ﬁ EasyChair Preprint

Ne 7755

A Unified Programming Model for Heterogeneous
Computing with CPU and Accelerator
Technologies

Yuging Xiong

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 10, 2022

A Unified Programming Model for Heterogeneous
Computing with CPU and Accelerator
Technologies™

YuqgingXiong
Computer Science Department
Shanghai Institute of Technology
Shanghai, China
ygxiong @sit.edu.cn

Abstract—This paper consists of three parts. The first part
provides a unified programming model for heterogeneous com-
puting with CPU and accelerator (like GPU, FPGA, Google TPU,
and more) technologies. To some extent, this new programming
model makes programming across CPUs and accelerators turn
into usual programming tasks with common programming lan-
guages, and relieves complexity of programming across CPUs and
accelerators. It can be achieved by extending file managements
in common programming languages, such as C/C++, Fortran,
Python, MPI, etc., to cover accelerators as I/O devices. In the
second part, we show that all types of computer systems can
be reduced to the simplest type of computer system, a single-
core CPU computer system with I/O devices, by the unified
programming model. Thereby, the unified programming model
can truly build the programming of various computer systems
on one API (i.e. file managements of common programming
languages), and can make programming for various computer
systems easier. In third part, we present a new approach to cou-
pled applications (like multidisciplinary simulations) computing
by the unified programming model. The unified programming
model makes coupled applications computing more natural and
easier since it only relies on its own power to couple multiple
applications through MPI.

Index Terms—unified programming model, CPU, accelerator,
general printer, one API, coupled applications

I. INTRODUCTION

Heterogeneous computing with CPU and accelerator tech-
nologies is widely concerned. However, there are some chal-
lenges in the heterogeneous computing. To remove the diffi-
culties, for example, an architecture for unified deep learning
with CPU, GPU, and FPGA technologies is presented [1]. The
examples of underlying hardware approaches in the architec-
ture are shown in Fig. 1 and Fig. 2 (extracted from [1]). This
is a typical heterogeneous computing architecture with CPU
and accelerator technologies.

A key problem for the heterogeneous computing is that a
full and seamless programming environment that works across
CPUs and accelerators is necessary so that the architecture can
work well [1]. However, it seems to difficult to design and
build the full and seamless programming environment since it
is not easy that communication between application programs

The first draft of the first part in this paper was written in June 2018.

of common programming languages for CPUs and programs
of programming languages for accelerators are carried out.
For example, data movement between MPI for distributed
memory parallel programming and CUDA is difficult, it makes
programming with MPI+CUDA complicated [2].

To overcome the challenge of communication between
CPUs and accelerators in the common programming language
world, in this paper, we will try to provide a unified program-
ming model that can work across CPUs, GPUs, FPGAs, and
other accelerators (such as Google TPU, etc.) by extending
file managements in common programming languages, such
as C/C++, Fortran, Python, MPI, etc., to cover GPUs, FPGAs,
and other accelerators (such as Google TPU, etc.) as I/O de-
vices. To some extent it makes programming across CPUs and
accelerators turn into usual programming tasks, and relieves
complexity of programming across CPUs, GPUs, FPGAs, and
other accelerators since it makes heterogeneous systems turn
into homogeneous systems from a certain perspective (acceler-
ators as one kind of I/O devices). Thus the programming model
can contribute to improve software productivity for computing
across CPUs and accelerators.

To further explain the unified programming model to sim-
plify programming complexity, in this paper, we show that all
types of computer systems can be reduced to the simplest type
of computer system, a single-core CPU computer system with
I/O devices, by the unified programming model. Thereby, the
unified programming model can truly build the programming

o

Fig. 1. GPU Scale out using Vega20 and Epyc (extracted from [1]).

Let’s take an example to illustrate it further, see Fig. 3.
w w Assume that P is a program written in a common programming
language and runs on a CPU, Q is a program written in CUDA
and runs on a GPU. "The GPU+Q” is regarded as a general
printer, the code of Q is its model, and Q is its deriver. P
sends data to Q (i.e. P sends input to the general printer to
print), and Q receives the data, processes the data, and then
sends the computational result to P (i.e. the general printer
prints the results to P). Thus communication between P and
Q is carried out. Fig. 3 shows the communication between P
and Q.

This way, we realize data movement between application
programs of common programming languages on CPUs and
programs of CUDA on GPUs in the name of printing the data
through the general printer.

In operating systems and common programming languages,
such as C/C++, Fortran, Python, etc., all I/O devices (including
printers) are regarded as files, so it should be natural that
“GPU+CUDA code running on the GPU” (a general printer)
can also be regarded as files in common programming lan-

o0 mm FPGA <= Network

Fig. 2. FPGA Exploitation (extracted from [1]).

of various computer systems on one API (i.e. file manage-
ments of common programming languages), and can make
programming for various computer systems easier.

Coupled applications (like multidisciplinary simulations)
computing is very important in many fields. It usually needs
addtional software to support. In this paper, we present a new
approach to coupled applications computing, which is based
on the unified programming model. The unified programming
model makes coupled applications more natural since it only
relies on its own power to couple multiple applications through

MPL guages.
Naturally, we should extend file managements in common

II. A UNIFIED PROGRAMMING MODEL FOR programming languages, such as C/C++, Fortran, Python, etc.,
HETEROGENEOUS COMPUTING WITH CPU AND to include accelerators as one kind of I/O devices. For MPI,
ACCELERATOR TECHNOLOGIES MPI-I/O should be extended to cover accelerators as one kind

of I/0 devices.

Thus, we simplify programming across CPUs, GPUs, FP-
GAs, and other accelerators into usual programming tasks

File managements in common programming languages are a with common programming languages to some extent, and
kind of mechanisms which make application programs access make programming in heterogeneous systems with acceler-
I/O devices easier. An application’s access to I/O devices ators easier since it makes heterogeneous systems turn into
generally involves many tasks carried out by systems, that is, homogeneous systems from a certain perspective (accelerators
the tasks are accomplished by systems (not by applications) as one kind of I/O devices). So this can contribute to improve
in the name of application access to I/O devices through file software productivity for computing across CPUs and accel-
managements. This name is the key to making it easy for erators.
applications (running on CPUs) to access I/O devices.

Therefore, if we can also regard accelerators as one kind B. For Multi-core CPUs for OpenMP or Pthread
of I/O devices (or one kind of general printers) in common For multi-core CPUs where programs of OpenMP or
programming languages (although accelerators, such as GPUs, Pthread run, we can imagine that every multi-core CPU
aren’t any kind of I/O devices in the usual sense) and extend consists of one “single-core CPU” for programs of common
file managements in common programming languages to cover programming languages and one “multi-core accelerator” for
accelerators as one kind of I/O devices, the data movement programs of OpenMP or Pthread. In the same way, we can
between CPUs and accelerators can also be carried out by regard the “multi-core accelerators + OpenMP/Pthread codes
systems in the name of application access to I/O devices running on the multi-core accelerators” as I/O devices, and
through the file managements. Thus we can explicitly avoid extend file managements in common programming languages
data movement between CPUs and accelerators in application to include them as one kind of I/O devices (i.e. files). Thus
programs of the common programming languages and make
programming across CPUs and accelerators easier. GPUs are
taken as an example to illustrate it here. P e e

Let’s compare GPUs with HP printers. There are many , ; > General printer
models (such as LaserJet P1008) for the HP printers, there is ruming CPU | GPU (the GPUKQ)
a driver for each model, and outputs of printers are to papers. the €70 - G de derier
Similarly, “GPU+CUDA code running on the GPU” can be Output from the general printer
regarded as an I/O device (a general printer), its model is the (data produced by Q and sent to P)
CUDA code, its driver is also the CUDA code, and its output Fig. 3. Communication between P running on a CPU and Q running on a
is to CPUs (application processes exactly). GPU.

A. Accelerators as One Kind of I/O Devices in Common
Programming Languages

to some extent we also simplify programming model “com-
mon programming languages + OpenMP/Pthread” into usual
programming with common programming languages.

This allows OpenMP/Pthread-based code to be separated
from the entire program, resulting in higher modularity.

C. For Clusters of CPUs for MPI

For clusters of CPUs where programs of MPI run, we
imagine that every cluster of CPUs is composed of one CPU
for programs of common programming languages and one
“cluster-of-CPU accelerator” for programs based on MPI. We
use similar ideas as in the above and regard the “cluster-of-
CPU accelerator + codes of program based on MPI running
on the cluster-of-CPU accelerator” as an I/O device, and
extend file managements in common programming languages
to include it as one kind of I/O devices (i.e. files). Thus, to
some extent we can simplify programming model “common
programming languages + MPI” into usual programming with
common programming languages.

III. COMPUTER SYSTEMS UNDER THE VIEW OF THE
UNIFIED PROGRAMMING MODEL

So far, there are many kinds of computer systems in the
world. We roughly divide these computer systems into several
types according to whether CPUs are single-core and whether
there is a cluster of CPUs and whether there are accelerators.
Although some computer systems may not belong to any type,
this does not affect the results of our discussion in this paper.
Assume that all the computer systems are attached with I/O
devices. We give a description of every type of computer
system as follows.

| Type || Description \

I a single-core CPU

It a single-core CPU with accelerators

I a multi-core CPU

I+ a multi-core CPU with accelerators

1T a cluster of single-core CPUs

III* || a cluster of single-core CPUs with accelerators
v a cluster of mutil-core CPUs

v+ a cluster of multi-core CPUs with accelerators

For convenience, we use UPM as an abbreviation for “the
Unified Programming Model for heterogeneous computing
with CPU and accelerator technologies”, and =—> as “can be
reduced to”. A 22 B represents that A can be reduced to B
by UPM.

UPM

A. All Types of Computer Systems —

Systems

I-Type Computer

In this section, we show that every type of computer system
can be reduced to a I-type computer system by UMP, i.e. any

type of computer system =— a I-type computer system.

1) I-Type Computer Systems: A I-type computer system
contains only a single-core CPU and is the simplest computer
system. Its programming model is common programming
languages, such as C/C++, Fortran, Python, Java and so on,
and is the simplest programming method.

2) It-Type Computer Systems Rl I-Type Computer Sys-
tems: A TT-type computer system is composed of I-type
computer system and accelerators. According to section II, the
accelerators in the I*-type computer system can be regarded
as I/O devices (general printers exactly), and then as files by
UMP. Thus, the accelerators in the IT-type computer system
“disappear”, and the I*-type computer system turns into a I-
type computer system, i.e., the IT-type computer system e
a I-type computer system.

3) 1I-Type Computer Systems ey I-Type Computer Sys-
tems: In a II-type computer system, the CPU is a multi-core
CPU. According to section II, the II-type computer system
is composed of a I-type computer system and a “multi-core
accelerator”. The “multi-core accelerator” can be regarded as
an I/O device (a general printer exactly), and then a file by
UPM. Thus, the “multi-core accelerator” also “disappears”,
and the II-type computer system turns into an I-type computer
system, i.e., the II-Type computer system 2, I-type
computer system.

4) II*-Type Computer Systems ZEY I-Type Computer Sys-
tems: A IIT-type computer system is composed of a II-Type
computer system and accelerators. According the same reason
as in section I , the IIT-type computer system LEA, II-type
computer system. By 3) in this section, the II-Type computer
system EEE I-type computer system. Therefore, the 117" -
type computer system ZEA the I-type computer system.

5) III-Type Computer Systems ey I-Type Computer Sys-
tems: There is a cluster of single-core CPUs in a Il-type
computer system, and programs based on MPI are for it. We
imagine that the IIl-type computer system is composed of a
single-core CPU and the cluster of single-core CPUs. We use
similar ideas as in section II and regard the cluster of single-
core CPUs as a “cluster-of-single-core-CPU accelerator”. By
UPM, the “cluster-of-single-core-CPU accelerator” can be
regarded as an I/O device (a general printer exactly), and then
a file. The deriver of the I/O device is an application written in
MPI and running on the “cluster-of-single-CPU accelerator”.

Thus, the “cluster-of-single-core-CPU accelerator” is re-
garded as an I/O device, and then a file. The “cluster-of-
single-core-CPU accelerator” also “disappears”, and the III-
type computer system turns into a I-type computer system, i.e.,

the III-type computer system EE I-type computer system
6) 111" -Type Computer Systems pEE I-Type Computer
Systems: A TIIT-type computer system is composed of a

III-type computer system and accelerators. According to the
same reason as in section II, the III"-type computer system

LR, III-type computer system. By 5) in this section, the
UPM
IlI-type computer system =— a I-type computer system.

Therefore, the III*-type computer system ZEL the I-type
computer system.

7) IV-Type Computer Systems LR I-Type Computer Sys-
tems: In a IV-type computer system, the CPUs are multi-
core CPUs. According to the same reason as in section II,
the I'V-type computer system ey III-type computer system.
By 5) in this section, the IlI-type computer system ELE PN 8

type computer system. Therefore, the IV-type computer system

PM
2 the I-type computer system.

8) IV*-Type Computer Systems pEE I-Type Computer
Systems: A IVT-type computer system is composed of a
IV-type computer system and accelerators. According to the
same reason as in section II, The IV *-type computer system
CEAL IV-type computer system. By 7) in this section, the

UPM
IV-type computer system — a I-type computer system.

Therefore, the TV*-type computer system R the I-type
computer system.

B. Programming of Various Computer Systems Is Built on One
API by UPM

The above analysis shows that every type of computer
system, from I -type computer systems to IV -type computer
systems, can be reduced to a I-type computer system, a
simplest computer system containing only a single-core CPU,
by UMP, and so all types of computer systems are unified
into one by UPM in this sense, and so UPM can truly build
the programming of various computer systems on one API
(i.e. file managements of common programming languages
for I-type computer systems). The programming of the I-type
computer system is the simplest, therefore, UPM can make
the programming for various computer systems easier.

IV. COUPLED APPLICATIONS COMPUTING BY UPM

Today, coupled applications computing (like multidisci-
plinary simulations) plays a key role in many fields. However,
It usually requires additional software to provide communica-
tion support to couple multiple applications [3]. This makes
coupled appications computing complicated. Here, we present
a more natual approach to coupled applications computing,
which is based on UPM.

Assume that a coupled applications computing consists of n
applications Ay, Ag, ..., A,,, which are based on MPI, and runs
over n clusters cluster;, clusters, ..., cluster,,, respectively. See
Fig. 4.

According to section II, in UPM, cluster; (where i =
1,2,...,n) can be imagined to be composed of a node (one
CPU) for programs of common programming languages and
one “cluster-of-CPU accelerator” for programs based on MPI.
We can regard the “cluster-of-CPU accelerator (cluster;) +
A;” as a general printer (general-printer;), and extend file
managements in common programming languages and MPI-
I/0O to include it as one kind of I/O devices (i.e. files), see Fig.
5.

Now we form a new cluster consisting of master-node,
node;, nodes, ..., node,,, as shown in the blue circle in Fig.

6. We call the cluster clustersype,. Assume that Agyper, a
program based on MPI, runs over the clustersyper. The Agyper
is responsible for coordinating the n applications Ay, Ao, ...,
A,.

When A; sends data to A; (where 1 < 4,5 < n), the
communication is carried out as follows.

step-1 Aguper gets the data in node; through MPI-I/O from
general-printer; (A; exactly);

step-2 Aguper sends the data from node; to node; through
MPI over the clusterg,per;

step-3 Aguper sends the data in node; to general-printer;
(A; exactly) through MPI-I/O.

Usually Agyper can not communicate with A; (where ¢ =
1,2,...,n) since they are in diffferent parallel MPI worlds.
But in UPM, A; (where i = 1,2,...,n) is a driver of a I/O
device (a general printer), and its MPI world is subordinate to
(through MPI-I/O), rather than parallel to, the MPI world of
f4super-

The UPM makes coupled applications more natural since it
only relies on its own power to couple multiple applications
through MPL

V. SCOPE OF APPLICATION OF UPM

Architectures composed of CPUs and accelerators are in-
creasingly popular in computing systems. Today many com-
puting systems, ranging from embedded systems, to mobile
computing systems, to HPC systems, and to cloud computing
systems, are equipped with accelerators. UPM can be applied
to all these systems since CPU and accelerator technologies
are used in the computing systems.

VI. CONCLUSIONS AND FUTURE WORK

In UPM, to carry out data movement between CPUs and
accelerators in the common programming language worlds,
accelerators can be regarded as one kind of I/O devices. Thus
UPM makes programming across CPUs and accelerators turn
into usual programming tasks to some extent.

UPM should also work for multicore for OpenMP or
Pthread, and to some extent can simplify programming model

master—node

cluster, cluster,

cluster;

Fig. 4. A coupled applications computing.

master—node

~—=

general-printer,

general-printer,

(clustery+Ay)

general-printer;

(cluster+4,) (cluster,+4,)

Fig. 5. The clusters as general printers in the coupled applications by UPM.

“common programming languages + OpenMP/Pthread” . This
allows OpenMP/Pthread-based code to be separated from the
entire program, resulting in higher modularity.

UMP is also applicable to clusters for MPI, and to some
extent can simplify programming model “common program-
ming languages + MPI” into usual programming with common
programming languages. This makes coupled applications
more natural since UPM only relies on its own power to couple
multiple applications through MPL

All types of computer systems can be unified into one (i.e.,
I-type computer systems) by UPM, and so UPM can truly build
the programming of various computer systems on one API
(i.e., file managements of common programming languages
for I-type computer systems). The programming of the I-type
computer system is the simplest, therefore, UPM can make
the programming for various computer systems easier.

UPM can be applied to a number of different computing
systems equipped with accelerators, ranging from embedded
systems, to mobile computing systems, to HPC systems,
and to cloud computing systems since CPU and accelerator
technologies are used in the computing systems.

UPM can accommodate various kinds of accelerators from
different companies. So it is important that users should be
provided with an installation interface so that they can connect

Asupw'
__~~ " master-node Tt~
-7 lustersuper
- clustergper ~.
/
/ B 4 B N
/ - N Ve N ;7 N \
/ \ / N / N I
\ node; \ nodes \ node, N
N \ / \ / \,
A R A B oLl
N .
;L \ h \ h 7
\ \ |
| ~< | -
-4 I J [e !
I —_l 9+
| S I B |
! | ! | ! |
\ \ \
I I
/

general-printer;

(cluster;+4;)

general-printer, general-printer,

(clustery+Ay) (cluster,+4,)

Fig. 6. clustersyper consisting of master-node, nodey, nodeo, ..., nodey,.

their accelerators to heterogeneous platforms conveniently by
themselves in the sense that the UPM can work. The users
can enter the parameters about the accelerators, the program-
ming languages for the accelerators, and their compilers, etc.
through this interface into the heterogeneous platforms so that
the UPM can work using the parameters. Therefore, its design
and implementation will be necessary for UPM technology to
be applied widely.

UPM does not restrict which accelerator to assign code
to. So there must be an optimal assignment for accelerators
using same languages which will improve the code running
efficiency. It will be meaningful how to find the optimal
assignment.

ACKNOWLEDGMENT

The author would like to thank Dr. Pavan Balaji at Facebook
Al The author was invited by him to visit Mathematics and
Computer Science Division at Argonne National Laboratory
in 2013, and the idea that GPUs are regarded as one kind of
I/O devices was formed preliminarily at that time.

REFERENCES

[1] A. Rush, A. Sirasao, and M. Ignatowski, “Unified Deep Learning with
CPU, GPU, and FPGA Technologies,” White paper, AMD and Xilinx,
2017.

[2] W. Gropp and M. Snir, “Programming for exascale computers,” Com-
puting in Science and Engineering. vol. 6, pp. 27-35. 2013.

[3] MpCCI, https://www.mpcci.de/

