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Abstract. The paper presents a new boundary averaging operator (BAO) in which the particular role of boundary values is considered in a more 

suitable way than the conventional approach. A remarkable feature of BAO is that this operator contains a parameter of boundary regulation p and 

depends on a local value h of the integration domain. By varying these two parameters one can regulate the obtained approximate solutions in order 

to get more accurate ones. Therefore, BAO can serve as a sophisticated tool for approximate analysis in various fields of mathematics and 

mechanics. One of the effective applications of BAO is integrating this operator with the Galerkin method to determine the limit loads for the 

buckling problem of beams with constant and variable thicknesses. The balance equation of the beam is established from the third-order shear 

deformation theory. The critical buckling load of the beam is determined by applying BAO to three different cases. The calculation results show 

that the critical buckling load depends on the boundary conditions and the values of the parameters h and p. It is shown that BAO can give more 

accurate approximate solutions than the ones obtained by the convential averaging operator. 
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1. INTRODUCTION 

Beam structures have long been an interesting topic for many scientists. Beam constructions remain a crucial 

component in several technological applications such as road and bridge construction, buildings, aircraft, and nuclear 

facilities. Therefore, the development theories about beams in particular and solid objects in general are focused on 

research by scientists [1]–[4]. 

The integral operator is a common and frequently used model in several scientific and technical domains, especially 

in applied mathematics and mechanics. Integral operators, like Laplace and Fourier transforms, are renowned 

instances of integral transforms that serve as mappings between two function spaces. Averaging operators are 

significant within integral operators since they have the ability to amalgamate all values of a function into a single 

average value. For one-dimensional structures, the typical averaging operator integrates over the overall structural 

length. For 3-dimensional solids, integration is done over the full volume of the solid. Conventional averaging (CA) 

is frequently referred to as simple or arithmetic averaging since it assumes that all values play an equal part in the 

function being considered. Weighted averaging (WA) is an effective strategy that considers each value's unique 

contribution to the function, in contrast to standard average. Anh Tay Nguyen and colleagues use a dual approach to 

traditional averaging in order to create a weighted averaging method [5]. An in-depth analysis of a one-parameter 

weighting function for the unique weighted local averaging (WLA) is introduced. The Galerkin technique with 

weighted local averaging (GWLA) exemplifies the advantages of using the suggested WLA. The GWLA was used to 

address the issue of columns buckling under stress, demonstrating that the novel concept may significantly enhance 

the accuracy of the first-order approximation solution of the Galerkin technique. The analogous linearization approach 

with weighted averaging was used in [6] to analyze nonlinear vibrating systems. 

Recently, a novel method of averaging has been introduced, emphasizing the significance of boundary values [7]. The 

outcome is a novel boundary averaging operator (BAO) that considers the specific significance of boundary variables. 

An interesting aspect of BAO is the inclusion of a boundary regulatory parameter, denoted as p, which is influenced 

by a local value h inside the integration region. By adjusting these two factors, one may control the approximate 

solutions to achieve more accuracy. The combination of BAO with the Galerkin approach has been shown to be a 

viable tool for approximating the buckling issue of columns and analyzing the frequency of free vibration in severely 

nonlinear systems. 
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This work aims to provide a novel boundary integral operator and demonstrate its use with the Galerkin technique to 

create an effective approximation tool for analyzing the buckling issue of columns. Efforts have been undertaken to 

enhance the precision of the first approximation solution of the Galerkin technique in analytical studies, since this 

solution is often achievable in a straightforward manner. The study by Wang CM, Wang CY, and Reddy [8] provides 

precise solutions for the buckling of structural elements such as columns, beams, arches, rings, plates, and shells with 

varying cross-sections, axial forces, and boundary conditions. This work utilizes precise solutions for the buckling 

issue to validate the correctness of the Galerkin technique using boundary operators. 

The paper is structured as outlined below: A novel boundary-averaging operator is introduced in Section 2. BAO is 

used with the Galerkin technique for the buckling issue of beams in Section 3. Section 4 contains a summary of 

conclusions and suggestions for further research. 

2. BOUNDARY AVERAGING OPERATOR WITH EMPHASIS ON BOUNDARY DOMAINS 

   Let g(x) be an integrable deterministic function of x є [0,1] and h is a local value in [0,1]. The conventional average 

of g(x) over the interval [0,1] is given by an integral as follows 

1

0
( ) g( )g x x dx                                                                                                                                                      (1) 

where .  denotes the conventional averaging operator. The average (1) is called the arithmetic mean because all 

values of g(x) are treated equally and assigned equal weight. However, values of g(x) may be weighted for the reason 

that they belong to different domains of the interval [0,1]. It is well known that boundary conditions play a key role 

in mechanics of solids and structures. To develop this point of view, in addition to the conventional arithmetic average, 

ND and NT Anh consider the following integral taken over the global domain and over some local boundary domains 

as follows [7] 

1 1

1
0 0 1

( ( )) (1 2 ) g( ) ( g( ) g( ) )
h

h
A g x ph x dx p x dx x dx


                                                                                              (2) 

where the left side is a notation denoting the boundary averaging operator 1 ( ( ))A g x acting on g(x) at a local value h, 

p is a weight quoted as a parameter of boundary regulation. The second term in parentheses involves values of g(x) 

integrated into the boundary domains [0, h] and [1-h,1]. Therefore, the average value (2) can be considered as a 

weighted average for the reason that the values in the boundary regions are calculated once more and then multiple 

with a weight p. The boundary averaging (2) is coincident with the conventional averaging for p=0. In this paper, a 

new boundary-averaging operator is proposed as follows  

1 1

2
0 0

( ( )) g( ) [(1 2 ) g( ) g( ) ]
h h

h
A g x x dx p h x dx h x dx



                                                                                              (3) 

In case the function g(x) = xn, Figure 1-2 shows the values of A1-A2 corresponding to different values of n, p, and h.  
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Fig 1. BAOs (boundary averaging values) of 
nx depends on n, p, and h 
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Fig 2. BAOs of 
nx depends on h and p for the cases n = 1, n = 2, and n = 3 

If function g(x) is expanded into Taylor series 

0

( ) i

i

i

g x g x




                                                                                                   (4) 

the BAO of g(x) can be formulated in its explicit form using the linearity of BAO:  
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3. APPLICATION OF BOA TO THE BUCKLING PROBLEM OF BEAMS CALCULATED 

ACCORDING TO HIGH-ORDER SHEAR DEFORMATION THEORY 

This work focus beam has a displacement field calculated according to third-order shear deformation theory 

( , , )

( , , )

b zs

x z

z zb zs

w w
u x y z z f

x x

w x y z w w

 
  

 
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                                                                      (7) 

where 
3

3

4 5

3 3
z

z
f

h

 
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 

. 

Stress and strain relationship according to Hooke's law 
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                    (8) 

In the case of axial compression by force P , the beam's equilibrium equation for the static buckling problem has the 

form 
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After transforming (9), the buckling equation of the beam has a reduced form 

2 3 4 32 3

2 2 3 4 3 3
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where /x sA A   , 
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By using transformation 

 /x x L , 2/ , /zb zbw w L P PL EI 
                                                                                       (11)                                                     

one gets from Eq. (10) 
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  (12)                                                       

To solve Eq. (12) one needs to add boundary conditions for beam at two points x=0 and x=1. In this paper we consider 

3 typical types of boundary conditions as given in Tab. 1. For each type of boundary conditions there exists a 

corresponding comparison function zbw  of the polynomial form,
4

0

n
i

zb i

i

w C x




 , where iC are obtained from the 

boundary conditions. Tab. 1 shows 3 types of boundary conditions and corresponding comparison functions. 

Table 1. Different types of beams with corresponding boundary conditions and comparison functions 

     Type of Boundary Conditions Boundary Conditions Comparison Function W(x) 

1. Pinned-Pinned beam (P-P) 

 0 0zbw  ;
 2

2

0
0

zbd w

dx
  

(1) 0zbw  ;
 2

2

1
0

zbd w

dx
  

4 32x x x   

2. Clamped-Pinned beam (C-P) 

(0) 0zbw  ;
 0

0
zbdw

dx
  

(1) 0zbw  ;
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2

1
0

zbd w

dx
  

4 3 22 5 3x x x   

3. Clamped-Clamped beam (C-C) 

(0) 0zbw  ;
 0

0
zbdw

dx
  

(1) 0zbw  ;
 1

0
zbdw

dx
  

4 3 22x x x   

The approximate solution of the buckling problem described by Eq. (12) can be obtained by using Galerkin method 

for one term comparison function as follows 
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       (13) 

Eq. (13) leads to the approximate buckling load obtained by Galerkin method with CA 
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                                         (14) 

If in Eq. (13) one replaces the conventional averaging by BAO then gets 
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(15) 

Then one has the approximate buckling load obtained by Galerkin method with BOA
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                                     (16) 

It is seen from Eq. (16) that the critical load determined by Galerkin method with BAO is a function of parameter p

and local value h. If the value p  is given, the buckling load will be chosen as the lowest value of P(p,h) in the interval 

[0.1] i.e.  

[0,1]
( ) min ( , )BAO

h
P p P p h


                (17) 

It is clearly seen from Eqs. (16) and (17) that the approximate buckling load obtained by Galerkin method with CA is 

corresponding to the case p=0 of the approximate buckling load obtained by Galerkin method with BAO. 

  

3.1. Beams with constant cross-section 

Tables 2-3 show the buckling loads obtained by Galerkin method with CA (p=0) and BAO (p=0.25 and p=0.5) for 

all 3 types of boundary conditions and compares those with exact values from [8]. The beam has length L, length to-

thickness ratio L/h=100, Young's modulus E, and Poisson ratio . It should be noted that this work provides a result 

of calculating the critical buckling load based on the average of three critical buckling load values as follows 

 ( ) (0) (0.25) (0.5) / 3.BAO BAO BAO BAOP tb P P P    

Table 2. Accuracy of approximate buckling loads for different types of beam with constant cross-section, calculated 

according to A1 



Type 

of BC 
𝑃 𝑒𝑥𝑎𝑐𝑡[8] (0)BAOP  

error 

(%) 
(0.25)BAOP  

error 

(%) 
(0.5)BAOP  

error 

(%) 
( )BAOP tb  error 

(%) 

P-P 9.8696 9.8790  0.10 9.6457 2.27  9.4424 4.33 9.6557 2.17 

C-P 20.1907 20.9874 3.95 20.3478 0.78 19.8050 1.91 20.3801 0.94 

C-C 39.4784 41.9542 6.27 38.9351 1.38 36.6262 7.22 39.1718 0.78 

  

Table 3. Accuracy of approximate buckling loads for different types of beam with constant cross-section, calculated 

according to A2 

Type 

of BC 
𝑃 𝑒𝑥𝑎𝑐𝑡 [8] (0)BAOP  

error 

(%) 
(0.25)BAOP  

error 

(%) 
(0.5)BAOP  

error 

(%) 
( )BAOP tb  error 

(%) 

P-P 9.8696 9.8790  0.10 9.7580 1.13 9.6455 2.27 9.7608 1.10 

C-P 20.1907 20.9874 3.95 20.4902 1.48 20.0469 0.71 20.5082 1.57 

C-C 39.4784 41.9542 6.27 40.3397 2.18 38.9415 1.36 40.4118 2.36 

 

The findings obtained from Tables 2-3 indicate that for beams at the P-P boundary condition, the critical buckling 

load calculated according to the average value ( ( )BAOP tb ) for case A2 has a smaller error than for case A1. As for the 

case of beams with C-P and C-C boundary conditions, the results calculated according to the average value ( ( )BAOP tb

) for case A1 are better than for case A2. 

3.2. Beams with variable cross-section given by the exponential function  

In this section, we consider beams with variable cross-section whose moment of inertia is given by exponential 

function 

0( ) e kxEI x EI 
                                                                                     (18) 

The graph of equation (18) is given in Figure 4 for different values of k (k = 0; 0.5; 1.0). 

 

Figure 4. Variation of moment of inertia with different values of exponent k 

Tabs. 4-9 show the critical buckling loads obtained by BAO for p = 0.25 and p = 0.5 as well as the ones of CA for 3 

types of beams with variable cross-section. The critical buckling load ( )BAOP tb  for beams with the C-C boundary 

condition is most accurately calculated using method A1. When analyzing a beam with the P-P boundary condition, 
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the critical buckling load ( )BAOP tb  estimated using method A2 consistently exhibits a lower margin of error compared 

to the calculation done using method A1 (unless otherwise k = 1). When analyzing a beam with the C-P boundary 

condition, the critical buckling load ( )BAOP tb  obtained using A1 has error that is always smaller than the case using 

A2. 

Table 4. Accuracy of approximate buckling loads for P-P beam with exponential moment of inertia, calculated 

according to A1 

k 𝑃 𝑒𝑥𝑎𝑐𝑡 [8] (0)BAOP  
error 

(%) 
(0.25)BAOP  

error 

(%) 
(0.5)BAOP  

error 

(%) 
( )BAOP tb  error 

(%) 

0 9.8696 9.8790  0.10 9.6457 2.27  9.4424 4.33 9.6557 2.17 

0.5 7.6340 7.7089 0.98 7.5366 1.28 7.3864 3.24 7.5440 1.18 

1 5.8270 6.0342 3.56 5.9221 1.63 5.8246 0.04 5.9270 1.72 

Table 5. Accuracy of approximate buckling loads for C-P beam with exponential moment of inertia, calculated 

according to A1 

k 𝑃 𝑒𝑥𝑎𝑐𝑡 [8] (0)BAOP  error (%) (0.25)BAOP  error (%) (0.5)BAOP  error (%) ( )BAOP tb  error (%) 

0 20.1907 20.9874 3.95 20.3478 0.78 19.8050 1.91 20.3801 0.94 

0.5 15.6400 17.5528 12.23 17.0473 9.00 16.6184 6.26 17.0728 9.16 

1 11.9900 14.6202 21.94 14.2399 18.76 13.9172 16.07 14.2591 18.92 

Table 6. Accuracy of approximate buckling loads for C-C beam with exponential moment of inertia, calculated 

according to A1 

k 𝑃 𝑒𝑥𝑎𝑐𝑡 [8] (0)BAOP  
error 

(%) 
(0.25)BAOP  

error 

(%) 
(0.5)BAOP  

error (%) ( )BAOP tb  error 

(%) 

0 39.4784 41.9542 6.27 38.9351 1.38 36.6262 7.22 39.1718 0.78 

0.5 30.6000 32.5536 6.38 30.2394 1.18 28.4697 6.96 30.4209 0.59 

1 23.4900 25.0608 6.69 23.3460 0.61 22.0351 6.19 23.4806 0.04 

 

Table 7. Accuracy of approximate buckling loads for P-P beam with exponential moment of inertia, calculated 

according to A2 

k 𝑃 𝑒𝑥𝑎𝑐𝑡 [8] (0)BAOP  error (%) (0.25)BAOP  error (%) (0.5)BAOP  error (%) ( )BAOP tb  error (%) 

0 9.8696 9.8790  0.10 9.7580 1.13 9.6455 2.27 9.7608 1.10 

0.5 7.6340 7.7089 0.98 7.6118 0.29 7.5215 1.47 7.6141 0.26 

1 5.8270 6.0342 3.56 5.9634 2.34 5.8976 1.21 5.9651 2.37 

Table 8. Accuracy of approximate buckling loads for C-P beam with exponential moment of inertia, calculated 

according to A2 

k 𝑃 𝑒𝑥𝑎𝑐𝑡 [8] (0)BAOP  error (%) (0.25)BAOP  error (%) (0.5)BAOP  error (%) ( )BAOP tb  error (%) 

0 20.1907 20.9874 3.95 20.4902 1.48 20.0469 0.71 20.5082 1.57 

0.5 15.6400 17.5528 12.23 17.1408 9.60 16.7735 7.25 17.1557 9.69 

1 11.9900 14.6202 21.94 14.2921 19.20 13.9995 16.76 14.3039 19.30 

Table 9. Accuracy of approximate buckling loads for C-C beam with exponential moment of inertia, calculated 

according to A2 

k 𝑃 𝑒𝑥𝑎𝑐𝑡 [8] (0)BAOP  error (%) (0.25)BAOP  error (%) (0.5)BAOP  error (%) ( )BAOP tb  error (%) 

0 39.4784 41.9542 6.27 40.3397 2.18 38.9415 1.36 40.4118 2.36 

0.5 30.6000 32.5537 6.38 31.2924 2.26 30.2001 1.31 31.3487 2.45 



1 23.4900 25.0609 6.69 24.1030 2.61 23.2736 0.92 24.1458 2.79 

 

4. Conclusions 

The averaged values play a key role in many areas of science and engineering hence an extension of these values is 

presented. For a function given a simple form of weighted local averaging operator (BAO) taking into account the 

particular role of boundary values of the function is constructed. Remarkable features of BAO are that it contains a 

parameter of boundary regulation p and depends on a local value h of the integration domain, and BAO coincides with 

conventional averaging operator (CAO) at three specific values of h, namely h = 0; 0.5, and 1. One can regulate the 

obtained approximate solutions by varying these two parameters to get more accurate ones. In particular, by putting p 

= 0, BAO leads to CAO. It has been shown that the connection of BAO with the Galerkin method forms an effective 

approximate tool for the buckling problem of beams. Detailed numerical calculations are carried out with three specific 

values of the boundary regulation parameter, namely, p = 0.25; 0.5 for some typical beams.  It is obtained that the 

accuracy of solutions obtained by BAO ( ( )BAOP tb ) is significantly improved in comparison to the one of solutions 

obtained by CA, especially, when the beam has the C-C boundary condition and calculated accordingly A1. BAO is 

shown to be an effective tool that is sophisticated and can be supported by CA to obtain more accurate solutions. 

Further comprehensive investigations, however, need to be carried out in order to find appropriate values of the 

boundary regulation parameter p that can give the most approximate solutions for large classes of problems. The key 

to the best accuracy of obtained solutions is of course related to the best choice of p which will likely depend on the 

problem to be solved, including the boundary conditions. To solve this problem, the approach of the finite element 

analysis can be useful. 
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