
EasyChair Preprint
№ 7755

A Unified Programming Model for Heterogeneous
Computing with CPU and Accelerator
Technologies

Yuqing Xiong

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 10, 2022

A Unified Programming Model for Heterogeneous
Computing with CPU and Accelerator

Technologies*
YuqingXiong

Computer Science Department
Shanghai Institute of Technology

Shanghai, China
yqxiong@sit.edu.cn

Abstract—This paper consists of three parts. The first part
provides a unified programming model for heterogeneous com-
puting with CPU and accelerator (like GPU, FPGA, Google TPU,
and more) technologies. To some extent, this new programming
model makes programming across CPUs and accelerators turn
into usual programming tasks with common programming lan-
guages, and relieves complexity of programming across CPUs and
accelerators. It can be achieved by extending file managements
in common programming languages, such as C/C++, Fortran,
Python, MPI, etc., to cover accelerators as I/O devices. In the
second part, we show that all types of computer systems can
be reduced to the simplest type of computer system, a single-
core CPU computer system with I/O devices, by the unified
programming model. Thereby, the unified programming model
can truly build the programming of various computer systems
on one API (i.e. file managements of common programming
languages), and can make programming for various computer
systems easier. In third part, we present a new approach to cou-
pled applications (like multidisciplinary simulations) computing
by the unified programming model. The unified programming
model makes coupled applications computing more natural and
easier since it only relies on its own power to couple multiple
applications through MPI.

Index Terms—unified programming model, CPU, accelerator,
general printer, one API, coupled applications

I. INTRODUCTION

Heterogeneous computing with CPU and accelerator tech-
nologies is widely concerned. However, there are some chal-
lenges in the heterogeneous computing. To remove the diffi-
culties, for example, an architecture for unified deep learning
with CPU, GPU, and FPGA technologies is presented [1]. The
examples of underlying hardware approaches in the architec-
ture are shown in Fig. 1 and Fig. 2 (extracted from [1]). This
is a typical heterogeneous computing architecture with CPU
and accelerator technologies.

A key problem for the heterogeneous computing is that a
full and seamless programming environment that works across
CPUs and accelerators is necessary so that the architecture can
work well [1]. However, it seems to difficult to design and
build the full and seamless programming environment since it
is not easy that communication between application programs

The first draft of the first part in this paper was written in June 2018.

of common programming languages for CPUs and programs
of programming languages for accelerators are carried out.
For example, data movement between MPI for distributed
memory parallel programming and CUDA is difficult, it makes
programming with MPI+CUDA complicated [2].

To overcome the challenge of communication between
CPUs and accelerators in the common programming language
world, in this paper, we will try to provide a unified program-
ming model that can work across CPUs, GPUs, FPGAs, and
other accelerators (such as Google TPU, etc.) by extending
file managements in common programming languages, such
as C/C++, Fortran, Python, MPI, etc., to cover GPUs, FPGAs,
and other accelerators (such as Google TPU, etc.) as I/O de-
vices. To some extent it makes programming across CPUs and
accelerators turn into usual programming tasks, and relieves
complexity of programming across CPUs, GPUs, FPGAs, and
other accelerators since it makes heterogeneous systems turn
into homogeneous systems from a certain perspective (acceler-
ators as one kind of I/O devices). Thus the programming model
can contribute to improve software productivity for computing
across CPUs and accelerators.

To further explain the unified programming model to sim-
plify programming complexity, in this paper, we show that all
types of computer systems can be reduced to the simplest type
of computer system, a single-core CPU computer system with
I/O devices, by the unified programming model. Thereby, the
unified programming model can truly build the programming

8

Conversely, data parallelism is implemented by assigning a batch of data to each node, where a node

implements that entire DNN model, end-to-end.

Within a single hardware node, scaling to multiple GPUs can be accomplished using a combination of PCIe

links or custom fabrics. One such configuration is shown below using AMD Infinity Fabric™ links to

interconnect multiple GPUs. NVIDIA GPUs can use their custom NVLink™ interconnect for similar

configurations. Figure 5 shows a typical configuration of 4:1 GPU to CPU.

Figure 5 GPU Scale out using Vega20 and Epyc [Note: this image will be replaced in the final version]

What about ASICS? It is generally possible to take custom designs originally developed for an FPGA and

implement them in an ASIC chip for improved performance and power efficiency. Google’s Tensor

Processing Unit (TPU) is an example of an ASIC custom designed for DL processing. For the purposes of

this white paper, whether an accelerator for DL is implemented in an FPGA or ASIC has little impact to the

system hardware and software architecture issues for the heterogeneous DL systems being discussed

here.

Unified Deep Learning Configurations and Emerging Applications

Previous sections have described the complementary strengths of CPUs, GPUs, and FPGAs for different
types of deep learning operations. With the emergence of new use cases, there will be a growing benefit
of unified deep learning configurations combining all three types of hardware elements into single
hardware nodes. This is illustrated with a few specific examples.

Training and inference are typically thought of as very distinct operations today, but there are emerging
applications that will combine them. Continuous and reinforcement training can be used when a deep
learning system is deployed in an environment where regular retraining and updating of a DNN is required.
For example, systems that control devices in real time can be continuously learning and adapting based
on the results of their previous actions. Similarly, systems that interact with humans can use feedback
from humans to continuously improve their training. A unified deep learning platform that simultaneously
employs GPUs for training updates and FPGAs for inference enables efficient implementation of such
continuous training systems.

Fig. 1. GPU Scale out using Vega20 and Epyc (extracted from [1]).

9

Simulations can also be used for training. There are many scenarios in the field of autonomous driving,

surveillance, and other areas where large amounts of training data may not be available. Creating large

datasets with labeled images or scene-specific pedestrian detectors is extremely costly. This also applies

to designing deep learning based controllers for lane merging, and other situations. To circumvent this

problem, modern computer games are being used to provide training data by simulating real life

situations. A unified system with very robust hardware capabilities is needed for such combined

simulation / deep learning systems.

Many systems can have serious negative consequences for certain types of wrong predictions. One

example is an autonomous vehicle that fails to correctly identify the presence of a stop sign. There are

cases where such failures occur when stop signs are slightly modified, such as when a small sticker is

placed on them. One approach to reducing such errors is to combine multiple types of analysis: multiple

DNNs independently trained with different data, plus the use of a digital map of all known stop signs in

the area, plus an expert system that predicts circumstances where a stop sign is likely to be present. A

supervising routine would evaluate the input from all these sources to make a more reliable determination

about the presence of a stop sign. This type of hierarchy of heterogeneous machine intelligent systems

mimics how many human decisions are made, and is expected to become more common over time.

Another active area for developing machine intelligence applications combines deep learning and data

analytics on very large-scale datasets or real-time data streams.

These types of systems combining DNNs with other operations require the variety of rapid compute

capabilities that a combination of CPU, GPU, and FPGA functions provides.

A heterogeneous configuration of components within a node can also optimize functions other than

machine intelligence, as shown in the example in Figure 6. The FPGA in this configuration is used to

implement a highly optimized intelligent interconnect between the server blades. It is easy to envision

adding GPUs to such a blade, with possible additional support in the FPGA for machine intelligence related

communication and collective functions, resulting in a highly optimized heterogeneous server for large

datacenter machine intelligence operations.

Figure 6 FPGA Exploitation

The CPU, GPU, and FPGA coupling provides for a software selection of a la carte solutions that can be

optimized in a wide variety of ways that are hidden from the user. A unified software stack is not only

elegant but provides for a maximum efficiency management of system resources. This also applies to

Fig. 2. FPGA Exploitation (extracted from [1]).

of various computer systems on one API (i.e. file manage-
ments of common programming languages), and can make
programming for various computer systems easier.

Coupled applications (like multidisciplinary simulations)
computing is very important in many fields. It usually needs
addtional software to support. In this paper, we present a new
approach to coupled applications computing, which is based
on the unified programming model. The unified programming
model makes coupled applications more natural since it only
relies on its own power to couple multiple applications through
MPI.

II. A UNIFIED PROGRAMMING MODEL FOR
HETEROGENEOUS COMPUTING WITH CPU AND

ACCELERATOR TECHNOLOGIES

A. Accelerators as One Kind of I/O Devices in Common
Programming Languages

File managements in common programming languages are a
kind of mechanisms which make application programs access
I/O devices easier. An application’s access to I/O devices
generally involves many tasks carried out by systems, that is,
the tasks are accomplished by systems (not by applications)
in the name of application access to I/O devices through file
managements. This name is the key to making it easy for
applications (running on CPUs) to access I/O devices.

Therefore, if we can also regard accelerators as one kind
of I/O devices (or one kind of general printers) in common
programming languages (although accelerators, such as GPUs,
aren’t any kind of I/O devices in the usual sense) and extend
file managements in common programming languages to cover
accelerators as one kind of I/O devices, the data movement
between CPUs and accelerators can also be carried out by
systems in the name of application access to I/O devices
through the file managements. Thus we can explicitly avoid
data movement between CPUs and accelerators in application
programs of the common programming languages and make
programming across CPUs and accelerators easier. GPUs are
taken as an example to illustrate it here.

Let’s compare GPUs with HP printers. There are many
models (such as LaserJet P1008) for the HP printers, there is
a driver for each model, and outputs of printers are to papers.
Similarly, “GPU+CUDA code running on the GPU” can be
regarded as an I/O device (a general printer), its model is the
CUDA code, its driver is also the CUDA code, and its output
is to CPUs (application processes exactly).

Let’s take an example to illustrate it further, see Fig. 3.
Assume that P is a program written in a common programming
language and runs on a CPU, Q is a program written in CUDA
and runs on a GPU. ”The GPU+Q” is regarded as a general
printer, the code of Q is its model, and Q is its deriver. P
sends data to Q (i.e. P sends input to the general printer to
print), and Q receives the data, processes the data, and then
sends the computational result to P (i.e. the general printer
prints the results to P). Thus communication between P and
Q is carried out. Fig. 3 shows the communication between P
and Q.

This way, we realize data movement between application
programs of common programming languages on CPUs and
programs of CUDA on GPUs in the name of printing the data
through the general printer.

In operating systems and common programming languages,
such as C/C++, Fortran, Python, etc., all I/O devices (including
printers) are regarded as files, so it should be natural that
“GPU+CUDA code running on the GPU” (a general printer)
can also be regarded as files in common programming lan-
guages.

Naturally, we should extend file managements in common
programming languages, such as C/C++, Fortran, Python, etc.,
to include accelerators as one kind of I/O devices. For MPI,
MPI-I/O should be extended to cover accelerators as one kind
of I/O devices.

Thus, we simplify programming across CPUs, GPUs, FP-
GAs, and other accelerators into usual programming tasks
with common programming languages to some extent, and
make programming in heterogeneous systems with acceler-
ators easier since it makes heterogeneous systems turn into
homogeneous systems from a certain perspective (accelerators
as one kind of I/O devices). So this can contribute to improve
software productivity for computing across CPUs and accel-
erators.

B. For Multi-core CPUs for OpenMP or Pthread

For multi-core CPUs where programs of OpenMP or
Pthread run, we can imagine that every multi-core CPU
consists of one “single-core CPU” for programs of common
programming languages and one “multi-core accelerator” for
programs of OpenMP or Pthread. In the same way, we can
regard the “multi-core accelerators + OpenMP/Pthread codes
running on the multi-core accelerators” as I/O devices, and
extend file managements in common programming languages
to include them as one kind of I/O devices (i.e. files). Thus

General printer
(the GPU+Q)

Q is its deriver

Input to the general printer
(data sent by P to Q)

Output from the general printer
(data produced by Q and sent to P)

P is
running

on the CPU

Fig. 3. Communication between P running on a CPU and Q running on a
GPU.

to some extent we also simplify programming model “com-
mon programming languages + OpenMP/Pthread” into usual
programming with common programming languages.

This allows OpenMP/Pthread-based code to be separated
from the entire program, resulting in higher modularity.

C. For Clusters of CPUs for MPI

For clusters of CPUs where programs of MPI run, we
imagine that every cluster of CPUs is composed of one CPU
for programs of common programming languages and one
“cluster-of-CPU accelerator” for programs based on MPI. We
use similar ideas as in the above and regard the “cluster-of-
CPU accelerator + codes of program based on MPI running
on the cluster-of-CPU accelerator” as an I/O device, and
extend file managements in common programming languages
to include it as one kind of I/O devices (i.e. files). Thus, to
some extent we can simplify programming model “common
programming languages + MPI” into usual programming with
common programming languages.

III. COMPUTER SYSTEMS UNDER THE VIEW OF THE
UNIFIED PROGRAMMING MODEL

So far, there are many kinds of computer systems in the
world. We roughly divide these computer systems into several
types according to whether CPUs are single-core and whether
there is a cluster of CPUs and whether there are accelerators.
Although some computer systems may not belong to any type,
this does not affect the results of our discussion in this paper.
Assume that all the computer systems are attached with I/O
devices. We give a description of every type of computer
system as follows.

Type Description
I a single-core CPU
I+ a single-core CPU with accelerators
II a multi-core CPU
II+ a multi-core CPU with accelerators
III a cluster of single-core CPUs
III+ a cluster of single-core CPUs with accelerators
IV a cluster of mutil-core CPUs
IV+ a cluster of multi-core CPUs with accelerators

For convenience, we use UPM as an abbreviation for “the
Unified Programming Model for heterogeneous computing
with CPU and accelerator technologies”, and =⇒ as “can be
reduced to”. A UPM

=⇒ B represents that A can be reduced to B
by UPM.

A. All Types of Computer Systems UPM
=⇒ I-Type Computer

Systems

In this section, we show that every type of computer system
can be reduced to a I-type computer system by UMP, i.e. any
type of computer system UPM

=⇒ a I-type computer system.

1) I-Type Computer Systems: A I-type computer system
contains only a single-core CPU and is the simplest computer
system. Its programming model is common programming
languages, such as C/C++, Fortran, Python, Java and so on,
and is the simplest programming method.

2) I+-Type Computer Systems UPM
=⇒ I-Type Computer Sys-

tems: A I+-type computer system is composed of I-type
computer system and accelerators. According to section II, the
accelerators in the I+-type computer system can be regarded
as I/O devices (general printers exactly), and then as files by
UMP. Thus, the accelerators in the I+-type computer system
“disappear”, and the I+-type computer system turns into a I-
type computer system, i.e., the I+-type computer system UPM

=⇒
a I-type computer system.

3) II-Type Computer Systems UPM
=⇒ I-Type Computer Sys-

tems: In a II-type computer system, the CPU is a multi-core
CPU. According to section II, the II-type computer system
is composed of a I-type computer system and a “multi-core
accelerator”. The “multi-core accelerator” can be regarded as
an I/O device (a general printer exactly), and then a file by
UPM. Thus, the “multi-core accelerator” also “disappears”,
and the II-type computer system turns into an I-type computer
system, i.e., the II-Type computer system UPM

=⇒ a I-type
computer system.

4) II+-Type Computer Systems UPM
=⇒ I-Type Computer Sys-

tems: A II+-type computer system is composed of a II-Type
computer system and accelerators. According the same reason
as in section II , the II+-type computer system UPM

=⇒ a II-type
computer system. By 3) in this section, the II-Type computer
system UPM

=⇒ a I-type computer system. Therefore, the II+-
type computer system UPM

=⇒ the I-type computer system.

5) III-Type Computer Systems UPM
=⇒ I-Type Computer Sys-

tems: There is a cluster of single-core CPUs in a III-type
computer system, and programs based on MPI are for it. We
imagine that the III-type computer system is composed of a
single-core CPU and the cluster of single-core CPUs. We use
similar ideas as in section II and regard the cluster of single-
core CPUs as a “cluster-of-single-core-CPU accelerator”. By
UPM, the “cluster-of-single-core-CPU accelerator” can be
regarded as an I/O device (a general printer exactly), and then
a file. The deriver of the I/O device is an application written in
MPI and running on the “cluster-of-single-CPU accelerator”.

Thus, the “cluster-of-single-core-CPU accelerator” is re-
garded as an I/O device, and then a file. The “cluster-of-
single-core-CPU accelerator” also “disappears”, and the III-
type computer system turns into a I-type computer system, i.e.,
the III-type computer system UPM

=⇒ a I-type computer system

6) III+-Type Computer Systems UPM
=⇒ I-Type Computer

Systems: A III+-type computer system is composed of a
III-type computer system and accelerators. According to the
same reason as in section II, the III+-type computer system
UPM
=⇒ a III-type computer system. By 5) in this section, the
III-type computer system UPM

=⇒ a I-type computer system.

Therefore, the III+-type computer system UPM
=⇒ the I-type

computer system.
7) IV-Type Computer Systems UPM

=⇒ I-Type Computer Sys-
tems: In a IV-type computer system, the CPUs are multi-
core CPUs. According to the same reason as in section II,
the IV-type computer system UPM

=⇒ III-type computer system.
By 5) in this section, the III-type computer system UPM

=⇒ a I-
type computer system. Therefore, the IV-type computer system
UPM
=⇒ the I-type computer system.

8) IV +-Type Computer Systems UPM
=⇒ I-Type Computer

Systems: A IV+-type computer system is composed of a
IV-type computer system and accelerators. According to the
same reason as in section II, The IV+-type computer system
UPM
=⇒ a IV-type computer system. By 7) in this section, the
IV-type computer system UPM

=⇒ a I-type computer system.
Therefore, the IV+-type computer system UPM

=⇒ the I-type
computer system.

B. Programming of Various Computer Systems Is Built on One
API by UPM

The above analysis shows that every type of computer
system, from I+-type computer systems to IV+-type computer
systems, can be reduced to a I-type computer system, a
simplest computer system containing only a single-core CPU,
by UMP, and so all types of computer systems are unified
into one by UPM in this sense, and so UPM can truly build
the programming of various computer systems on one API
(i.e. file managements of common programming languages
for I-type computer systems). The programming of the I-type
computer system is the simplest, therefore, UPM can make
the programming for various computer systems easier.

IV. COUPLED APPLICATIONS COMPUTING BY UPM

Today, coupled applications computing (like multidisci-
plinary simulations) plays a key role in many fields. However,
It usually requires additional software to provide communica-
tion support to couple multiple applications [3]. This makes
coupled appications computing complicated. Here, we present
a more natual approach to coupled applications computing,
which is based on UPM.

Assume that a coupled applications computing consists of n
applications A1, A2, ..., An, which are based on MPI, and runs
over n clusters cluster1, cluster2, ..., clustern, respectively. See
Fig. 4.

According to section II, in UPM, clusteri (where i =
1, 2, ..., n) can be imagined to be composed of a node (one
CPU) for programs of common programming languages and
one “cluster-of-CPU accelerator” for programs based on MPI.
We can regard the “cluster-of-CPU accelerator (clusteri) +
Ai” as a general printer (general-printeri), and extend file
managements in common programming languages and MPI-
I/O to include it as one kind of I/O devices (i.e. files), see Fig.
5.

Now we form a new cluster consisting of master-node,
node1, node2, ..., noden, as shown in the blue circle in Fig.

6. We call the cluster clustersuper. Assume that Asuper, a
program based on MPI, runs over the clustersuper. The Asuper

is responsible for coordinating the n applications A1, A2, ...,
An.

When Ai sends data to Aj (where 1 ≤ i, j ≤ n), the
communication is carried out as follows.

step-1 Asuper gets the data in nodei through MPI-I/O from
general-printeri (Ai exactly);

step-2 Asuper sends the data from nodei to nodej through
MPI over the clustersuper;

step-3 Asuper sends the data in nodej to general-printerj
(Aj exactly) through MPI-I/O.

Usually Asuper can not communicate with Ai (where i =
1, 2, ..., n) since they are in diffferent parallel MPI worlds.
But in UPM, Ai (where i = 1, 2, ..., n) is a driver of a I/O
device (a general printer), and its MPI world is subordinate to
(through MPI-I/O), rather than parallel to, the MPI world of
Asuper.

The UPM makes coupled applications more natural since it
only relies on its own power to couple multiple applications
through MPI.

V. SCOPE OF APPLICATION OF UPM

Architectures composed of CPUs and accelerators are in-
creasingly popular in computing systems. Today many com-
puting systems, ranging from embedded systems, to mobile
computing systems, to HPC systems, and to cloud computing
systems, are equipped with accelerators. UPM can be applied
to all these systems since CPU and accelerator technologies
are used in the computing systems.

VI. CONCLUSIONS AND FUTURE WORK

In UPM, to carry out data movement between CPUs and
accelerators in the common programming language worlds,
accelerators can be regarded as one kind of I/O devices. Thus
UPM makes programming across CPUs and accelerators turn
into usual programming tasks to some extent.

UPM should also work for multicore for OpenMP or
Pthread, and to some extent can simplify programming model

master-node

cluster1 cluster2 clustern

Fig. 4. A coupled applications computing.

master-node

(cluster1+)

node1 node2 noden

general-printer1 general-printer2 general-printern

(cluster2+) (clustern+)

Fig. 5. The clusters as general printers in the coupled applications by UPM.

“common programming languages + OpenMP/Pthread” . This
allows OpenMP/Pthread-based code to be separated from the
entire program, resulting in higher modularity.

UMP is also applicable to clusters for MPI, and to some
extent can simplify programming model “common program-
ming languages + MPI” into usual programming with common
programming languages. This makes coupled applications
more natural since UPM only relies on its own power to couple
multiple applications through MPI.

All types of computer systems can be unified into one (i.e.,
I-type computer systems) by UPM, and so UPM can truly build
the programming of various computer systems on one API
(i.e., file managements of common programming languages
for I-type computer systems). The programming of the I-type
computer system is the simplest, therefore, UPM can make
the programming for various computer systems easier.

UPM can be applied to a number of different computing
systems equipped with accelerators, ranging from embedded
systems, to mobile computing systems, to HPC systems,
and to cloud computing systems since CPU and accelerator
technologies are used in the computing systems.

UPM can accommodate various kinds of accelerators from
different companies. So it is important that users should be
provided with an installation interface so that they can connect

master-node

(cluster1+)

node1 node2 noden

general-printer1 general-printer2 general-printern

clustersuper

(cluster2+) (clustern+)

Fig. 6. clustersuper consisting of master-node, node1, node2, ..., noden.

their accelerators to heterogeneous platforms conveniently by
themselves in the sense that the UPM can work. The users
can enter the parameters about the accelerators, the program-
ming languages for the accelerators, and their compilers, etc.
through this interface into the heterogeneous platforms so that
the UPM can work using the parameters. Therefore, its design
and implementation will be necessary for UPM technology to
be applied widely.

UPM does not restrict which accelerator to assign code
to. So there must be an optimal assignment for accelerators
using same languages which will improve the code running
efficiency. It will be meaningful how to find the optimal
assignment.

ACKNOWLEDGMENT

The author would like to thank Dr. Pavan Balaji at Facebook
AI. The author was invited by him to visit Mathematics and
Computer Science Division at Argonne National Laboratory
in 2013, and the idea that GPUs are regarded as one kind of
I/O devices was formed preliminarily at that time.

REFERENCES

[1] A. Rush, A. Sirasao, and M. Ignatowski, “Unified Deep Learning with
CPU, GPU, and FPGA Technologies,” White paper, AMD and Xilinx,
2017.

[2] W. Gropp and M. Snir, “Programming for exascale computers,” Com-
puting in Science and Engineering. vol. 6, pp. 27-35. 2013.

[3] MpCCI, https://www.mpcci.de/

