmax−(d1+d2)]t, (4)

where e0 is the initial difference between the trajectories. One may also
consider f(u2; a) = f(u1;a) = 0 in (3) which results in the system

u̇1 = D1e ∧ ė2 = − (D1 +D2)e

whose solution is given by ‖e (t)‖= e0e
−(d1+d2)t.
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From/Given (4) (it can be concluded that) the synchronization error e
results from two independent properties. First/On the one hand, the ex-
ponential divergence of nearby trajectories by a ratio λmaxt proportional
to the positive Lyapunov exponent. Moreover/On the other hand, the ex-
ponential convergence resulting from the coupling terms D1 (u2 − u1) and
D2 (u1 − u2) by a ratio − (d1 + d2) t proportional to the sum of coupling
coefficients. Making f(u2; a) = f(u1; a) = 0, the transversal system for the
evolution of e associated to this convergence takes the form

ė (t) = − (d1 + d2) · e (t) .

While the exponential convergence property acts/performs over all the
phase space X, the first one acts only in a neighborhood of the synchronous
chaotic state u1 = u2 where linear effects are dominant. As such, the
product of both exponential factors in (4) only takes place near (the manifold
synchronization)M.

According to (4), the full synchronization in coupled system (3) occurs
if the inequality

d1 + d2 > λmax (5)

is valid. The full synchronization condition (5) shows that there is a linear
dependence between the maximal Lyapunov exponent of systems and the
elements of diagonal matrices D1 and D2 (of coupling between them).

The Stefański’s study in [7] shows that the exponential divergence and
convergence properties in total coupling allow to estimate the largest Lya-
punov exponent of any dynamical system chaotic. This possibility is es-
pecially useful in non-smooth systems, where the estimation of Lyapunov
exponents is not direct [7].

The synchronization condition does not ensure a fully synchronized state
when only a partial coupling is made. Indeed, in the absence of coupling
of one or more equations of the coupled system (3), the effect of coupling
terms D1 (u2 − u1) and D2 (u1 − u2) may not be as regular (in the syn-
chronization) as in total coupling. Stefański and Kapitaniak [8] introducing
a coupling coefficient ζ > 0 which allows to consider the synchronization
condition d1 + d2 > ζλmax that evaluates the effectiveness level of partial
coupling. This condition is a generalization of (5), since in total coupling
the value of ζ increases/comes to 1.

The analytical determination of coupling coefficient ζ (in partial cou-
pling) is difficult and may even be impossible. However, it may be esti-
mated in the course of numerical experiments according to (the relation)
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ζ = ρmin/λmax, where ρmin denotes the minimum value of the sum d1 + d2
of diagonal elements ρ1,i and ρ2,i for which occurs stable synchronous move-
ment. In many systems the value of ζ is independent of the initial conditions
(taken) [8].

When the diagonal elements ρ1,i and ρ2,i verify ρ1,i = ρ2,i = ρi, the
coupling proposed in (3) leads to the coupled system

{
u̇i = fi (u1, ..., um;a) + ρi (u

′
i − ui)

u̇′i = fi (u
′
1, ..., u

′
m;a) + ρi (ui − u′i)

, 1 ≤ i ≤ m.

The symmetrical chaotic synchronous solution ui (t) = u′i (t) ≡ Ui (t) of this
system, corresponding to the synchronous state u1 = u2, and the study of
their stability to small transversal perturbations ei (t) = u′i(t) − ui(t), for
1 ≤ i ≤ m, requires the linearized equation

ėi =
∂fi
∂xj

(U (t)) ej − 2ρiei. (6)

(The) Solutions of transversal system (6) increases exponentially as t→
+∞. As m is the dimension of this system, then there are m transversal
Lyapunov exponents and the largest one, λ⊥max, determines the stability of
perturbations. Since the expressions 2ρiei in (6) depend on the coordinates
ρi of parameter vector ρ, the maximal exponent λ⊥max depends on these
coordinates and the condition λ⊥max (ρi) < 0 defines the synchronization
region.

Particular case. Consider the particular case in which the diagonal
elements have the same value, that is ρ1 = · · · = ρm ≡ ρ > 0,

{
u̇i = fi (u1, ..., um; a) + ρ (u′i − ui)

u̇′i = fi (u
′
1, ..., u

′
m; a) + ρ (ui − u′i)

, 1 ≤ i ≤ m. (7)

In order to analyze the transversal stability of the synchronous state u1 =
u2, consider new variables

U(t) =
1

2
[u1(t) + u2(t)] e V(t) =

1

2
[u1(t)− u2(t)]

in (7). Variable V(t) describes the transversal evolution to invariant mani-
foldM while, in the limit of non-transversal movement, U(t) describes the
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evolution inM. With this change of variables, the coupled system (7) can
be rewritten as






U̇ =
1

2
[f(U+V) + f(U−V)]

V̇ =
1

2
[f(U+V)− f(U−V)]− 2ρV

. (8)

To analyze the stability of the transversal subspace toM it is equivalent
to show that the transversal dynamical system in the variable V(t) has an
asymptotically stable equilibrium point at the origin. The Lyapunov expo-
nents spectrum of equation (8) can be split into two subsets: λ‖ constituted
by the tangential Lyapunov exponents associated to the evolution of U(t),
which describes the dynamics inM or close to it, and λ⊥ composed of the
transversal Lyapunov exponents which characterize the evolution of small
perturbations transverse to this manifold. By criterion (iii), the chaotic
attractor A is stable if all the transversal Lyapunov exponents are nega-
tive. Let Df (U) be the Jacobian matrix corresponding to the linearization
around the equilibrium point u1(t) = u2(t) = U (t). If the largest transver-
sal Lyapunov exponent λ⊥max(ρ) corresponding to Df (U) is negative, then
any transversal perturbation to M is damped and the synchronous state
u1 = u2 is stable.

If, in addition to V(t)→ 0 as t→ +∞, it is also verified the condition

d ‖V(t)‖

dt
< 0,

then takes place a special case of synchronization, called monotonic synchro-
nization. In the case of monotonic synchronization for all initial values in the
neighborhood of V(t) = 0, the chaotic attractor A is called monotonically
asymptotically stable.

Are presented in Table 1 frm a topological point of view in terms of cou-
pling parameter ρ, the stability transitions of A embedded inM considering
the bifurcations of the coupled system.

Parameter ρ Chaotic attractor A

ρ < ρ0 Repulsive/Repeller chaotic saddle

ρ0 < ρ < ρ′′′ with on-off intermittency (chaos-hipercaos)

ρ′′′ < ρ < ρ′′ with locally riddled basin

ρ′′ < ρ < ρ′ asymptotically stable

ρ > ρ′ monotonically asymptotically stable
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Table 1: Behavior of chaotic attractor A as a function of/depernding on ρ.

The stronger phase of asymptotic stability occurs for/when ρ > ρ′ but,
if

ρ > ρ′′ ≡
1

2

(
λ‖max (ρ)

)
,

where λ
‖
max (ρ) is the maximal tangential Lyapunov expoent of A, it is

achieved synchronization for all the initial conditions in the neighborhood of
A [5]. At ρ = ρ′′ occurs a bifurcation in which A loses its asymptotic stabil-
ity. As evidenced by Alexander et al. [9], Sommerer and Ott [10] and Ott et
al. [11], when ρ < ρ′′ the attractor A is stable but there may be a distance
δ > 0 from A such that, for each point u1 ∈ B(A), any arbitrarily small
ball centered at u1 contains a set of points of positive measure whose orbits
exceed δ. Given a typical trajectory of (8), although/though all the trans-
verse Lyapunov exponents are negative, there are initial conditions (dense)
in A for which one of them is positive. Taking values of ρ even/still smaller,
the system (8) undergoes a blowout bifurcation in a certain value ρ′′′ that
characterizes the transition from chaos to hipercaos ([1],[2],[3],[12],[13]). Ac-
cording to Nusse and Yorke [14], when ρ < ρ′′′ there is a neighborhood W
of A such that the set B(A) ∩W contains A but its Lebesgue measure is
zero. A typical trajectory spends some time in the neighborhood of A but
occasionally bursts away from it/him. (The) Maximal transversal Lyapunov
expoent of A, λ⊥max(ρ), is always positive but with low value. However the
finite time fluctuations can allow that all the transient Lyapunov exponents
are negative in some time periods in which the orbit is attracted to M.
(The) Chaotic attractor A thus becomes a chaotic saddle. For ρ below a
certain value ρ0, λ

⊥
max(ρ) is large enough allowing the evolution to a distinct

attractor.

2.2 Unidirectional coupling by partial replacement

(será melhor retira a 1a parte?) Consider an (arbitrary) decomposition
u1 = (x1,y1) of the variable u1 into two subsystems

ẋ1 = g(x1,y1;a) ∧ ẏ1 = h (x1,y1; a) , (9)

with variables x1 = (u1, . . . , uk) and y1 = (uk+1, . . . , um), respectively, for
1 ≤ k ≤ m. Since f (u1;a) = (f1 (u1;a) , . . . , fm (u1; a)), the vector fields g
and h are defined by the component functions of the vector field f as

g (u1;a) = (f1 (u1;a) , . . . , fk (u1;a))
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and
h (u1;a) = (fk+1 (u1; a) , . . . , fm (u1; a)) .

They are respectively taken independent initial conditions x1 (0) and y1 (0)
in the subsystems in (9). Let ẏ2 = h (x1,y2; a) be a subsystem identical to
ẏ1 = h (x1,y1;a) with the variable x1 replaced by its corresponding x2,

x2 = x1 and ẏ2 = h (x1,y2;a) .

So, the equations

ẋ1 = g(x1,y1;a) ∧ ẏ2 = h (x1,y2; a) , (10)

with y2 (0) �= y1 (0), defined a dynamical system u̇2 = f (u2;a) which shares
some of the variables with the system u̇1 = f (u1;a). Pecora e Carroll [3]
formalized this unidirectional coupling between the systems (9) and (10)
through the variable x1, u̇2 = fx2→x1 (u2;a) = f (x1,y2; a), where the cou-
pled system

ẋ1 = g(x1,y1;a) ∧ ẏ1 = h (x1,y1;a) ∧ ẏ2 = h (x1,y2; a) (11)

is obtained by complete replacement of the signal driver subsystem ẋ1 =
g(x1,y1; a) in the response system (10).

Instead of completely replacing one of the variables in the system re-
sponse by its corresponding in transport system, a replacement can be par-
tial as suggested by Guemez and Matthias [15]. In this case, a variable of
response system gives rise to its corresponding in transport system only in
some of its equations. In general, the stability results in partial replacement
differ from those in complete replacement. In this paper it is studied the
partial replacement in the nonlinear terms of response system.

3 Case study

3.1 Using Lorenz systems

Total diffusive linear bidirectional coupling with partial substitu-
tion of x2. (L5 da tese) Consider the total diffusive linear bidirectional
coupling of two identical chaotic Lorenz systems with all the coupling para-
meters equal to ρ > 0 (particular case)






ẋ1 = σ (y1 − x1) + ρ (x2 − x1)
ẏ1 = αx1 − x1z1 − y1 + ρ (y2 − y1)
ż1 = x1y1 − βz1 + ρ (z2 − z1)

∧






ẋ2 = σ (y2 − x2) + ρ (x1 − x2)
ẏ2 = αx2 − x1z2 − y2 + ρ (y1 − y2)
ż2 = x1y2 − βz2 + ρ (z1 − z2)
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where it is introduced the partial replacement of variable x2 by the corre-
sponding x1 only in the nonlinear terms x2z2 and x2y2 of second system.
Starting the coupled system from (arbitrary) initial conditions such that
x1(0) �= x2(0), y1(0) �= y2(0) and z1(0) �= z2(0), it is reached identical
synchronization if the evolution of coupled system evolution is continually
confined to a hyperplaneM in phase space. The coordinates ex = x2 − x1,
ey = y2− y1 and ez = z2− z1 of synchronization error e = (ex, ey, ez) in the
transversal subspace toM converge to 0 as t→ +∞ if the point (0, 0, 0) in
the transversal subspace toM is an asymptotically stable equilibrium point
(in this space). This leads to require that the dynamical system in e defin-
ing the transversal perturbations is asymptotically stable at the equilibrium
point (0, 0, 0). Transversal system is defined by the equations




ėx
ėy
ėz



 =




ẋ2 − ẋ1
ẏ2 − ẏ1
ż2 − ż1



 =




σ (ey − ex)− 2ρex

αex − x1ez − ey − 2ρey
x1ey − βez − 2ρez



 .

It takes the matricial form ė = A (x1) · e with

A =




−2ρ− σ σ 0

α −2ρ− 1 −x1
0 x1 −2ρ− β



 .

The main determinants of the matrix

AT +A =




−2 (2ρ+ σ) σ + α 0

σ + α −2 (2ρ+ 1) 0
0 0 −2 (2ρ+ β)



 ,

are ∆1 = −2 (2ρ+ σ), ∆2 = 4 (2ρ+ σ) (2ρ+ 1)− (σ + α)2 and

∆3 = −2
[
4 (2ρ+ σ) (2ρ+ 1)− (σ + α)2

]
(2ρ+ β) .

We have−∆1 > 0 and the condition−∆3 > 0 is satisfied when/where/if/whenever
∆2 > 0 (since 2ρ + β > 0). So, we conclude by Proposition 1 that occurs
globally stable synchronization if the control and coupling parameters verify
the inequality

4 (2ρ+ σ) (2ρ+ 1) > (σ + α)2 .

Taking control parameters σ = 10, α = 28 and β = 8/3 = 2.(6) this
globally stable synchronization condition leads to the threshold of coupling
ρ = 7.1. We verify that x2 → x1, y2 → y1 and z2 → z1 when systems
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Figure 1: (a) Atractor do sistema ligado; (b) Variedade de sincronizaçao;
(c) Evolução do erro de sincronizaçao

evolve (Fig. 1a). After a certain time, the coordinates x, y and z of systems
verify the equalities x2 = x1, y2 = y1 and z2 = z1 (Fig. 1b). So, the
distances |x2 − x1|, |y2 − y1| and |z2 − z1| converge to 0 over time (Fig. 1c).
Equations x2 = x1, y2 = y1 and z2 = z1 define a hyperplane M in the 6-
dimensional phase space.Notice that in coupling by negative feedback control
with partial replacement of x2 by x1 only in the nonlinear terms x2z2 and
x2y2 of response system (referir o 1

o artigo, nosso, é o caso L4), where
the coupling is unidirectional, the threshold of coupling is ρ = 14.5 > 7.1.

It is impossible to obtain a stable synchronization condition without
partial substitution of x2 by x1 in the nonlinear terms of the second system.

3.2 Using Rössler systems

Total diffusive linear bidirectional coupling. (R3 da tese) Consider
the total diffusive linear bidirectional coupling of two Rössler systems with
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all the coupling parameters equal to ρ > 0 (particular case)





ẋ1 = − (y1 + z1) + ρ (x2 − x1)
ẏ1 = x1 + ay1 + ρ (y2 − y1)
ż1 = b+ z1 (x1 − c) + ρ (z2 − z1)

∧






ẋ2 = − (y2 + z2) + ρ (x1 − x2)
ẏ2 = x2 + ay2 + ρ (y1 − y2)
ż2 = b+ z2 (x2 − c) + ρ (z1 − z2)

.

(12)
Given the synchronization error e = (ex, ey, ez) = (x2 − x1, y2 − y1, z2 −

z1), the transversal system is defined by the equations





ėx = ẋ2 − ẋ1 = −ey − ez − 2ρex
ėy = ẏ2 − ẏ1 = ex + (a− 2ρ) ey
ėz = ż2 − ż1 = z2ex + (x1 − c− 2ρ) ez

.

Consider the Lyapunov function L (e) =
(
e2x + e2y + e2z

)
/2 which verifies

L (e) > 0 if e �= 0 and L (0) = 0 for all (values of) ρ. It is necessary to
determine the strength coupling ρ such that the derivative of L satisfies
L̇ (e) < 0 if e �= 0 and L̇ (0) = 0. Substituting the expression of ėx, ėy and
ėz in

L̇ (e) = exėx + eyėy + ez ėz

and simplifying, the derivative of L can be written as

L̇ (e) = −2ρe2x + (z2 − 1) exez + (a− 2ρ) e
2
y + (x1 − c− 2ρ) e2z

≤ −ρe2x + (a− ρ) e2y + x1e
2
z − (c+ ρ) e2z + z2 |exez| − |exez| .

Assuming (that) the functions of real variable x1 and z2 are bounded, let
Kx and Kz be positive constants such that |x1| ≤ Kx and |z2| ≤ Kz. As
such it is valid the inequality

L̇ (e) ≤ −2ρe2x + (a− 2ρ) e
2
y +Kxe

2
z − (c+ 2ρ) e

2
z +Kz |exez| − |exez| .

(The) Transversal system is asymptotically stable at origin if the constant
symmetric matrix

P =






2ρ 0
1

2
(1−Kz)

0 2ρ− a 0
1

2
(1−Kz) 0 c+ 2ρ−Kx




 ,

associated with quadratic form −‖e‖T ·P· ‖e‖, with ‖e‖ = (|ex| , |ey| , |ez|),
is positive definite. (The) Main determinants∆i, i = 1, 2, 3, ofP are positive
if

(2ρ− a) > 0 ∧ (2ρ− a)

[
ρ (c+ 2ρ−Kx)−

1

4
(1−Kz)

2

]
> 0.

13



As inequality on ∆3 implies 2ρ− a > 0 whenever

8ρ (c+ 2ρ−Kx) > (1−Kz)
2 ,

we conclude that the matrix P is positive definite if

2ρ > a ∧ 8ρ (2ρ+ c−Kx) > (1−Kz)
2 .

(The) Condition Kx > 0 leads to 8ρ (2ρ+ c) > (1−Kz)
2. By the Lyapunov

direct method, the synchronization error tends to 0 as t → ∞ whenever
the control parameters a and c, the coupling strength ρ and the positive
constants Kx and Kz limiting the system variables verify the inequalities
above, and the systems achieve globally stable synchronization.

Becomes in this way established the following sufficient condition for
synchronization.

Proposition 2 Two Rössler systems in total diffusive linear bidirectional
coupling (12), with a unique parameter coupling ρ, achieve globally stable
synchronization if

2ρ > a ∧ 8ρ (2ρ+ c−Kx) > (1−Kz)
2

where Kx and Ky are positive constants such that |x1| ≤ Kx and |z2| ≤ Kz.

Taking (the control parameters) a = b = 0.2 and c = 5, we present
the Figure 2(a,b,c) obtained for (the coupling strength) ρ = 8, which is
the lowest value of ρ in a tenth step that verifies the previous inequality
established in Proposition 2. As can be seen, the synchronization error
evolves rapidly/quickly to 0..

Total diffusive linear bidirectional coupling with partial re-
placement. (R4 da tese) Consider the total diffusive linear bidirectional
coupling of two Rössler systems with all the coupling parameters equal to
ρ > 0 (particular case)






ẋ1 = − (y1 + z1) + ρ (x2 − x1)
ẏ1 = x1 + ay1 + ρ (y2 − y1)
ż1 = b+ z1 (x1 − c) + ρ (z2 − z1)

∧






ẋ2 = − (y2 + z2) + ρ (x1 − x2)
ẏ2 = x2 + ay2 + ρ (y1 − y2)
ż2 = b+ z2

(
x1 − c

)
+ ρ (z1 − z2)

,

(13)
in which, simultaneously, was introduced the partial replacement of the vari-
able x2 by the corresponding x1 only in the nonlinear term z2x2 of second
system.

14



-0.5 0 0.5

-0.5

0

0.5

t

x
,y

,z

-0.5 0 0.5

-0.5

0

0.5

1

x1,y1,z1

x
2
,y

2
,z

2

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

t

||
e
(t

)|
|

X: 44.05

Y: 0

Figure 2: Parameter values a = b = 0.2 and c = 5; coupling strength ρ = 8.
(a) Coupled system attractor; (b) Manifold synchronization; (c) Evolution
of the synchronization error

Let ex = x2 − x1, ey = y2 − y1 and ez = z2 − z1 be the components of
synchronization error e. For all values of ρ the transversal system is defined
by the equations




ėx
ėy
ėz



 =




ẋ2 − ẋ1
ẏ2 − ẏ1
ż2 − ż1



 =




−ey − ez − 2ρex
ex + (a− 2ρ) ey
(x1 − c− 2ρ) ez



 .

Consider the Lyapunov function L (e) =
(
e2x + e2y + e2z

)
/2 which verifies

L (e) > 0 if e �= 0 and L (0) = 0 for all values of ρ. It is necessary to
determine the strength coupling ρ such that the derivative of L satisfies
L̇ (e) < 0 if e �= 0 and L̇ (0) = 0. Substituting the expression of ėx, ėy and
ėz in

L̇ (e) = exėx + eyėy + ez ėz

and simplifying, the derivative of L can be written as

L̇ (e) = −2ρe2x − exez + (a− 2ρ) e
2
y + (x1 − c− 2ρ) e2z

≤ −2ρe2x + (a− 2ρ) e
2
y + x1e

2
z − (c+ 2ρ) e

2
z − |exez| .
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Assuming (that) the functions of real variable x1 is bounded, let Kx be
positive constant such that |x1| ≤ Kx. As such it is valid the inequality

L̇ (e) ≤ −2ρe2x + (a− 2ρ) e
2
y +Kxe

2
z − (c+ 2ρ) e

2
z − |exez| .

For the transversal system to be asymptotically stable at origin, the constant
symmetric matrix

P =




2ρ 0 0.5
0 2ρ− a 0
0.5 0 c+ 2ρ−Kx





(associated with quadratic form −‖e‖T ·P· ‖e‖, with ‖e‖ = (|ex| , |ey| , |ez|),)
must be positive definite. The main determinants ∆i, i = 1, 2, 3, of P are
positive if

2ρ− a > 0 ∧ (2ρ− a)

[
2ρ (c+ 2ρ−Kx)−

1

4

]
> 0.

As inequality on ∆3 implies 2ρ− a > 0 whenever

8ρ (c+ 2ρ−Kx) > 1,

we conclude that the matrix P is positive definite if

2ρ > a ∧ 8ρ (2ρ+ c−Kx) > 1.

(The) Condition Kx > 0 leads to 8ρ (2ρ+ c) > 1. By the Lyapunov direct
method, e → 0 as t → ∞ whenever the control parameters a and c, the
coupling strength ρ and the positive constant Kx limiting the system vari-
able verify the inequalities above, and the systems achieve globally stable
synchronization.

So, it is valid the following result.

Proposition 3 Two Rössler systems in the coupling (13) achieve globally
stable synchronization if

2ρ > a ∧ 8ρ (2ρ+ c−Kx) > 1

where Kx is a positive constant such that |x1| ≤ Kx.

(The) Figure 3(a,b,c), whose graphs were obtained with ρ = 6, which
is the lowest value of ρ in a tenth step that verifies the previous inequality,
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Figure 3: Parameter values a = b = 0.2 and c = 5; coupling strength ρ = 8.
(a) Coupled system attractor; (b) Manifold synchronization; (c) Evolution
of the synchronization error

shows what is established in Proposition 3. We observe a rapid evolution of
synchronization error to 0.

Partial diffusive linear bidirectional coupling. (R5 da tese)
(vale a pena pôr ou só referir na conclusão?)Consider the partial
linear diffusive linear bidirectional coupling of two Rössler systems






ẋ1 = − (y1 + z1) + ρ (x2 − x1)
ẏ1 = x1 + ay1
ż1 = b+ z1 (x1 − c)

∧






ẋ2 = − (y2 + z2) + ρ (x1 − x2)
ẏ2 = x2 + ay2
ż2 = b+ z2 (x2 − c)

.

(14)
Let ex = x2 − x1, ey = y2 − y1 and ez = z2 − z1 be the components of

synchronization error e. For all values of ρ the transversal system is defined
by the equations






ėx = ẋ2 − ẋ1 = −ey − ez − 2ρex
ėy = ẏ2 − ẏ1 = ex + aey
ėz = ż2 − ż1 = z2ex + (x1 − c) ez

.
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Consider the Lyapunov function

L (e) =
1

2

(
e2x + e2y + e2z

)

which verifies L (e) > 0 if e �= 0 and L (0) = 0 for all values of ρ. It is
necessary to determine the strength coupling ρ such that the derivative of
L satisfies L̇ (e) < 0 if e �= 0 and L̇ (0) = 0. Substituting the expression of
ėx, ėy and ėz in

L̇ (e) = exėx + eyėy + ez ėz

and simplifying, the derivative of L can be written as

L̇ (e) = −2ρe2x + (z2 − 1) exez + ae2y + (x1 − c) e2z

≤ −2ρe2x + ae2y + x1e
2
z − ce2z + z2 |exez| − |exez| .

Assuming (that) the functions of real variable x1 and z2 are bounded, let
Kx and Kz be positive constants such that |x1| ≤ Kx and |z2| ≤ Kz. As
such it is valid the inequality

L̇ (e) ≤ −2ρe2x + ae2y +Kxe
2
z − ce2z +Kz |exez| − |exez| .

(The) Transversal system is asymptotically stable at origin if the constant
symmetric matrix

P =






2ρ 0
1

2
(1−Kz)

0 −a 0
1

2
(1−Kz) 0 c−Kx






associated with quadratic form −‖e‖T ·P· ‖e‖, with ‖e‖ = (|ex| , |ey| , |ez|),
is positive definite. (The) Main determinants∆i, i = 1, 2, 3, ofP are positive
if

−2aρ > 0 ∧ − 8aρ (c−Kx) + a (1−Kz)
2 > 0.

Since the condition concerning the ∆2 is impossible, the Lyapunov direct
method is not conclusive with this choice of Lyapunov function.

4 Conclusions

The total diffusive linear bidirectional coupling between chaotic identical
Lorenz systems and between chaotic identical Rössler systems allowed to
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obtain sufficient conditions to globally stable synchronization. In some cases
it is considered simultaneously the partial replacement of the variable x1 by
their corresponding x2, only in the nonlinear terms of second system. Such
partial replacement only reveal advantage.

In coupling between Lorenz systems the globally stable synchronization
condition result from the classification of the symmetric matrix AT +A as
negative definite (Proposition 1), where A is the matrix characterizing the
transversal system of coupling. It was not possible to apply this proposi-
tion in coupling betwwen Rössler systems by performing or not the partial
replacement on the nonlinear term of second system.

In couplings between Rössler systems these conditions are based on (the)
increase/accretion of derivative of an appropriate Lyapunov function assum-
ing yet the limitation of certain variables. When the partial replacement is
carried out such limitation is necessary on only one variable (x1), while in
the absence of replacing two variables are considered (x1 and z2). Also the
partial replacement allows to obtain a lower threshold of coupling. Noting
that if the diffusive linear coupling is partial then it is not guaranteed by
this approach any sufficient condition to globally stable synchronization.
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