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INTRODUCTION 

Although ultrasound (US) is a widely used, non-invasive, 

and radiation-free imaging modality, manual adjustment 

of the US probe can be cumbersome and time consuming. 

An autonomous US scanning device could not only 

reduce dependence on sonographer’s skills and 

experience but also improve workflow efficiency 

especially during interventional procedures, such as fine 

needle aspiration biopsy of the thyroid. Robot-assisted 

ultrasound imaging has also potential to improve patient 

care in rural and underserved areas.  There are many 

previous efforts in this direction but none is fully 

automatic or sufficiently accurate [1], [2]. 

In this work, as an initial small step towards 

operator-independent US imaging workflow solution, we 

developed and evaluated a robot-assisted fully 

autonomous ultrasound (RAFAUS) probe positioning 

system. Desired motion of the probe toward the target 

view is directly derived from anatomical features 

implicitly extracted via deep neural network; thus, 

making this technique (a) invariant to anatomical 

differences, (b) decoupled from the robotic system, (c) 

registration-free, and (d) independent from any external 

tracking technologies.  

MATERIALS AND METHODS 

A 36-weeks fetal US training phantom (CIRS) is used to 

mimic patient anatomy. Images of the anatomy are 

captured using an US transducer (X5-1, EPIQ 7, Philips). 

Probe is rigidly attached to the end effector of a 

commercial robotic manipulator (Universal Robotics), 

see Fig. 1a. During the operation of the system user 

chooses any target view with important anatomical 

structurers according to a scanning protocol. As soon as 

the sufficient acoustic coupling is provided velocity of 

the end effector towards target view is derived from 

predictions made by a convolutional neural network 

(CNN), therefore precise calibration between transducer 

and holder is not necessary. Because prediction accuracy 

improves proportionally with the distance to the target 

view (see Fig. 3a), the robot system control loop 

continuously updates velocity based on the target 

position estimates from the CNN (see Fig. 1b). 

During the development of RAFAUS, an arbitrary 

reference view (see Fig. 2) is chosen and the entire 

phantom placed in water bath is automatically scanned 

from different views according to a pre-defined 

acquisition scheme. Each US image is labelled with a 

relative position of the transducer with respect to the 

reference view and stored as unique data points in the 

database. The data is divided into two separate sets: 

 

 
Fig. 1: a) Components of RAFAUS system; US transducer is 

mounted to serial robot manipulator using custom-made holder 

and is positioned above US training phantom. Images are sent 

to processing server with a CNN predicting the motion of the 

probe (blue arrow) towards the target view in the US probe 

coordinate frame; b) Schematic diagram of a robot control loop 

in which the desired Cartesian velocity �̃�𝑡 of the end effector 

is derived from the prediction provided by a CNN using current 

US image 𝑈𝑡. 

 

(a) development dataset (38,900 frames) for training the 

weights of the CNN (of which 15% are randomly chosen 

for validation), and (b) test dataset (5,400 frames) 

consisting of data points the model was not trained on (to 

optimize for generalizability).  

In this study, we used a 18-layer CNN with linear residual 

connections similar to the network described in [3]. In 

contrast to [3] we increased the size of the last fully 

connected layer to 2048 and replaced softmax with two 

4-dimensional regression layers representing both 

translational (magnitude and unit direction vector) and 

rotational (quaternion) components of the rigid 

transformation. We trained this CNN to predict relative 

motion of the US transducer towards the reference view 

using the loss function introduced in [4]. Adaptive 

Moment Estimator (Adam) optimizer was used as 

optimization function with an initial learning rate of 

0.001, and being decayed every 8,000 samples with an 

exponential rate of 0.5. Batch normalization, and pre-

initialization with weights from the same network trained 

on ImageNet dataset were used. We used early stopping 

criteria, and a dropout probability of 0.4 before the last 



two regression layers to avoid overfitting. We set batch 

size to 64 and augmented the training data using scale and 

aspect ratio augmentation. Input images were center-

cropped and normalized based on their mean values and 

standard deviations to the range of 0–1.  

 
Fig. 2: Schematic overview of a testing sequence (5,400 

frames), overlaid on top of a 3D reconstruction of the US 

phantom, on which prediction accuracy was evaluated. It starts 

at an initial view located near lower limbs (red outline) and 

finishes at a target view located at the fetus head (green outline). 

For the sake of clarity, reference view that was used during the 

development of the deep learning model is shown as a black 

outline.  Additionally, a predicted motion of the probe (blue 

dashed line) is depicted in the coordinate system of the 

ultrasound transducer. This coordinate system is used to 

calculate errors in the result section (see Fig. 3a-b).  

RESULTS 

We evaluated the accuracy of RAFAUS using a 

challenging motion sequence (5,400 frames, see Fig. 2). 

The average translational accuracy our system achieved 

was 2.38 ± 2.73 mm, 3.11 ± 3.08 mm, and 1.09 ± 1.29 

mm along x, y, and z axis respectively (see Fig. 3b). The 

overall translational accuracy increased when the 

distance to the target position decreased (see Fig. 3a). 

The average prediction inaccuracy measured around 90 

mm from the target view was significantly higher 

(p-value < 0.0001, unpaired, two-tailed t test) than at 20 

mm, 4.67 ± 2.8 mm and 1.41 ± 0.88 mm respectively. 

The average rotational accuracy was 0.68 ± 0.58°, 0.45 ± 

0.26°, and 1.72 ± 1.03° around Z, Y, and X axis 

respectively (see Fig. 3c). We evaluated robustness of the 

RAFAUS in challenging imaging conditions (e.g. 

compromised acoustic windows and externally induced 

phantom motion); quantitative evaluation is not provided 

in the paper for the sake of brevity. 

DISCUSSION 

In this work we demonstrated that US transducer can be 

autonomously positioned with respect to a target view, at 

an average translational accuracy of 1.41 ± 0.88 mm. The 

image-based positional feedback using deep learning 

continuously estimates target position as robot converges 

on the target view. Naturally, the target position estimate 

accuracy increased when probe was closer to the target, 

thus suggesting potential for incorporating a series of 

former predictions into the deep learning model, for 

instance, by using temporally recurrent layers, such as 

Long Short-term Memory (LSTM) units. A clinical 

system will require safety measures, such as precise 

regulation of patient-contact forces, collision monitoring, 

and adjustment of the acoustic coupling. Force control 

methods will definitely add to the safety by maintaining 

constant contact and optimal force for image acquisition. 

The main limitation of this study is the usage of a single 

phantom for both training and testing. The phantom is 

static and absent of strong acoustic artifacts, e.g. 

reverberation artifacts, which are normally encountered 

in a clinical scan.  

 

 
Fig. 3: Boxplots of the pose prediction errors calculated on the 

testing sequence (see Fig. 2) consisting of 5,400 frames; 

boxplot (a) shows a prediction accuracy at various distances 

from the target view along the testing sequence; an overall 

system accuracy separated into (x, y, z) translational 

components (b) as well as rotation angles (c) around each axis 

(Z, Y, X) are also presented. 
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