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ABSTRACT

Traffic flow forecasting is fundamental to today’s Intelligent
Transportation Systems (ITS). It involves the task of learning
traffic complex dynamics in order to predict future conditions.
This is particularly challenging when it comes to predict the traf-
fic status for multiple horizons into the future and at the same
time for the entire transportation network. In this context deep
learning models have recently shown promising results. This
models can inherently capture the non-linear space-temporal
correlations (ST) in traffic by taking advantage of the huge vol-
ume of data available.

In this study the authors present a LSTM encoder-decoder for
multi-horizon traffic flow predictions. We adopted a direct ap-
proach in which the model simultaneously predict traffic con-
ditions for the entire Belgian motorway transport network at
each time step. The results clearly show the superiority of this
model when compared with other deep learning models. In the
workshop, conference attendees will learn how to process and
visualize mobility data, obtain optimal features for traffic flow
forecasting, build a LSTM encoder-decoder and perform predic-
tions in an online manner.

1 INTRODUCTION

Traffic forecasting systems are crucial in modern cities. These
systems can potentially provide accurate and timely informa-
tion to public and private organizations by relying on data col-
lected in real-time. These organizations can in turn take action
through policy and lead to more sustainable mobility. These
aspects have enormous economic, social and environmental im-
plications. Nowadays, thanks to the development of cutting-edge
technologies and advances in artificial intelligence, traffic fore-
casting has reached results never seen before. In particular, the
advent of deep learning (DL) models allowed to take advantage
of the enormous volume of mobility data to capture the complex
non-linear space-temporal relationships governing road traffic.
Moreover, they proved to be particularly effective when it comes
to predict traffic for both multiple forecast horizons and for multi-
ple streets. In ITS context, the advantages of DL when compared
with traditional machine learning models are summarised as
follow [8, 9]:

e model huge volume of space-temporal traffic data;

o perform multi-horizon road traffic predictions on large

scale transportation networks;
e achieve greater forecasting accuracy;
e comply to real-time requirements characterizing online
forecasting systems in I'TS;
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In the recent literature for multi-horizon forecasting, DL meth-
ods can be categorised into (i) iterated approaches using autore-
gressive models or (ii) direct methods based on sequence-to-
sequence models [7]. The former approaches use one-step-ahead
prediction models where each model’s output is recursively fed
into future inputs to obtain multi-step predictions. On contrary,
direct methods (ii) are trained to explicitly generate forecasts
for multiple predefined horizons in a single step. These models
generally present better forecasting accuracy than the iterative-
based methods. In this paper, we present a tutorial to build and
train a Direct LSTM encoder-decoder model. The model performs
predictions for traffic data related to the entire Belgian motorway
network. The model is tested over two-weeks period in an online
fashion. The results show the DL model obtained better predic-
tive accuracy when compared to advanced seasonal persistence
model and other deep learning models. The data and models code
are available at https://www.kaggle.com/giobbuy/.

2 NETWORK-WIDE FORECASTING

The aim of traffic forecasting is to predict future traffic conditions
given a sequence of historical traffic observations. These obser-
vations are detected by sensors, such as GPS, radio frequency
identification devices, multi-sensors, cameras and Internet tech-
nology, that monitor the traffic status of roads in real-time. In
our study, at each time step t, the traffic flow is monitored at S
street segments of the entire transportation network. Hence, the
road network is modelled as multiple parallel time-series and
represented by the matrix X[; x:

X1,1 X1,k X1,S
Xi1 Xi k Xi,S (1)
Xt1 oe. Xpk o .- XtS

where x; | is the value of traffic flow at time i and street
segment k.
The prediction task can be seen as the process of learning a
mapping function, f from X previously observed features to Z
future streets’ features, f : X — Z.

3 MULTI-HORIZON FORECASTING

In the study, the goal is to perform multi-horizon forecasting of
the traffic flow based on the current and past traffic conditions
of the entire transportation network. To achieve so, a direct
strategy is implemented for multivariate multi-horizon time-
series forecasts as discussed in Bontempi et al. [2].

At each time step t, we obtain:

f:Xe > Zn @)



where Z;,1 is the matrix containing the multi-horizon traffic
flow predictions, (¢t + 1,t + 2, ..., t + h) for all S street segments,
and h is the forecast horizon.
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Figure 1: Feature engineering for multivariate multi-
horizon time-series forecasts with LSTM encoder-decoder.

4 LSTM ENCODER-DECODER
4.1 Preliminaries

4.1.1 Sequence-to-Sequence Learning. In deep learning sequence-

to-sequence learning (Seq2Seq) is about training DL models to
convert sequences from one domain to sequences in another
domain. Multi-horizon traffic flow forecasting at transportation
network scale can be seen as Seq2Seq learning problem, where
the sequence of traffic flow observations from the past is learned
to predict the sequence of observations in the future. The use DL
models offers several advantages [4, 9]:

e natively support sequence input data (sequence of flow
observations);

o directly support multiple parallel input sequences for mul-
tivariate inputs (multiple street segments);

e map input data directly to an output vector ( multi-horizon
predictions).

4.1.2  Long Short-Term Memory (LSTM). Long Short-Term
Memory (LSTM) network is a special kind of recurrent neural
network (RNN), which is capable of learning short and long-term
dependencies of the input data [5] LSTM unit is composed of
three gates: input, forget and output gate. These gates determine
whether or not to let new input in (input gate), delete the infor-
mation because it is not important (forget gate) or to let it impact
the output at the current time step (output gate). LSTMs are now
widely used to deal with sequence data for learning the temporal
dependency of the space-temporal data.

4.1.3  Encoder-Decoder architecture. The encoder-decoder mod-
els present a particular type of architecture particularly effective
for Seq2Seq learning problem [9]. Here’s how it works:

e Encoder Module: the input sequence of the encoder is
fed to the module. This generates an internal state that
is passed as the "context" to the decoder. Note that the
outputs of the encoder are discarded.

e Decoder Module: it is trained to predict the target se-
quence, given the input sequence of the decoder and the
memory state vectors from the encoder. The encoder’s
state allows the decoder to obtain information about what
it is supposed to generate.

4.2 Direct LSTM encoder-decoder
Architecture

At first we frame our prediction problem by diving the time-
dependent input features into two categories as shown in Figure
1 : (i) the observed inputs (traffic flow of streets) which can only
be retrieve at time step t and are unknown beforehand, and the
time-based covariate inputs (features such as day-of-the-week at
time ¢) which can be predetermined.

The Direct LSTM encoder-decoder (D_lstm_ED) Architecture
is shown in Figure 2. As the figure shows, the encoder module
takes as input all past features (both observed roads’ traffic flows
and known temporal features) and encode them into a latent
space. This encoded "context" is then fed as internal state to the
decoder module together with the known future covariates as
inputs. After being trained, the model perform the forecast of the
future (multiple) traffic flow values for the whole road network
at each time step.

FORECASTS

J

P

[ DENSE LAYERS ‘
LSTM —_— LSTM
ENCODER DECODER
L INTERNAL
- ¥ MEMORY STATE
0
OBSERVED KNOWN KNOWN
H | FUTURE INPUTS |
: PAST INPUTS _
N o

Figure 2: Direct LSTM encoder-decoder architecture.

5 EXPERIMENTAL SETTINGS

5.0.1 OBU Data . As from 2016, all owners of Belgian lorries
having a Maximum Authorized Mass in excess of 3.5 tonnes must
pay a kilometre charge. Every road user who is not exempt from
the toll must then install an On Board Unit (OBU) recording the
distance that a lorry travels on Belgian public roads. Because of
their value as mobility indicator, the OBU data are made avail-
able to Bruxelles Mobilite’, the public administration responsible
for equipment, infrastructure and mobility issues in Bruxelles-
Capital Region. Each truck device sends a message approximately
every 30 seconds (from 3 a.m. to 2.59 a.m. of the following day).
Each OBU record contains an anonymous identifier (ID resetting
every day at 3 a.m.), the timestamp, the GPS position (latitude, lon-
gitude), the speed (engine) and the direction (compass). Moreover,
OBU data includes vehicle data characteristics: weight category
(MAM), country code and European emission standards classi-
fication of the engine (EURO value). The large volume and the
streaming nature of the OBU data required the set up of a big
data platform for an efficient collection, storage and analysis [3].

5.0.2 Data Processing & Time-based Covariates. Before ob-
taining the matrix of Figure 1, the OBU data are processed. Firstly,



we consider two months period OBU data, from the 1st of January
to the 28th of February, 2019, and the major motorways related
to Belgium retrieved from OpenSt reetMap! with Module osmnx
in Python. Then, we filter the records with respect to their street
segments location and resample with a 30 minutes interval. The
trucks are considered on the road network if their location falls
within the polygons area representing the street segments 2. We
took into consideration street segments with an average traffic
flow higher than 10 vehicles/half-hour. The number of street
segments (and consequently the number of time series analyzed)
amounts to 5187 with 2832 observations (Fig. 5). Finally, starting
from Timestamp variable, we create the following covariates:

e a Sine and Cosine transformation of the Hours of the Day.
This will ensure that the 0 and 23 hour for example are
close to each other, thus accounting the cyclical nature of
the variable;

o the Days of the Week. Each day of week shows particular
pattern of traffic flow;

o the Working/Week-end Days. There is a clear difference in
traffic flow between the working days and the week-end
days.

This features are deterministic and therefore are known in
advance for future traffic flow predictions.

5.0.3 Data Preparation for DL models. In order for the DL
model to learn, the sequence of observations must be transformed
in the form of { nggmpies: Ntimesteps, Nfeatures }- Therefore, we
transform X to a three dimensional tensor T; to represent the
traffic flow data, txwxM, where t denotes the total number of
samples, w refers to length of sequence observations and M is
the total number of features:

Ty = {X1.Xe, ..., Xe } 3)

where X; is the sample at time i. Thus, X; is the matrix:

Xt—w,1 Xt—w, k Xt—w,M
Xp—w+l,1 Xl k Xt—wtl, M 4
Xt.1 ... Xtk ... Xt M

The shape of each X; is what the model expects as input for
each sample.

5.0.4 Seasonal Persistence and other DL models. As a base-
line to compare our DL model, we consider Seasonal Window
Persistence Model (SW). Within a sliding window, observations
at the same time and same day in previous three-weeks seasons
are collected and the mean of those observations is returned as
persisted forecast. As an example, if the data are hourly and the
forecasting target is 9 a.m. on Monday, then if the window size
is 1 the observation of last Monday at 9 a.m. will be returned as
forecast. A window of size 2 means returning the average of the
observations of the last two Mondays at the same hour.
Moreover, we compare our model with other DL models: two
LSTM models that performs predictions respectively with a di-
rect approach (D_Istm) and with an iterated approach (A_lstm)
and a LSTM-based seq2seq architecture with iterated approach

1https://wwwx)penstreetmap.org
20BU Data processing is available at https//www.kaggle.com/giobbu/obu-data-
preprocessing

(A_lstm_ED) where the decoder’s predictions are reinjected into
the decoder’s input.

5.0.5 Forecasting Evaluation and Metrics. In order to fully ex-
ploit the properties unique of real-time data, we adopt the so
called interleaved-test-then-train evaluation scheme [1]. Each ob-
servation is used to test the model before it is used for training,
and from this the forecasting accuracy is incrementally updated.
Therefore, the model is always being tested on instance it has not
seen. To measure the forecasting accuracy of the competing fore-
casting approaches we use the well-known Root Mean Squared
Error, RMSE, and Mean Absolute Error, MAE. For multi-horizon
forecasts these metrics are defined as follows:

t H
i=1 thl(ei,h)z

RMSE; = B — (5
t H
i=1 2l nl
MAE; = Zi=12h=1 B0 n}l‘; : 6)

where e; j, is the error of the forecast for period i and forecast
horizon h.

5.0.6 Space-Temporal Resolution and Model Setting. We fore-
cast the traffic flow (vehicles/half-hour) of each street segment
in the Belgian motorway network up to 6 hours ahead, forecast
horizons from h = 1 to h = 12. From the whole data set we hold
the last two weeks (672 observations) for testing our models. The
data must be scaled to values between 0 and 1 before we can use
them to train the DL model. The predictive models are initially
fitted on the training set. Then, the models are incrementally
updated, while subsequently adding new data from the test set
as described in previous section.

Model avgRMSE | avgMAE
Baseline 11.67 7.25
D_Istm 11.28 7.03
A_lstm 11.30 7.12
D Istm ED | 10.66 6.63
A_lstm_ED 11.08 6.93

Table 1: Average values of RMSE and MAE.

5.0.7 Results. The obtained results are summarised in Table
1. The table shows the average value of RMSE and MAE metrics
for both models over the testing set. The Direct LSTM encoder-
decoder presents better forecasting accuracy for both metrics.
Further, since traffic over the road network may be extremely
heterogeneous in terms of volatility, we estimated the normalised
metrics against the baseline model [6]. For example, NRMSE is
the ratio between the RMSE of the predictor and the baseline
RMSE. A ratio below 1 denotes that the considered predictor is
at least more accurate than the baseline model. In Fig. 3-4, the
average value of normalised metrics is computed for all forecast
horizons separately. These figures highlight once again the su-
periority of Direct LSTM encoder-decoder when compared with
other DL models especially for long-range forecast horizons.

6 OUTLINE

In the workshop, conference attendees will learn how to perform
traffic flow predictions at transportation network scale by em-
ploying Direct LSTM encoder-decoder model (Fig. 5). A Jupyter
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Figure 5: Demostration Outline: from raw data to traffic flow online predictions.

Notebook will be provided in Kaggle® so attendees can copy it
and readily run the code and interact.
The demonstration will be organise as follow:

(1) retrieve transportation networks from OpenStreetMap*
and OSMNX® in Python;

(2) process OBU data with Geopandas® with different time
granularities and road networks;

(3) create a dataframe in Pandas’ for traffic flow predictions
and visualize it on Folium®;

(4) add temporal features and prepare the data in Tensorflow’;

(5) build and train a Direct LSTM encoder-decoder model in
Tensorflow;

(6) perform online predictions and visualise the results with
Matplotlib!0;

(7) compare the results with a Seasonal Persistence and other
DL models.
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