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Abstract. Under sustainable development goals, multi-objective optimization has been highly notified and 

supported rational and flexible decision making. In the case of car industries, energy conservation and mass-

customization are becoming major interests to meet such trend under global competition. To pursue this goal in a 

lean and agile manner, various simulation and optimization techniques are applied to real-world car design. To 

promote such development, one of the Japanese car companies recently released a bi-objective bench-mark problem 

on multiple car structure design. Since it is a large optimization problem that requires us to apply computationally 

tough method, in this paper, we have proposed a unique procedure incorporated with our multi-objective 

optimization method known as MOON
2
 and a new method named downsizing NSGA-II. Moreover, to enhance its 

usefulness in practical engineering tasks, we engage in a post-optimal analysis that tries to comprehensively re-

consider the prior result before the final decision. In numerical experiments, we have shown the proposed procedure 

can efficiently solve the original problem and move adaptively on the post-optimal analysis in the same framework. 

Finally, the advantage is compared with the other studies and the propose idea is shown useful toward qualified and 

manifold decision making.   
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1. INTRODUCTION 
 

As represented by energy and/or environmental issues, 

modern technologies are facing with various difficult 

problems incidental to sustainable development goals. To 

cope with such situation, multi-objective optimization has 

been highly notified and supported rational and flexible 

decision making. In the case of car industries, energy 

conservation and mass-customization are considered as 

major interests to meet such trend under global competition. 

To pursue this goal in a lean and agile manner, various 

simulation and optimization techniques have been applied 

to real-world car design associated with the concept of 

V&V (Verification & Validation, Shiratori et al., 2013). To 

promote such development, one of the Japanese car 

companies recently released a bench-mark problem on 

multiple car structure design in public through an academic 

society. It is a large complicated bi-objective optimization 

problem that requires us to provide a certain 

computationally efficient method.  

Hence, in this paper, we propose a unique procedure 

incorporated with our multi-objective optimization method 

known as MOON
2
 (Shimizu & Kawada, 2002) and a new 

method named downsizing NSGA-II (Yoo & Shimizu, 

2018). Moreover, to enhance its usefulness in practical 

engineering tasks, we encourage to carry out post-optimal 

analysis (Shimizu, Yoo & Sakaguchi, 2016) that tries to 

comprehensively re-consider the prior solution against 

various uncertainties before the final decision. Through 

numerical experiments, we have shown the proposed idea 

can derive the prior solution efficiently and move 

adaptively on the post-optimal analysis in the same 

framework. In the numerical experiment, the advantage is 

shown through comparison with the other studies. From all 

of these, we claim the propose idea is definitely useful 

toward qualified and manifold decision making.   

The rest of this section is organized as follows. In 

Section 2, we describe the framework of the proposed 

approach for practical decision making. Section 3 concerns 

with the benchmark problem and discuss on the 

effectiveness of the proposed approach. Some conclusions 

are given in Section 4. 

 

2. PROPOSED APPROACH FOR PRACTICAL 
DECISION MAKING 

 



 

 

2.1 Framework of the Proposed Idea 
 

Generally speaking, it is quite inefficient for practical 

decision making just to solve the optimization problem. 

Actually, we need to totally engage in several processes 

accompanying with it. Actually, we can name value system 

design and problem formulation as the prior processes 

while post-optimal analysis as the post process. Moreover, 

it is essential to notice uncertain factors and/or errors 

encountered in each process. A framework of such idea is 

shown in Fig. 1 by using boxes (processes) and arrows 

(troublesome factors).  Thereat, the troublesome factors 

from the upper side represent the universal one regardless 

of situations while those from the lower side dependent 

one. For example, subjective value judgement of decision 

maker (DM) is likely unstable and system parameters in 

mathematical model are substantially uncertain. 

Computational errors are inevitable when the algorithm is 

running. On the other hand, value function may 

occasionally be irrelevant or there happens to miss some 

necessary objectives or oppositely to add extra ones. It is 

usual to approximate non-linear model as linear one for 

simplicity. We cannot completely remove some gaps 

between the reality and its regression or response surface 

model. Moreover, unsuitable optimization method might be 

applied to the problem under concern and DM would 

response inconsistently on his/her preference in multi-

objective optimization. Inadequate candidates could be 

selected at the stage of final decision or certain changes in 

decision environment happen to occur after the 

optimization.  

From all of those, in practice, noting the uncertainties 

and errors, we should cope with every process carefully and  

not stick to the centered optimization process. In particular, 

the post-optimal analysis becomes extremely important 

since it has a possibility to compensate and/or dismiss 

every defect referring to the uncertainties of the foregoing 

processes. In so far studies, however, such idea has not 

been discussed deeply. 

Fig.1  Essential processes for practical optimization and uncertain factors involved in its framework. 

 

  2.2 Multi-objective Optimization by Down Sizing 

NSGA-II Incorporated into
 
MOON

2
 

 

 In general, multi-objective optimization problem 

(MOP) is described as follows. 
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where x denotes a decision variable vector; X, is a feasible 

region; and f is an objective function vector some elements 

of which are incommensurable and conflict with each other. 

This problem aims at obtaining a unique solution known as 

the preferentially optimal solution through subjective  

preference of DM. 

The methods of MOP are generally classified into 

throughout and see-and-then approaches. The former will 

solve (p.1) straightforwardly while the later attempts to 

reveal the trade-off relation first (see) and articulatee the 

preference after that (then).  In this see stage, every multi-

objective evolutionary algorithm (MOEA; Coello, 2012) 

seems to be effective since it can derive Pareto front readily.  

However, practical methods for “then” stage are almost 

unavailable presently. On the other hand, we developed a 

“throughout” method known as MOON
2
 and successfully 

applied it to various engineering problems (For example, 

Shimizu, Waki & Sakaguchi, 2012).  

Here, let me note MOON
2
 needs to identify the value 

function of DM beforehand. This modeling will be carried 

out with a suitable artificial neural network (NN) to deal 

with the non-linearity commonly seen in the value function. 

Such NN will be trained based on the training data gathered 

by an AHP-like pair-wise comparison (Satty, 1980) on the 

DM’s preference. Thus trained NN works with the 

reference objective values F
R
 supplied as a half of its inputs. 

Once such value function is identified, the original 

(p.1) is simply solved as a single-objective problem as 

follows.  

      X     ))((    Max   (p.2) xto subjectVNN xf
x

 

To solve this problem practically and reasonably and then 

move on the post-optimal analysis in the same framework, 

we propose to apply a certain MOEA in terms of unique 



 

 

idea described below.  

If we notice that objectives Min VNN(f(x)) and Max 

VNN (f(x)) always conflict with each other, the following 

problem is viewed as a bi-objective problem.  

(p.3) Max {VNN (f(x)), -VNN(f(x))} subject to x∊X 

Accordingly, we can solve (p.1) from the following simple 

procedures.  

(1) Apply an appropriate MOEA for (p.3).  

(2) Select the solution with the largest value of VNN as the 

preferentially optimal solution of (p.1). 

In the application of this MOEA, it is unnecessary to 

derive a widely spread distribution of Pareto front. It is 

enough to obtain only several candidates. This is also true 

for the post-optimal evolution carried out after that. To note 

these facts, we modified the algorithm of NSGA-II (Deb, 

2000) so that the population size will decrease along with 

the evolution. Such algorithm whose pseudo code is given 

below is called as down-sizing NSGA-II. 

                                        

    if(gen >α x gener) 

{  popsize = β x popsize; 

     if(popsize < minpop)  popsize = minpop; 

  }                                     

where α and β are positive parameters (<1). And gen, gener, 

popsize and minpop represent current generation, its total 

one, population size and desired final size, respectively.   

 

2.3 Post-optimal Analysis by Elite-induced MOEA

 and Summary of the Proposed Procedure 

 

As mentioned already, we need to concern with 

various uncertain factors/errors for practical decision 

making. To cope with this by noting the specific properties 

of MOP, we propose a post-optimal evolution around the 

preferentially optimal solution. For this purpose, our elite 

induced multi-objective evolutionary algorithm (EI-

MOEA; Shimizu, Takayama & Ohishi, 2012) is 

conveniently available. 

The principle behind the idea of EI-MOEA is just 

simple and straightforward from the original MOEA.  

Actually, the algorithm is composed of the following two 

parts:  

(1) Selection of some elite solutions under a certain 

allocation rule. 

(2) Application of MOEA by incorporating the elite 

solutions into a set of random initial solutions. 

We can expect each elite solution will induce the 

Pareto front in the direction toward its preexisting region. 

By adjusting the allocation rule (number of elites and their 

locations), DM is able to manipulate the final solutions so 

that the Pareto front will spread on a specific limited region. 

Moreover, due to the existence of the elites, selection 

pressure that might contribute to the accuracy and 

convergence speed is always kept at high level.  This 

makes the algorithm powerful and computation load 

smaller.  By the way, in the case of post-optimal analysis 

on MOP, it is reasonable to focus just on the preferentially 

optimal solution.  

In summary, the proposed procedures that follow the 

framework shown in Fig.1 are listed below. It is also 

helpful for readers to refer to the case study in Section 3.  

Step 1: Generate several trial solutions in the objective- 

space surrounded by the ideal and nadir solutions. 

Step 2: Extract the preferences of the DM through pairwise 

comparison between every pair of the trial solutions. 

Step 3: Train the neural network using the preference 

information obtained from the above responses. This 

trained network serves as a value function VNN by 

properly selecting the reference objective values F
R
. 

Step 4: Solve the original MOP (p.1) as the single-objective 

problem (p. 2) by the proposed idea.  

Step 4.1: Apply the down-sizing NSGA-II to (p.3). 

Step 4.2: Sort the resulting objective values in descending 

order and select the top as the preferentially optimal 

solution. 

Step 5: Select the elite solutions from the preferentially 

optimal solution and its neighbors. 

Step 6: Apply EI-MOEA (post-optimal evolution by the 

down-sizing NSGA-II) to derive the several candidates 

for the final decision.  

Step 7: Move on the post-optimal analysis over the selected 

candidates.  

Actually, Step 7 is carried out through reviewing them in 

decision variable space besides in the objective space and 

conditions of constraints as well. This must become 

comprehensive one including concerns not considered as 

pure mathematical procedures.  

 

3. CASE STUDY  
 

3.1 Problem Statement 

 

In car industries, weight saving has been a major 

interest toward energy/material conservations. On the other 

hand, motorization in developing countries promotes mass-

customization to meet a variety of customer demands while 

reducing development and production costs. To pursue 

these goals in a lean and agile manner, it is required to 

provide some method for the parts design commonly 

available among the multiple car structures. In real-world 

car design, however, it is widely known these two goals 

conflict with each other.  

Noticing those facts, we convinced our idea is just 

amenable for this resolution and can demonstrate it through 

a benchmark problem released recently. Though the outline 

of this problem is described below, more information is 

available from the literature (Kohira et al., 2017) and web 



 

 

site (URL, 2017) 

Objective functions: 

(1) Minimize the total weight of three designs (denoted as 

CDW, SUV, C5H hereinafter) 

(2) Maximize the number of common thickness parts over 

the three designs 

Here, in the first objective, each weight is modeled by 

the multiple regression equation after normalizing it by the 

respective standard. In the second, if the difference of plate 

thickness at the corresponding part is less than 0.05 over 

the all designs, it is admitted as commonly available.    

Constraints: These conditions refer to the popular 

requirements on car structure design such as rigidity of 

vehicle body, low frequency vibration and collision 

performance. They are given totally as 42 inequality 

equations (14 per each design). Actually, they are the 

response surface models described by the radial basis 

function with 1158, 1215 and 1271 centers for each, 

respectively. Another 12 inequality equations (4 per each) 

give the size relations among the decision variables.  

Besides these, each decision variable has a box condition 

(upper and lower bounds).  

Decision variables: These are composed of plate 

thicknesses of parts over three designs and come to totally 

222 (74 per each).  

After all, it is a large complicated bi-objective 

optimization problem composed of 222 decision variables 

and 54 constraints described as the regression and the 

response surface models. Accordingly, it should be 

emphasized the resulting problem becomes extremely 

tough in optimization.  

 

3.2 Procedures to Obtain Preferentially Optimal 

Solution 

 

Since subjective information on the DM’s preference 

is essential for MOP, we assume a virtual DM whose value 

function is given as Eq.(1) for convenience. 
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where Fk
utp

, Fk
nad

 and wk denote a utopia, a nadir and a 

weight representing relative importance of k-th objective, 

respectively. And, t is a norm parameter of the value 

function. Hence, U(f(x)) represents the ratio of relative 

attainability from the utopia and takes 1.0 for the utopia 

and 0.0 for the nadir. In terms of this value function, we 

can consistently decide any reply of the virtual DM on 

preference.  

Now, we are ready for deriving the preferentially optimal 

solution through the earlier part of the proposed approach. 

In Step 1, we set references (utopia and nadir) and 4 trials 

as shown in the margin of Table 1. The result of Step 2 for 

the virtual DM (w1＝0.3, w2＝0.7, t＝1 in Eq.(1)) is shown 

as a pair comparison matrix whose element aij denotes the 

converted value from the linguistic reply on preference of 

F
i 
over F

j
. That is, if F

i 
is “equally” preferable to F

 j
, aij=1, 

if “moderately” aij =3, if “strongly”, aij =5, if 

“demonstrably”, aij =7 and if “extremely”, aij =9.  To 

reduce the response load, relation aji = 1/aij is assumed as 

AHP. In Step 3, train NN (numbers of node for input {F
i
, 

F
j
} = 2N = 4, hidden = 10 and output aij = 1) using the 

preference data imbedded in Table 1. Thus trained NN is 

available as the value function VNN by selecting the 

reference at F
R
 = (0.25, 0.25). Since so far procedures are a 

part of MOON
2
, refer to the original reference (Shimizu 

and Kawada, 2002) more in detail. 

Now, in Step 4, first, solve (p.3) by the down-sizing 

NSGA-II under the conditions such as popsize=300, 

gener=1500, =0.4, = 0.98, minpop = 0.2 x popsize. 

Moreover, tuning parameters for crossover distribution 

index, cross-over probability, mutation distribution index 

and mutation probability are set at 10.0, 0.75, 50.0, 0.125, 

respectively and selection strategy obeys tournament rule. 

Then, we obtained the preferentially optimal solution such 

as VNN= 032304 at (f1, f2) = (39, 2.922245) by 237172 total 

evaluations. In this computation, it took 11h 16m working 

time via a personal computer like Toshiba KIRA (Intel® 

Core™ i5-420U CPU@1.6GHz, Ram 8GB). 

 

Table 1 Pair comparison matrix from Eq.(1) and objective 

values of reference and 4 trial (F
1
 - F

4
) solutions 

 F
utp

 F
nad

 F
1
 F

2
 F

3
 F

4
 

F
utp

  1 9 4 5 3 8 

F
nad

 1/9 1 1/6 1/5 1/7 1/2 

F
1
 1/4 6 1 3 1 5 

F
2
 1/5 5 1/3 1 1/3 3 

F
3
 1/3 7 1 3 1 6 

F
4
 1/8 2 1/5 1/3 1/6 1 

F
utp

=(70, 2.0), F
nad

=(0, 4.0), F
1
=(68, 2.932), F

2
=(55, 

3.362), F
3
=(47, 2.538), F4=(30, 3.938) 

 

3.3 Comparison of Results by Post-optimal Evolution 

 

In this subsection, we show the results of the post-

optimal evolution taken place in the later part, i.e., Step 5 & 

6. In Step 5, we choose 6 elite solutions that correspond to 

10% of the population size. They are composed of the 

tripled preferentially optimal solution and other 3 neighbor 

solutions around it.  

In Step 6, letting the initial and final population sizes as 

60 and 20, respectively, we applied the down-sizing 

NSGA-II in the elite induced mode. By 100 generations 

with total 40420 evaluations, we derived several candidate 

solutions supplied to the post-optimal analysis. 

So far results are shown in Fig.2 with the other results 

for comparison. They are illustrated together on the counter 



 

 

map of the present value function, i.e., Eq.(1). Thereat, 

“Initial design” and “Isight Optimization” denote the 

results by the actual (human) engineers and the commercial 

software named “Isight”, respectively. They are reported 

from the car company that served the benchmark problem. 

On the other hand, “MOON2 (before optimal)” refers to the 

proposed idea (result at Step 4). Meanwhile, “postopt-

MOON2” describes the Pareto front obtained following the 

post-optimal evolution by EI-NSGA-II (result at Step 5 & 

6). Moreover, for reference, the Pareto front obtained by 

the ordinal NSGA-II with the condition such as population 

size=300, generation=1000 and evaluation number=300000 

is shown as “NSGA-II”. 

Comparing “MOON2” with “Initial design”, we know 

the former results apparently outperform the later. 

Moreover, though “postopt-MOON2” aims at deriving a 

local Parent front just around “MOON2”, its distribution is 

better than the approaches obtained from “Isight” and 

“NSGA-II” that aim at global distribution. Particularly 

speaking, we can claim it is very convenient for every user 

since major knowledge to have here is just about NSGA-II. 

 

3.4 A Few Examples of Post-optimal Analysis 

The post-optimal analysis in Step 7 was taken place 

through reviewing both “MOON2” and “postopt-MOON2” 

more in detail. For example, concerns should be extended 

to the decision variable space and the conditions of 

constraints. This must become comprehensive one 

including the dealings impossible as pure mathematical 

approaches. Presently, though the common thickness parts 

between two designs are ignored at first and concern on the 

tightness of the constraints is hard to involve into the 

problem formulation, we might make a better final decision 

by taking those factors into account.  

To work with this concern, we selected the top five 

solutions having greater VNN value as the candidates since 

they spread sparsely with each other. As shown in Table 2, 

they all outperformed “MOON2” (number in [ ] denotes the 

order of VNN). This means the post-optimal evolution is also 

useful for improving the prior solution. Now, we compare 

the common thickness parts over two designs among the 

candidates and “MOON2”.
 
Then, second and third place 

Candidate #1 and #3 realize greater numbers (12) than the 

first place Candidate #2 (10) and “MOON2” (10) though 

they are a bit inferior to Candidate #2 regarding VNN.  

On the other hand, in Table 3, we compared the 

tightness of the constraints gi(x) ≥ 0 (i=1,…,54). There, 

“Tight” column denotes the number of tight constraints 

(gi(x)<0.05) and the remaining columns statistics of the  

gi(x) value. Generally, the smaller this value is, the more 

robust it is against uncertainties and/or changes of 

situations due to the larger allowance till the boundary. 

Among the candidates, the number of tight constraints of 

Candidate #1 is smallest and the other statistics (Max, 

Average and Variance) are well balanced.   

Considering those facts that are hard to discuss in the 

process of the prior optimization, Candidate #1 has a high 

potential to be selected as the best decision after this post-

optimal analysis. Moreover, the final decision thus made 

could be far superior to the human decision made 

empirically (“Initial design” shown in Fig.2). Through 

those discussions, we can definitely claim the significance 

of the proposed approach.   

 
4. CONCLUSION 

To resolve many difficult problems incidental to 

modern technologies, multi-objective optimization has been 

widely applied so far. In this study, we focused our 

attention on car industries and engaged in solving a 

practical bi-objective optimization problem associated with 

energy conservation and mass-customization. Since the 

resulting problem becomes extremely tough and requires us 

computationally efficient method, we have proposed a 

unique application of MOEA and developed a method 

incorporated with our multi-objective optimization method 

known as MOON
2
 and a new method named downsizing 

NSGA-II. Moreover, to enhance its usefulness in practical 

engineering tasks, we have engaged in the post-optimal 

analysis associated with our elite-induced MOEA (EI-

NSGA-II) by noticing various uncertainties and/or errors.  

In numerical experiments, we have shown the 

proposed procedure can derive the prior solution efficiently 

and move adaptively on the post-optimal analysis in the 

same framework. The advantages of the proposed idea are 

verified in numerical experiments through comparison with 

the other studies. Finally, we claim the proposed framework 

makes multi-objective optimization more promising tool 

toward recent qualified and manifold decision making. 
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Table 2 Comparison of common thickness parts over two 

designs among the candidates and “MOON2” 

Candidate 
VNN  

(f1, f2) 

Common thickness number 
2 out of 3 

Total 
CDW 
/SUV 

CDW  
/C5H 

SUV  
/C5H 

#1 [3
rd

]* 
0.33053 

(2.909, 39) 
12 4 6 2 

#2 [1
st
] 

0.33708 
(2.869, 37) 

10 3 4 3 

#3 [2
nd

] 
0.33057 

(2.866, 36) 
12 4 4 4 

#4 [4
th
] 

0.33043 
(2.895, 38) 

9 2 5 2 

#5 [5
th
] 

0.32902 
(2.855, 35) 

16 3 8 5 

“MOON2” 
 

[6
th

] 
032304 

(2.922, 39) 
10 3 7 0 

* Order as of the magnitude of VNN 



 

 

Fig.2  Comparison with other methods: “MOON2 (before optimal)” outperforms the empirical “Initial design”. Moreover, 
“postopt-MOON2” can derive several solutions better than “MOON2 (before optimal)”. It also outperforms the ordinal 
NSGA-II and commercial software “Isight Optimization” as the quality of Pareto front. 

 

Table 3 Feature of the candidates on the tightness of constraints (number in [ ] denotes the order of VNN value.) 

Candidate 
Tight number Max Average Variance 

Total CDW SUV C5H CDW SUV C5H CDW SUV C5H CDW SUV C5H 

#1 [3
rd

] 19 6 7 6 0.418 0.379 0.372 0.106 0.108 0.119 0.013 0.014 0.012 

#2 [1
st
] 24 10 6 8 0.418 0.327 0.391 0.098 0.096 0.107 0.014 0.009 0.014 

#3 [2
nd

] 23 10 6 7 0.424 0.332 0.391 0.097 0.095 0.107 0.014 0.009 0.014 

#4 [4
th
] 20 9 6 5 0.410 0.321 0.399 0.101 0.100 0.117 0.013 0.010 0.013 

#5 [5
th
] 25 10 7 8 0.430 0.291 0.369 0.097 0.087 0.099 0.013 0.008 0.011 

MOON2 [6
th

] 18 7 6 5 0.349 0.355 0.390 0.099 0.108 0.121 0.009 0.011 0.012 
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