
EasyChair Preprint

№ 104

Formal Security Proof of CMAC and its Variants

Cécile Baritel-Ruet, François Dupressoir, Pierre-Alain Fouque and
Benjamin Grégoire

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 28, 2018

Formal Security Proof of CMAC and its Variants
Cécile Baritel-Ruet1,2, François Dupressoir3, Pierre-Alain Fouque4, and Benjamin Grégoire2

1UCA Université Côte d’Azur
2INRIA Sophia-Antipolis

3University of Surrey
4Université de Rennes 1 and Institut Universitaire de France

Abstract—The CMAC standard, when initially proposed by
Iwata and Kurosawa as OMAC1, was equipped with a complex
game-based security proof. Following recent advances in formal
verification for game-based security proofs, we formalize a proof
of unforgeability for CMAC in EasyCrypt. A side effect of
this proof includes improvements and extensions to EasyCrypt’s
standard libraries. This formal proof obtains security bounds
very similar to Iwata and Kurosawa’s for CMAC, but also
proves secure a certain number of intermediate constructions of
independent interest, including ECBC, FCBC and XCBC. This
work represents one more step in the direction of obtaining a
reliable set of independently verifiable evidence for the security
of international cryptographic standards.

I. INTRODUCTION

A message authentication code (MAC) is a short piece of
information, a tag, appended to a message and used to confirm
that the message came from the stated sender (authenticity)
and has not been modified (integrity). When a MAC scheme–
the algorithm used to produce the tag–is secure, it is unfeasibly
difficult to produce a tag for a fresh message without knowing
the secret key, even with the ability to obtain valid tags for
chosen messages.

The CMAC scheme was first introduced by Iwata and Kuro-
sawa as OMAC1, for One-key MAC, in [IK03a]. It is now
a standardized MAC [Dwo16], widely used in practice. The
scheme is based on the cipher block chaining MAC, short-
ened as CBC-MAC [EMST78], a very simple and textbook
construction that builds a MAC for fixed-length messages out
of a block cipher, a keyed permutation operation over blocks,
or fixed-length bitstrings.

In the CBC-MAC scheme, the message to authenticate is
split into a list of blocks. Each of these blocks is first masked
using the result of the block cipher on the previous block
before being encrypted itself, constructing a chain linked by
the output of the block cipher. This dependence ensures that
a change to any bit of a message will change the rest of the
MAC in an unpredictable way. However, in its simplest form,
CBC-MAC works only for messages that are non-empty lists
of blocks, i.e whose length is a multiple of the size of a block.

Historically, to overcome this restriction and avoid unnec-
essary paddings, Black and Rogaway [BR05] propose and
prove the security of some variants of CBC-MAC, named
ECBC, FCBC and XCBC. However, each requires a key longer
than the one of the underlying block cipher key. A variant

of XCBC, CMAC was introduced as the first One-key CBC-
MAC by Iwata and Kurosawa [IK03a]. This scheme uses only
one block cipher key and was proven secure by Iwata and
Kurosawa [IK03a] in a complex security proof that was later
refined [IK03b].

a) Our Contribution: This paper is the first formalization
verifying a concrete bound of the security of CMAC. We
use the interactive computer-aided verification tool Easy-
Crypt1 [BDG+14]. We reduce the security of CMAC as a
MAC to the security of the underlying block cipher, without
any aditional assumptions. The formalisation work makes use
of EasyCrypt’s rich libraries of game transformations and
generic arguments, that we improve and extend with some
generic lemmas. All results presented as Lemma or Theorem
in this paper are formally verified, and potential unverified
improvements will be explicitly noted as such.

Our proof is articulated as illustrated in Figure 1. The
security of both the CMAC and XCBC schemes rely on the
security proof of FCBC. We prove that the security of FCBC
is equivalent to the security of ECBC. Finally, the security of
ECBC relies on the fact that there is very little probability of
collision in CBC-MAC, i.e. that two different messages chosen
before the key is sampled share the same CBC-MAC value.

Collision in CBC-MAC
(Thm. 1)

Security of ECBC
(Thm. 2)

Security of FCBC
(Thm. 3)

Security of XCBC
(Thm. 4)

Security of CMAC
(Thm. 5)

Fig. 1. Proof sketch

Our proof for CMAC is inspired from those by Iwata
and Kurosawa [IK03a], [IK03b], but diverges from them and
improves on them. In particular, our proof that CMAC is in-
distinguishable from FCBC is a slight generalisation of theirs:

1https://easycrypt.info

https://easycrypt.info

we show that any member of a larger class of MAC functions
which includes CMAC is in fact indistinguishable from FCBC
and therefore inherits its security. Our security proofs for
FCBC, ECBC and XCBC, follow the proofs by Black and
Rogaway [BR05]. Our formalisation efforts: i. reveal and
correct a minor flaw in the proof (which has no effect on the
bound), ii. produce a verified concrete bound—improving on
some of their partial bounds, and iii. identify ways in which
EasyCrypt falls short of supporting a full formalisation of
Black and Rogaway’s bounds.

Our formalization efforts also contribute to EasyCrypt and
its libraries, producing: i. a tightening of the formalised
bounds for the PRP/PRF switching lemma, ii. generic formali-
sations of some useful PRF-related game transformations, and
iii. a new abstraction over reordering of random samplings
in loops, allowing the EasyCrypt user to perform such trans-
formations without making use of undocumented low-level
tactics.

We start by informally introducing the constructions and
their security (Section II), before formalizing definitions of
the security assumptions and theorem statements we prove
in EasyCrypt (Section III). We then give an overview of the
proofs themselves (Section IV), detailing them, in particular,
when our formalization diverges from existing pen-and-paper
arguments [BR05], [IK03a], [IK03b]. We conclude (Section V)
with a discussion of related work on the formalization of
cryptography and of leads for future work on MAC functions
in particular.

II. CONSTRUCTING CMAC: AN INFORMAL VIEW

We first give an informal overview of syntax and security
definitions for message authentication codes and block ciphers,
the primitive underlying the CMAC construction. We then give
an overview of intermediate constructions considered here –
for which we obtain formal proofs of independent interest.

A. Message Authentication Codes

We first give an informal overview of MAC schemes, their
syntax, correctness and security. Formal definitions are given
later. A MAC scheme is composed of three algorithms:
• a probabilistic key generation algorithm Keygen that, on

input the security parameter outputs a key k ∈ K (where
K is the key space);

• a tagging algorithm MAC that, on input a key k ∈ K and
a message m ∈M outputs a tag t ∈ T (where M is the
message space and T is the tag space);

• a verification algorithm Verify that, on input a key k ∈ K,
a message m ∈ M and a tag t ∈ T , outputs a boolean
identifying whether t is a valid tag for m with key k.
a) Correctness: A MAC scheme is said to be correct if,

for any key k output by the key generation algorithm and any
message m ∈M, a tag t computed for m using key k by the
tagging algorithm always verifies successfully.

b) Security: A MAC scheme is said to be (existentially)
unforgeable (against chosen message attacks) if, for any
freshly generated key k, it is difficult for an adversary that
can make tag and verification queries for arbitrary messages
using k, to forge a valid tag t for a fresh message m, for which
a tag was not requested.

c) Deterministic MACs: In this paper, and for the pur-
pose of reasoning about CMAC and its variants, we need
consider only a restricted class of MAC schemes and assume:

1) a key generation algorithm that samples its output uni-
formly at random in K;

2) a deterministic tagging algorithm; and
3) the verification algorithm defined by: Verify(m∗, t∗) :=

[t← MAC(m∗); t = t∗].
These standard restrictions mean that our MAC schemes can

be fully defined by specifying only: i. a (finite) keyspace K,
ii. a message space M, iii. a tag space T , and iv. a tagging
algorithm MAC.

We also discuss, in Section III, other simplifications that fol-
low from the consideration of stateless, deterministic MACs.

B. Block Ciphers

CMAC and its variants construct secure MACs using a block
cipher as primitive. A block cipher is a family of permutations
over a finite set of blocks, say B, indexed by a keyspace K.
As is standard, given a block cipher E : K×B→ B and a key
k ∈ K, we often denote with Ek the block cipher with fixed
key k. That is, for all b ∈ B, Ek(b) = E(k, b).

a) Security: A block cipher is said to be secure if, when
its key is sampled uniformly at random in K, it is compu-
tationally indistinguishable from a truly random permutation,
sampled uniformly at random in the set of permutations over
B, denoted Perm(B).

C. Constructing CMAC

We now give intuitive descriptions of the various historical
constructions leading up to the definition of CMAC. Apart
from allowing us to illustrate the informal definitions above
on increasingly complex schemes, many of these intermediate
constructions also serve as intermediate steps in the security
proof for CMAC.

a) CBC-MAC: Figure 2 gives both a graphical and pro-
grammatic view of the CBC-MAC tagging algorithm, which
was initially introduced by Ehrsam et al. [EMST78].

CBC-MAC relies on a block cipher E : K×B → B.
Given some key space K and some block set B, CBC-MAC
instantiates the message space as Bm for some m > 0 and
outputs tags in B. Given an input m, CBC-MAC splits it
into blocks m = m1|| . . . ||mm, and computes the tag as
CBCEk

(m) = cm where c1 = Ek(m1), ci+1 = Ek(ci⊕mi+1),
and ⊕ denotes the bitwise xor operation on blocks.

Bellare, Kilian and Rogaway [BKR94] prove the security of
the CBC-MAC construction, by proving, as is the practice in
cryptography, that any algorithm that finds CBC-MAC forg-
eries with non-negligible probability can be used to break the

m1

n bits
m2 m3

Ek Ek Ek

tag

CBCEk
(m1|| . . . ||mm)

c← Ek(m1);

for i = [2 . . .m] do

c← Ek(c⊕mi);

return c

Fig. 2. Computing CBC-MAC with block cipher E and key k on an m block
message.

underlying block cipher with the same time complexity. How-
ever, their proof—and indeed the security of CBC-MAC—
is limited to the case where the length m of the message
(in blocks) is fixed in advance. Indeed, it is easy to produce
a chosen message forgery as follows when the tagging and
verification algorithm accept arbitrary length messages:

1) Through chosen-message queries, obtain t = CBC(m)
and t′ = CBC(m′) for some messages m and m′ of
respective lengths m > 0 and m′ > 0.

2) Then t′ is also a valid tag for the fresh message:

m1 || . . . || mm || [t⊕m′1] || . . . || m′m′

Thus CBC-MAC suffers from two major issues: i. the size
of messages should be a multiple of n, and ii. all messages
must contain the same, fixed, number of blocks. To overcome
these restrictions, Black and Rogaway [BR05] propose three
extensions of CBC-MAC:2 i. ECBC, ii. FCBC and iii. XCBC.
CMAC is a variant of XCBC that was first proposed by Iwata
and Kurosawa [IK03a] as OMAC1.

b) ECBC: The first issue of CBC-MAC, that is being
limited to computing tags for messages whose length is a
multiple of the block length, is often dealt with using some
injective padding scheme. However, such schemes require
flexibility in the number of blocks that can be processed,
as their injectivity may require them to add a full block
of padding onto a message. ECBC combines two ideas to:
i. allow padding messages to a multiple of the block length
without overhead; and ii. securely support computing MAC
tags for messages of different lengths.

First, in order to support messages with different numbers
of blocks, it is possible to apply additional treatment to the
final tag before releasing it. This is to ensure that it cannot
predictably be used as a known intermediate value in the
computation of a tag for a chosen message. In ECBC, this
is done, using an idea by Vaudenay [Vau00], by computing
a CBC-MAC tag using a block cipher key k1 and encrypting
this tag with a different key k2 before releasing it.

2A simpler fix is to be prepend the length of the input message to the
message itself before processing it: if this does indeed yield a secure MAC
algorithm, it is not always possible to know the length of the payload
when the processing begins. For example, the TLS protocol computes a
MAC over the concatenation of all messages exchanged during its handshake
protocol–the length of which is only known after it is over. These engineering
considerations are often kept separate from security considerations when
defining the syntax and security of cryptographic schemes. This provides
abstraction but brings its own set of problems.

This first idea then brings an opportunity to do padding
only when needed. Indeed, rather than ensuring the padding
is injective, it is possible to apply padding to the message only
when its length is not a multiple of the block length, but then
compute the final encryption using a different key k3 when
padding was applied.

Given some injective padding function pad : Σ∗ → B+

that pads arbitrary strings over some alphabet Σ as non-empty
sequence of blocks, and combining the two ideas above, the
ECBC scheme (also shown in Figure 3) can be defined as the
following three-key construction.

ECBCEk1
,Ek2

,Ek3
(m) =

{
Ek2(CBCk1(m)) if m ∈ B+

Ek3(CBCk1(pad(m)) otherwise

c) FCBC: In ECBC, as shown in Figure 3, processing
the last block of message involves two consecutive calls to the
block cipher with independent keys. This brings an opportunity
for optimization. Indeed, since block ciphers are meant to be
indistinguishable from random permutations, a single block
cipher invocation is in fact sufficient for security. The FCBC
construction, shown in Figure 4, implements this idea. It is
defined as follows.

FCBCEk1
,Ek2

,Ek3
(m) ={

Ek2(CBCk1(m1‖ . . . ‖mm−1)⊕mm) if m ∈ B+

Ek3(CBCk1(m′1‖ . . . ‖m′m−1)⊕m′m) otherwise

with m′1‖ . . . ‖m′m = pad(m).
d) XCBC: Both of the above constructions do solve

CBC-MAC’s main issues, with FCBC giving a small perfor-
mance advantage. However, their use of block ciphers keyed
with independent keys makes them expensive to compute using
block ciphers like the AES [DR13]. Indeed, AES involves a
costly key expansion phase that can only be amortized if the
same key is used many times. To better suit this engineering
constraint, the XCBC construction (Figure 5) uses the same
key k for all block cipher invocations, and uses the other two
keys (k2, k3) to mask the final block before processing it. This
is done without loss of security. Formally, XCBC is defined
as follows.

XCBCEk,k2,k3 = FCBCEk,Ek(k2⊕·),Ek(k3⊕·)

e) CMAC: One final performance constraint needs dealt
with: the key size for XCBC is indeed 2n plus the key size
for CBC-MAC. CMAC (also known as OMAC1) proposes
to derive k2 and k3 from k using the block cipher. We note
that this makes CMAC easier to express as a refinement
of FCBC—rather than XCBC. In particular, the security of
XCBC cannot be easily used to prove the security of CMAC,
as it requires that the three keys be independent.

At this stage, it is necessary to concretely instantiate the
block space B = GF(2n), that is represented as the quotient
of the polynomial ring GF(2)[x] by a fixed irreductible poly-
nomial of degree n. With this choice of block space, CMAC
derives k2 and k3 as k2 := 2 × Ek(0

n) (when 2 is seen as

m1 m2 m3

Ek1 Ek1 Ek1

Ek2

tag

m1 m2 m3

pad

m′1 m′2 m′3

Ek1 Ek1 Ek1

Ek3

tag

Fig. 3. Illustration of ECBCEk1
,Ek2

,Ek3
(m1||m2||m3)

m1 m2 m3

Ek1 Ek1 Ek2

tag

m1 m2 m3

pad

m′1 m′2 m′3

Ek1 Ek1 Ek3

tag

Fig. 4. Illustration of FCBCEk1
,Ek2

,Ek3
(m1||m2||m3)

m1 m2 m3

Ek Ek Ek

k2

tag

m1 m2 m3

pad

m′1 m′2 m′3

Ek Ek Ek

k3

tag

Fig. 5. Illustration of XCBCEk,k2,k3 (m1||m2||m3)

0x02, or 0 . . . 010, or the polynomial x) and k3 := 4×Ek(0
n)

(when 4 is seen as 0x04, or 0 . . . 0100, or the polynomial x2),
yielding the following definition.

CMACEk
= FCBCEk,Ek([2×Ek(0n)]⊕·),Ek([4×Ek(0n)]⊕·)

III. FORMAL DEFINITIONS

We now clarify the formal details of the various security
notions needed to state our results. Our security definitions are
expressed as standard cryptographic games and our theorems
and their proofs are given in the code-based game-based style
introduced by Bellare and Rogaway [BR06].

We express security using games, (probabilistic) algorithms
that describe how an adversary can interact with a scheme
to try and break its security and what such a break consists
in. Security is then expressed as a property of the probability
of such a break occurring for any adversary (within a certain
admissible class of adversaries). Given a game G (seen as a
sequence of commands, including calls to the adversary) and

an event E, we denote with Pr[G : E] the probability that
event E holds after executing G.

In the following, we denote X ←$ Perm(B) sampling a
random variable X in the uniform distribution over Perm(B),
the set of all permutations in B→ B. We also denote Rand(B)
and Rand(∗,B), respectively, the uniform3 distributions over
B→ B and {0, 1}∗ → B.

A. Block cipher security
The security of ECBC, FCBC, XCBC and CMAC stand

on a single cryptographic assumption: the block cipher E is
assumed to be a secure pseudo-random permutation (prp).
This requirement is met when E cannot be distinguished from
a random permutation by any polynomial time adversary that
can choose its inputs and view its outputs. The permutation
oracle has the same interface as does the block cipher E with
a fixed key.

3We stress that {0, 1}∗ → B is countably infinite. We abuse notation,
and use the notation for sampling uniformly in that space to denote the
instantiation of a lazy-sampling random function.

m1 m2 m3

Ek Ek Ek

2× Ek(0
n)

tag

m1 m2 m3

pad

m′1 m′2 m′3

Ek Ek Ek

4× Ek(0
n)

tag

Fig. 6. Illustration of CMACEk
(m1||m2||m3)

For any adversary A, we consider the game in which A is
given oracle access to a permutation oracle O and is challenged
to determine whether it is the block cipher Ek with a random
selected key k←$ K, or a random permutation π←$ Perm(B).
In the game, the adversary can adaptively make queries to O
and receives its responses before simply returning a bit that
indicates its guess as to which version of the oracle it was
interacting with.

Definition 1. The PRP distinguishing advantage of an adver-
sary A, denoted AdvprpE (A), is defined as follows.

AdvprpE (A) :=
∣∣Pr
[
k←$ K; b← AEk : b = 1

]
−Pr[π←$ Perm(B); b← Aπ : b = 1]|

Formally, we say that a block cipher is secure if, for any
efficient adversary A, the advantage AdvprpE (A) is small.

The first step in all the reductions we present later is to
replace all block cipher with independent random keys by
independent random permutations. This implies an additional
term in all bounds shown below, which represents the ad-
versary’s ability to distinguish the blockcipher from a truly
random permutation.

B. MAC security

For any adversary A, we consider the game in which A is
given access to a tag generation oracle MACk and a verification
oracle Verifyk, for a randomly sampled k and is challenged
to produce a valid tag for a fresh message. A is allowed to
adaptively query its tagging and verification oracles, and is
said to have produced a forgery if any of her queries to the
Verifyk oracle on a fresh message (that has not been queried
to the MACk oracle) succeeds.

Definition 2. The multi-challenge forgery advantage
Advm-mac

MAC (A) is the probability that the adversary succeeds
in producing a forgery.

Advm-mac
MAC (A) :=

Pr
[

k←$ K; (m∗, t∗)← AMACk(·),Verifyk(·,·) :

∃(m∗, t∗) ∈ LVerifyk(·,·)
A , m∗ /∈ LMACk(·)

A |(m∗,t∗)

∧Verifyk(m∗, t∗) = 1]

where LMACk(·)
A |(m∗,t∗) is the list of all queries made by A to

its MACk(·) oracle before its first (m∗, t∗) query to Verify,

and LVerifyk(·,·)
A is the list of all queries made by A to its

Verifyk(·, ·) oracle.

We note that, in the case of deterministic stateless MACs
in which we place ourselves, the definition of unforgeability
displayed above is equivalent to the following, which allows
only a single query to the verification oracle. This was shown
by Bellare et al. [BGM04]. Indeed, it is easy to see that, in this
case, the Verify oracle can be perfectly implemented using the
MAC oracle to which the adversary already has access. We
use the definition below in the rest of the paper.

Definition 3. The forgery advantage Advmac
MAC(A) is the prob-

ability that the adversary succeeds in producing a forgery.

Advmac
MAC(A) :=

Pr
[

k←$ K; (m∗, t∗)← AMACk(·); b← Verifyk(m∗, t∗) :

b = 1 ∧m∗ /∈ LMACk(·)
A

]
when LMACk(·)

A is the list of all queries made by A to its oracle
MACk(·).

Formally, we say that a MAC scheme is secure when for
any efficient adversary A, Advmac

MAC(A) remains small.

C. Pseudo-random Functions

Another interesting property of keyed function families such
as MAC schemes, is that of being pseudo-random. Intuitively,
a function family is pseudo-random if a randomly sampled
member of the family is computationally indistinguishable
from a truly random function.

Formally, we consider the game in which the adversary
A is given access to a tag generation oracle O and is
challenged to determine whether it is the MAC scheme MACk

with a randomly selected key k←$ K, or a random function
F ←$ Rand(∗,B) that has the same input/output spaces as
the MAC scheme. In the game, the adversary makes adaptive
queries to the oracle and receives its answers before returning
a bit indicating its guess of the content of the oracle.

Definition 4. The PRF distinguishing advantage of an adver-
sary A, denoted AdvprfMAC(A), is defined as follows.

AdvprfMAC(A) :=
∣∣Pr
[
k←$ K; b← AMACk : b = 1

]
−Pr

[
F ←$ Rand(∗,B); b← AF : b = 1

]∣∣

Let us remark that PRF security is related to unforgeability.

Lemma 1. For any forging adversary A, there exists a
distinguishing adversary B that uses A as a black box, and
such that

Advmac
MAC(A) ≤ AdvprfMAC(B(A)) +

1

|B|
Proof. Given an adversary A in the forgery game, we define
B(A)O as the adversary that calls AO which outputs (m∗, t∗),
calls O(m∗) and then return 1 if the output tag is the
same as t∗, and m∗ has not been previously queried by A,
otherwise B returns 0. It is easy to see that AdvprfMAC(B(A)) =∣∣∣Advmac

MAC(A)− 1
|B|

∣∣∣. In addition, it is easy to see that the PRF
adversary B(A) makes exactly as many oracle queries as the
initial adversary A.

Therefore it is sufficient to show that a MAC scheme is
pseudo-random to prove that it is unforgeable.

On concrete security: We note here that our claims, such
as the one illustrated in Lemma 1, are neither asymptotic,
nor concrete in the standard sense of accounting precisely for
oracle calls and execution time. Our formal proofs account pre-
cisely for oracle calls and constructively exhibit the reductions,
which could be used to analyse the reduction’s execution time.
However, EasyCrypt itself does not formally support such an
analysis, and we focus on presenting here the results as they
are formalised. They are only semi-concrete, but can serve as
support for a concrete analysis.

IV. SECURITY PROOF

Our security proofs for ECBC, FCBC, XCBC and CMAC
are in fact proofs that they cannot be distinguished from a
random function assuming that the underlying block cipher
is secure. In the following, superscripts are used to denote
oracles to which the adversary has access.

We provide a verified security proof for the following
statements. (The first three statements follow those by Black
and Rogaway [BR05].)
a) ECBC is a secure MAC;
b) FCBC is perfectly indistinguishable from ECBC;
c) XCBC is computationally indistinguishable from FCBC;

and
d) CMAC is computationally indistinguishable from FCBC.

a) Security of ECBC: To prove the security of ECBC,
we formalize and rely on a much more general lemma, which
states that, if H ⊆ B+ → B is a family of hash functions,
π2, π3 are random permutations and pad is an injective padding
function, the forgery advantage of the following construction,
when h is a member of H chosen uniformly at random.

EPADπ2,π3

h (M) =

{
π2(h(M)) if M ∈ B+

π3(h(pad(M)) otherwise

is only slightly higher than the collision probability of h.
This probability is defined as a game-based notion, through

the following collision-finding game, in which the adversary A
is asked to provide a list of messages of its choice, before the

hash function h is randomly selected from H . The adversary
A succeeds if the list of messages initially chosen contains two
distinct messages that have the same image by h. This yields
the following definition of an adversary A’s collision-finding
advantage against H .

Pr[l← A;h←$H : ∃m,m′ ∈ l. m 6= m′ ∧ h(m) = h(m′)]

In this paper, we say that a hash function is collision-
resistant if this probability is small.4

We also formalize the collision-resistance of CBC-MAC as
a family of hash functions indexed by the block cipher key.
This yields a concrete bound on the security of ECBC.

b) Security of FCBC: The security of FCBC is equivalent
to the security of ECBC. This is due to the fact that the
composition of two independent random permutations remains
independent from one of the permutations.

c) Security of XCBC: The proof that XCBC is indis-
tinguishable from FCBC is based on a more general lemma
from [BR05], which states that an adversary with oracle
access to two independent random permutations π1(·) and
π2(·) cannot distinguish them from oracles π(·) and π(k⊕ ·),
when π is a random permutation and k is chosen uniformly at
random and independently from π (and remains hidden from
the adversary).

d) Security of CMAC: The security of CMAC cannot be
easily deduced from that of XCBC, since the core lemma of
the security of XCBC imposes that the masks be independent
from the permutation. Since this is not the case for CMAC,
we use ideas from Iwata and Kurosawa [IK03a] to relate the
security of CMAC to that of FCBC. Their key idea is to
prevent the adversary from directly accessing the block cipher
oracle by adding an independent random variable.

A. Security of ECBC

We recall that CBC-MAC, as a mode of operation, can be
seen as a function family in B+ → B indexed by the key
space K. Sampling a key uniformly at random in K induces
a distribution H = CBCK over B+ → B. We define EPADp

H

as the function family (using permutations and indexed by H)
containing functions of the form

EPADπ2,π3

h = M 7→

{
π2(h(M)) if M ∈ B∗

π3(h(pad(M))) otherwise

where π2, π3 are independent random permutations and
h←$H . We now prove that the MAC security of EPADp

H

follows from the collision resistance of H as a function family.
First, we replace the independent random permutations

π2, π3 by independent random functions f2, f3 using the
PRP/PRF switching lemma (Lemma 2) twice.

Lemma 2 (PRP/PRF switching). For any natural number c,
any adversary A that can make at most c queries to its oracle
can only distinguish a random permutation in Perm(B) from

4We note that this is weaker than the usual notion of collision-resistance
for hash functions, which requires resistance against adaptive queries.

a random function in B → B with low probability. More
formally, the following inequality holds.

|Pr[π←$ Perm(B) : Aπc = 1]

−Pr
[
f ←$ Rand(B) : Afc = 1

]∣∣ ≤ c · (c− 1)

2 · |B|

We apply twice the PRP/PRF switching lemma on π2
and then on π3. Following our oracle query accounting, the
adversary could cause either of these to be called q times,
yielding the following probability bound.∣∣∣Pr

[
h←$H;π2, π3←$ Perm(B)2; b← AEPADπ2,π3h

σ,q : b = 1
]

− Pr

[
h←$H; f2, f3←$ Rand(B)2; b← AEPADf2,f3h

σ,q : b = 1

]∣∣∣∣
≤ q(q − 1)

|B|

From now on, we refer using EPADH to the function family
that mirrors EPADp

H using functions instead of permutations,
and thus contains functions of the form

EPADf2,f3h = M 7→

{
f2(h(M)) if M ∈ B∗

f3(h(pad(M))) otherwise

when f2, f3 are independent random functions and h←$H .
As f2, f3 are two independent random functions, the output
of EPADf2,f3h on fresh messages will be sampled at random
unless h maps it to an output value it has already produced
for another query, which is a collision in h. Formalizing this
argument, we prove that EPADf2,f3h is indistinguishable from a
random function unless a collision, as formally defined below,
occurs in h.

Coll h(M,M ′) := M 6= M ′ ∧ h(M) = h(M ′)

Coll h(S) := ∃(M,M ′) ∈ S2, Coll h(M,M ′)

This proof is a standard cryptographic reduction, whereby,
given a PRF adversary A, we construct a collision-finding
adversary B(A) against h that operates with similar time
complexity. B is constructed as follows. B samples a random
function f ←$ Rand(∗,B) and runs Af . While doing so, B
stores all the queries of A in a set,5pads all the queries whose
length is not a multiple of n, then outputs the resulting set. It
can then be shown that the following inequality holds, and it
remains to bound the right-hand side, which is an instance of
the collision-finding game.

AdvprfEPADf
H

(A) ≤ Pr[S ← B(A)σ,q;h←$H : Coll h(S)]

5We note that the choice of data structure for formalizing collisions does
not keep track of query order or multiplicity (in particular, when padding maps
an unpadded message to a padded message that is separately queried to h).
This relaxation is done without loss of precision since CBCf is deterministic
and two consecutive calls to CBCf can be swapped without effect on the
random function – even if it is sampled lazily.

From here on, our proof for ECBC differs from that by
Black and Rogaway [BR05], due to the impossibility of pre-
cisely formalizing their arguments in EasyCrypt. Using their
notations, in the proof of their Lemma 3, they compute prob-
abilities of events of the form Pr[Yi−1 ⊕Mi = Yj−1 ⊕Mj],
relying on their ability to compute the probability of sampling
a particular value for Yi−1. However, this sampling occurs in a
previous iteration of the loop, and may in fact be overwritten,
losing its “randomness” for the next iteration where the events
are tested. One may argue that every value it may be over-
written with in fact follows the same distribution. However,
EasyCrypt’s logics–and indeed entire proof methodology relies
on reasoning about values rather than distributions, and its
logics cannot express the fact that some intermediate value
follows a particular distribution. On the other hand, a standard
way of dealing with similar issues would be to delay the
random sampling until the value is used, allowing a precise
probability computation. However, in this case, the value could
in fact be overwritten between the point where it is initially
sampled and the point where it is used. This introduces depen-
dencies between random values and the adversary’s view of the
system that make it impossible to delay sampling operations
as desired. However, if we cannot formalize precisely their
argument, we can formalize a simpler–less precise bound that
does not discount internal collisions when they are caused by
a common prefix.

In particular, instead of computing the collision probability
for the full set S of messages, we guess which of the couples of
messages may produce a collision and use standard arguments
to bound the probability that any of them collide. We sample
two of the messages from S and only compute their collision
probability. Let C(B) be the adversary that calls the adversary
B which outputs a set S ⊂ B+, then samples two distinct
messages M,M ′←$S and outputs (M,M ′). There are at
most |S|(|S|−1)2 different pairs.

Lemma 3. For any function family H ∈ {B+ → B}, any
adversary B that outputs a set of size at most c, with 2 ≤ c,
has a comparable collision probability to the adversary that
tries to guess where the collision may happen and only test
this.

Pr[S ← Bc;h←$H : Coll h(S)] ≤
c(c− 1)

2
· Pr[(M,M ′)← C(B)c;h←$H : Coll h(m,m′)]

Taking into account an application of Lemma 2 that allows
us to consider ECBC applied to a random function rather than
a random permutation, we have the following bound on the prf
distinguishing advantage of any adversary A against ECBC.

AdvprfECBC(A)

≤ q(q − 1)

2n
+ Pr[S ← B(A)σ;π←$ Perm(B) : Coll CBCπ (S)]

≤ q(q − 1)

2n
+

0.5σ(σ − 1)

2n
+
q(q − 1)

2
·

Pr
[
(M,M ′)← C(B(A))q; f ←$ Rand(B) : Coll CBCf (M,M ′)

]

We observe that the last term includes the probability-
finding collision for CBCf . It therefore remains to bound the
probability of finding collisions in CBC-MAC.

Theorem 1 (CBC collision probability). For any natural num-
ber c, an adversary Ac that outputs two bit-strings (M,M ′)
whose lengths are at most cn, with 0 < c, has a low probability
of producing a collision with CBC when parameterized by a
random function.

Pr
[
(M,M ′)← Ac; f ←$ Rand(B) : Coll CBCf (M,M ′)

]
≤ 2c(2c− 1)

2n
+

1

2n

Proof. Let (M,M ′) be two distinct messages output by the
adversary Ac, and f the random function sampled by the
experiment. If there is no collision in any of the inputs of
f during the CBC chaining, CBCf (M) will collide with
CBCf (M ′) only if the final call to f yields a collision. This
occurs with probability at most 1

2n .
It remains to bound the probability that a collision occurs

somewhere along the chain of inputs to f . The chaining for
the longest common prefix of M and M ′ is computed only
once, and collisions are only considered afterwards. We then
bound the probability of a collision occurring in one of the
inputs to f by the probability of a collision occurring when
those 2c inputs are sampled.

Combining all results above allows us to conclude with a
security bound for ECBC.

Theorem 2 (Security of ECBC). For any natural numbers
q, l, σ, n, an adversary A making at most q queries, each query
of maximum size ln and of total size in the number of blocks
at most σ, has a low probability to distinguish ECBC from a
random function, when parameterized by independent random
permutations.

AdvprfECBC(A) ≤ 0.5σ2 + 2q2l2 + q2

2n
(1)

B. FCBC security

We now relate the security of FCBC with that of ECBC.
Indeed, we note that ECBC is an instance of FCBC
with non-independent permutations. Given three permutations
π1, π2, π3, we have

ECBCπ1,π2,π3 = FCBCπ1,π2◦π1,π3◦π1

The security proof for FCBC then simply relies on the fact
that the composition of two independent random permutations
remains independent from the first one. In other words, given
two independent random permutations π1, π2, the distributions
of (π1, π2 ◦ π1) and (π1, π2) are the same.

Lemma 4. An adversary A making an unbounded number
of oracle queries cannot distinguish the composition of two
independent random permutations.

Pr
[
π1, π2←$ Perm(B)2 : Aπ1,π2= 1

]
=

Pr
[
π1, π2←$ Perm(B)2 : Aπ1,π2◦π1= 1

]
Proof of Lemma 4. It is possible to pre-sample outputs for all
inputs of both π1 and π2. This makes it clear that answers to
π2 ◦ π1 queries are independent from past queries to π1 and
that, with π1 fixed, the distributions of π2 ◦ π1 and π2 are
equal.

Theorem 3 (Security of FCBC). An adversary A cannot
distinguish FCBC from ECBC, when parameterized by inde-
pendent random permutations.

AdvprfFCBC(A) = AdvprfECBC(A) (2)

Proof. This is a direct application of Lemma 4 (applied twice).

C. Security of XCBC

We view XCBC as a particular instance of FCBC. Indeed,
given a permutation π and two blocks k2, k3, we have

XCBCπ,k2,k3 = FCBCπ,π(k2⊕·),π(k3⊕·)

We thus prove that the security of XCBC is implied by that
of FCBC. The proof crucially relies on the following lemma,
which states that one can always (computationally) simulate
two independent random permutations using a unique random
permutation and a random constant.

Lemma 5. For any natural number c, an adversary A making
at most c oracle queries, with 0 < c ≤ 2n

2 , has a low proba-
bility of distinguishing between two independent permutations
(π1, π2) and the pair of permutations (π, π(k ⊕ ·)).∣∣Pr

[
π1, π2←$ Perm(B)2; b← Aπ1,π2

c : b = 1
]
−

Pr
[
π, k←$ Perm(B)× B; b← Aπ,π(k⊕·)c : b = 1

]∣∣∣ ≤ 1.25c2

2n

Proof of Lemma 5. The proof closely follows that of Black
and Rogaway [BR05]. Let A be an adversary that expects
two permutations (as in the given game). The adversary’s
goal here is to find which distribution the oracles it was
given come from. On one hand, there are two independent
random permutations, and on the other hand there is a random
permutation that simulates two permutations with a random
constant.

We prove that the distributions are equal unless the adver-
sary makes two queries x and y to O1 and O2 such that
O1(x) = O2(y). When two independent permutations are
used, this may happen with low probability for any pair (x, y).
On the other hand, when the second permutation is a masked
version of the first, this can only occur when x ⊕ y = k.

Once such a pair of queries has been found, the adversary
can decide with very high probability which oracles she is
interacting with by simply checking, for some z 6= x whether
O1(z) = O2(z ⊕ x⊕ y), which is very unlikely if O1 and O2

are independent, but will hold with probability 1 otherwise.
We further prove that an adversary that makes such a pair

of queries must have either: i. queried x to O1 and x ⊕ k
to O2 without knowing the value of k; or ii. queried x to O1

and y 6= x ⊕ k to O2 and obtained O1(x) = O2(y). We can
then bound the probability of the first event by 0.25c2

2n , and the
probability of the second event by c2

2n .

Lemma 6 (Security of XCBC). For any natural numbers
q, σ, n, an adversary A making at most q queries, of total
size in the number of blocks at most σ, has a low probability
of distinguishing XCBC from FCBC, when XCBC is parame-
terized by a random permutation and two independent random
constants, and FCBC is parameterized by three independent
random permutations.

AdvprfXCBC(A) ≤ AdvprfFCBC(A) +
2.5σ2

2n
(3)

Proof. When an adversary succeeds in distinguishing XCBC
from a random function, either it has distinguished XCBC
from FCBC, or FCBC from a random function. To bound the
distinguishing advantage of any adversary between FCBC and
XCBC, let π1, π2, π3 be three independent random permuta-
tions and k1, k2 two independent random constants. Lemma 5
is instantiated twice with the bound σ, making FCBCπ1,π2,π3

indistinguishable from FCBCπ1,π1(k1⊕·),π3
, and indistinguish-

able from FCBCπ1,π1(k1⊕·),π1(k2⊕·), i.e. XCBCπ1,k1,k2 .

a) A small flaw: Note that our bound on the security of
XCBC is different from Black and Rogaway’s [BR05]. They
instantiate their lemma called Two Permutations From One
(Lemma 5 in the present paper) with the wrong bound on
the total number of oracle queries. Indeed, the bound c on the
number of queries in Lemma 5 is a bound on the total number
of oracle queries. On the other hand, in both instantiations of
Lemma 5, Black and Rogaway only count the number of MAC
queries that do not need padding (accounting only for queries
to the first oracle in Lemma 5). The flaw is subtle, and has
no effect on the security bound (which we improve below),
but is present nonetheless, adding to the body of evidence that
cryptographic proofs are difficult both to write and to evaluate.

b) An improvement: Furthermore, to tighten the bound
back, we extend Lemma 5 into the following Lemma 7, which
states that a random permutation can simulate three inde-
pendent random permutations using two independent random
constants. Proving this lemma directly, rather than relying on
Lemma 5 twice allows us to improve the bound slightly, by
allowing us to count queries to the first permutation once only.

Lemma 7. For any natural number c, an adversary A
making at most c total oracle queries, with 0 < c ≤ 2n−1,

has a low probability to distinguish between three indepen-
dent permutations (π1, π2, π3) and the tuple of permutations
(π, π(k1 ⊕ ·), π(k2 ⊕ ·)).∣∣Pr

[
π1, π2, π3←$ Perm(B)3; b← Aπ1,π2,π3

c : b = 1
]
−

Pr
[
π←$ Perm(B); (k1, k2)←$B2; b← Aπ,π(k1⊕·),π(k2⊕·)c :

b = 1]| ≤ 1.75c2

2n

Proof. This is very similar to Lemma 5 and Lemma 8. The
proof needs to bound the events collrng (defined for Lemma 8)
and another one. The bound of collrng has been proved as a
generic result and then instanciated in Lemmas 7 and 8. The
probability of the other one is bounded by 0.75σ2

2n .

Theorem 4 (Security of XCBC). For any natural numbers
q, σ, n, an adversary A making at most q queries, of total size
in the number of blocks at most σ, has a low probability of
distinguishing XCBC from FCBC, when XCBC is parameter-
ized by a random permutation and two independent random
constants, and FCBC is parameterized by three independent
random permutations.

AdvprfXCBC(A) ≤ AdvprfFCBC(A) +
1.75σ2

2n
(4)

Proof. As for Lemma 6, this is a direct application of
Lemma 7.

D. Security of CMAC

Our security proof generalises CMAC slightly in that we
use abstract public functions f1, f2 : B → B to capture the
derivation of k2 and k3 from π(0n). The security of CMAC
follows by instantiating f1 = x 7→ 2×x and f2 = x 7→ 4×x.

The security of this generalised CMAC (or indeed of con-
crete CMAC) does not immediately follow from that of XCBC,
since its constants k2 = f1(π(0n)) and k3 = f2(π(0n))
are not independent between themselves, and furthermore not
independent from π. However, the security of CMAC is easily
implied by that of FCBC, of which it is an instance. Indeed,
given π,

CMACπ = FCBCπ,π(f1(π(0n))⊕·),π(f2(π(0n))⊕·)

Here again, our security proof is close to that of Iwata and
Kurosawa [IK03a], which relies on a more general construc-
tion, MOMAC, that generalises both CMAC and FCBC. We
provide a game-based proof and go into more details.

1) MOMAC: The MOMAC construction [IK03a] is param-
eterised by 6 oracles O1≤i≤6, which are used as follows.

MOMACO1,O2,O3,O4,O5,O6(m) :=
O5(pad(m)) if 0 ≤ |m| < n

O3(m) if |m| = n

FCBCO1,O4,O6(m) if n < |m| ≤ 2n

FCBCO2,O4,O6(mO1) if 2n < |m| ∧ d|m|/ne = m

when mO1
= (O1(m1)⊕m2) || . . . || mm.

The resulting construction is also illustrated in Figure 7.

2) CMAC and FCBC as instances of MOMAC: Given a
random permutations π and a random n-bit string r, the
following six oracles Q1≤i≤6, where Lπ = π(0n), can be
used with MOMAC to build CMAC.

Q1(x) := π(x)⊕ r Q2(x) := π(x⊕ r)⊕ r

Q3(x) := π(x⊕ f1(Lπ)) Q4(x) := π(x⊕ r ⊕ f1(Lπ))

Q5(x) := π(x⊕ f2(Lπ)) Q6(x) := π(x⊕ r ⊕ f2(Lπ))

Given three independent random permutations π1, π2, π3 and
a random n-bit string r, the following six oracles R1≤i≤6 can
be used with MOMAC to build FCBC.

R1(x) := π1(x)⊕ r R2(x) := π1(x⊕ r)⊕ r

R3(x) := π2(x) R4(x) := π2(x⊕ r)

R5(x) := π3(x) R6(x) := π3(x⊕ r)

3) Security proof: For any value of r, the following func-
tional equivalences follow from these definitions.

CMACπ ∼ MOMACQ1,Q2,Q3,Q4,Q5,Q6

FCBCπ1,π2,π3 ∼ MOMACR1,R2,R3,R4,R5,R6

Therefore, distinguishing CMAC from FCBC can be reduced
to distinguishing the Qi from the Ri. In the following, for any
adversaryA, expecting six oracles and making at most q oracle
queries to O3,O4,O5,O6 and at most σ total oracle queries
before returning a boolean, we name Q(A) (resp. R(A)) the
game that initializes the oracles Q1≤i≤6 (resp. R1≤i≤6), then
calls the adversary AQi (resp. ARi).

Q(A) :=
[
π←$ Perm(B), r←$B; b← AQ1≤i≤6

σ,q

]
R(A) :=

[
π1, π2, π3←$ Perm(B), r←$B; b← AR1≤i≤6

σ,q

]
Lemma 8. For any bijective f1 and f2 such that x 7→ x ⊕
f1(x), x 7→ x⊕ f2(x), x 7→ f1(x)⊕ f2(x), x 7→ x⊕ f1(x)⊕
f2(x) are also bijective, an adversary A, making at most q
oracle queries to O3,O4,O5,O6 and at most σ total oracles
queries, has a low probability of distinguishing the game with
the Ri from the game with the Qi.

|Pr[Q(A) : b = 1]− Pr[R(A) : b = 1]| ≤
σ(σ + 1)

2n
+

1
4 (σ + 1)2 + 1

2q
2

2n
+

3
4 (σ + 1)2

2n

Proof sketch. We first give an overview of the proof, using
names that are defined later. The rest of this section details
individual steps.

We formally prove that, for any adversary A, the game
Q(A) is equivalent to R(A) upto the event findL ∨ collrng.
It is easy to bound the probability of collrng occurring, but
the probability of findL occurring in R(A) requires additional
work. We introduce two new games S(A) and T (A), rep-
resented in Figure 8. Game S(A) is perfectly equivalent to
R(A), thus the probability of findL occurring is equal in both

games. We then prove that T (A) is equivalent to S(A) upto
a third event findr.

The following sequence of inequalities shows an outline of
our detailed proof, with the justification for each non-trivial
step given in the paragraph whose heading is listed beside the
step.

|Pr[Q(A) : b = 1]− Pr[R(A) : b = 1]|
(using Q(A) ∼ R(A) upto collrng ∨ findL)

≤Pr[R(A) : collrng] + Pr[R(A) : findL]

(using R(A) ∼ S(A))
= Pr[R(A) : collrng] + Pr[S(A) : findL]

≤Pr[R(A) : collrng] + Pr[T (A) : findL] +

|Pr[S(A) : findL]− Pr[T (A) : findL]|
(using S(A) ∼ T (A) upto findr)

≤Pr[R(A) : collrng] + Pr[T (A) : findL] +

Pr[T (A) : findr]

We finally bound the probability of collrng and findr in T (A)
and conclude.

We now discuss individual steps in the proof, including def-
initions for the events. In Figure 8 and below, Lπ denotes the
value π(0n) and Lπi denotes the value fi(Lπ) for i ∈ {1, 2}.

a) Q(A) ∼ R(A) upto collrng ∨ findL: In a proof
reminiscent of that of Lemma 5, we note that games Q(A)
and R(A) are equivalent unless A queries some x to Oi and
some y to Oj , with (i, j) ∈ {(1, 3), (1, 5), (3, 5)} and such
that Oi(x) = Oj(y). If this event (which we simply call bad
below) occurs, then A can distinguish the two sets of oracles
with high probability by testing, for some z 6= x whether
Oi(z) = Oj(z⊕x⊕y). We now prove that event bad as defined
above completely captures all cases in which the two games
can be distinguished. To simplify bounding the probability
of bad occurring, we consider instead a disjunction of two
disjoint events findL and collrng, depending on the value of
x⊕ y. Event findL occurs if A queries, for some x:
• O1(x) and O3(x⊕ f1(Lπ)); or
• O1(x) and O5(x⊕ f2(Lπ)); or
• O3(x) and O5(x⊕ f1(Lπ)⊕ f2(Lπ)).

Event collrng captures the remainder of the cases in bad, and
thus occurs when A queries, for some x and y:
• O1(x) and O3(y) such that O1(x) = O3(y) and y 6=
x⊕ f1(Lπ); or

• O1(x) and O5(y) such that O1(x) = O5(y) and y 6=
x⊕ f2(Lπ); or

• O3(x) and O5(y) such that O3(x) = O5(y) and y 6=
x⊕ f1(Lπ)⊕ f2(Lπ).

We consider two games X1(A) and X2(A), which are
respectively equivalent to Q(A) and R(A). X1(A) and X2(A)
are shown in Figure 9, where code inside the dotted boxes
appears only in X1(A). Figure 9 only shows definitions for
O1, O3 and O5, which are sufficient to define the entire
games. Indeed, we note that, in both Q(A) and R(A), we

m1

pad

m′1

O5

tag

m1

O3

tag

m1 m2 m3

pad

m′1 m′2 m′3

O1 O2 O6

tag

m1 m2 m3

O1 O2 O4

tag

Fig. 7. Illustration of MOMAC, by increasing size order: |m| < n, |m| = n, 2n < |m| < 3n, |m| = 3n,

Game O1 O2 O3 O4 O5 O6

Q(A) π(·)⊕r π(·⊕r)⊕r π(·⊕f1(π(0n))) π(·⊕r⊕f1(π(0n))) π(·⊕f2(π(0n))) π(·⊕r⊕f2(π(0n)))
R(A) π1(·)⊕r π1(·⊕r)⊕r π2(·) π2(·⊕r) π3(·) π3(·⊕r)
S(A) π1(·) π1(·⊕r) π2(·) π2(·⊕r) π3(·) π3(·⊕r)
T (A) π1(·) π′1(·) π2(·) π′2(·) π3(·) π′3(·)

Fig. 8. Sequence of games.

have O2(x) = O1(x ⊕ Lπ1) and that O4 and O3, and O6 and
O5 obey the same relation.

Figure 9 shows very clearly that Q(A) (or X1) and R(A)
(or X2) cease to be equivalent only when one of findL or
collrng becomes true. Thus, we have:

|Pr[Q(A) : b = 1]− Pr[R(A) : b = 1]|
= |Pr[X1(A) : b = 1]− Pr[X2(A) : b = 1]|
≤Pr[X2(A) : collrng ∨ findL]

≤Pr[X2(A) : collrng] + Pr[X2(A) : findL]

b) Bounding Pr[X2(A) : collrng]: We note that collrng is
essentially the probability of a freshly sampled variable already
appearing in some set. This can easily be bound, knowing that
the total number of oracle queries is at most σ ≤ 2n−1.

For any adversary A that makes at most σ oracle queries,
we have,

Pr[X2(A) : collrng] ≤ σ(σ + 1)

2
· 1

2n − (σ + 1)
≤ σ(σ + 1)

2n

c) R(A) ∼ S(A): Event findL in game X2(A) can also
be expressed as follows.

findL ⇔
∨Lπ1

1 ∈ dom(π1)⊕ dom(π2),
Lπ1
2 ∈ dom(π1)⊕ dom(π3),

Lπ1
1 ⊕ L

π1
2 ∈ dom(π2)⊕ dom(π3)


Its probability cannot be computed directly in X2(A), since
the collision involves Lπ , which is not independent from
the adversary’s view. We therefore need to modify X2(A)
somewhat into a game S(A) shown in Figure 10 to bound
this probability. The objective of game S(A) is to extend the
findL event to include fresh and independent randomness r in
its definition. This will then enable us to make use of it to
bound the probability of findL, since it is independent from

the oracles’ outputs. It is easy to see that for any adversary A,
S(A) is perfectly equivalent to X2(A). We formally prove

Pr[X2(A) : findL] = Pr[S(A) : findL]

d) Event findL in game S(A): In game X2(A), the value
of Lπ1 as it appears in event findL is equal to π1(0n). In game
S(A), its value is related to r is equal to r ⊕ π1(0n). Event
findL in game S(A) can now be expressed as follows.

findL ⇔∨ f1(Lπ1 ⊕ r) ∈ dom(π1)⊕ dom(π2),
f2(Lπ1 ⊕ r) ∈ dom(π1)⊕ dom(π3),
f1(Lπ1 ⊕ r)⊕ f2(Lπ1 ⊕ r) ∈ dom(π2)⊕ dom(π3)


e) S(A) ∼ T (A) upto findr: As it stands in game S(A),

the use of r in findL is not sufficient to allow us to bound its
probability of occurring. To do so, we wish to show that it
is possible to delay sampling r until the end of the game.
However, r is correlated to the output of oracles S2, S4 and
S6. Again, we observe that r is a random value, unknown
to the adversary, and independent from the permutations.
Rather than using this fact as in Lemma 5 to replace the
three permutations and their re-randomised version with six
truly independent permutations, we simply use it to replace
the three permutations with six permutations that are simply
independent from the value of r.

In our formal proof, we use three pairs of incomplete
functions (πi, π

′
i) that are guaranteed to never output the same

result for any fresh input. We implement this by sampling
each new fresh output from the uniform distribution over
B \ (rng(πi)∪ rng(π′i)). The games we use to formally prove
that (π1, π

′
1) are equivalent to (π1, π1(· ⊕ r)) upto the event

findr are illustrated in Figure 10. We extend this definition to
(π2, π

′
2) and (π3, π

′
3) and name T (A) the game that uses the

corresponding definitions for O1≤i≤6 (which can be seen in
Figure 8).

X1(A) or X2(A)

π, π1, π2, π3 ← Undefined

L←$B
π[0n]← L

π1[0
n]← L

r←$B
collrng ← false

findL ← false

b← AO1,O3,O5
σ,q

O1(m)

if (m ∈ dom(π1))

return π1[m]

else if (m ∈ dom(π))

findL ← true

π1[m]← π[m]

return π1[m]

y←$B \ rng(π1)

if (y ∈ rng(π))

collrng ← true

y ←$B \ rng(π)

π1[m]← y

π[m]← y

return y

O3(m)

if (m ∈ dom(π2))

return π2[m]

else if (m⊕ f1(L) ∈ dom(π))

findL ← true

π2[m]← π[m⊕ f1(L)]
return π2[m]

y←$B \ rng(π2)

if (y ∈ rng(π))

collrng ← true

y ←$B \ rng(π)

π2[m]← y

π[m⊕ f1(L)]← y

return y

O5(m)

if (m ∈ dom(π3))

return π3[m]

else if (m⊕ f2(L) ∈ dom(π))

findL ← true

π3[m]← π[m⊕ f2(L)]
return π3[m]

y←$B \ rng(π3)

if (y ∈ rng(π))

collrng ← true

y ←$B \ rng(π)

π3[m]← y

π[m⊕ f2(L)]← y

return y

Fig. 9. Games X1(A) (including dotted boxes) and X2(A) (excluding dotted boxes).

O1(m)

if (m 6∈ dom(π1))

y←$B\
(rng(π1) ∪ rng(π′1))

if (m⊕ r ∈ dom(π′1))

findr ← true

y← π′1[m⊕ r]

π1[m]← y

y← π1[m]

return y

O2(m)

if (m 6∈ dom(π′1))

y←$B\
(rng(π1) ∪ rng(π′1))

if (m⊕ r ∈ dom(π1))

findr ← true

y← π1[m⊕ r]

π′1[m]← y

y← π′1[m]

return y

Fig. 10. Games S(A) (including dotted boxes) and T (A) (excluding dotted
boxes).

Thanks to this more flexible goal we need only consider a
smaller event, findr, whose occurrence allows the adversary
to distinguish between the Si and the Ti. In essence, findr

corresponds in this setting to the collrng event from the first
step. With this in mind, it is easy to prove that the behaviour of
S(A) and T (A) can only diverge if findr occurs. This allows
us to prove the following inequality.

|Pr[S(A) : findL]− Pr[T (A) : findL]| ≤ Pr[T (A) : findr]

f) Bounding Pr[T (A) : findr]: As when bounding findL
earlier, we note that findr is the probability of a freshly
sampled value already appearing in a set. For all adversary
A that makes at most q to O3, O4, O5 and O6, and at most
σ total oracle queries, we have

Pr[T (A) : findr] ≤
1

4

(σ + 1)2

2n
+

1

2

q2

2n

The proof relies on the fact that, ∀x, y, z, if 0 ≤ x + y ≤ z
then xy ≤ z2

4 , which allows us to clean complex bounds.

g) Bounding Pr[T (A) : findL]: It now remains to bound
the probability that findL occurs in T (A). As shown in
Figure 8, game T (A) no longer uses the value of r, and that
variable can therefore be leveraged to bound the probability
of findL.

Therefore, we can use the randomness of r to bound the
probability of findL in T (A). The transformation from S(A)
to T (A) have modified findL, in the sense that every occurence
of dom(πi) is now replaced by dom(πi) ∪ dom(π′i), for
i ∈ {1, 2, 3}. To simplify all this, findL is equivalent to a
disjunction of six sub-events. Denoting Di := dom(πi) and
D′i := dom(π′i), findL can be expressed, as it appears in T (A)
as follows.

findL ⇔

∨

f1(L

π1 ⊕ r) ∈ (D1 ⊕D2) ∪ (D′1 ⊕D′2),
r ⊕ f1(Lπ1 ⊕ r) ∈ (D1 ⊕D′2) ∪ (D′1 ⊕D2),
f2(L

π1 ⊕ r) ∈ (D1 ⊕D3) ∪ (D′1 ⊕D′3),
r ⊕ f2(Lπ1 ⊕ r) ∈ (D1 ⊕D′3) ∪ (D′1 ⊕D3),
f1(L

π1 ⊕ r)⊕ f2(Lπ1 ⊕ r) ∈ (D2 ⊕D3) ∪ (D′2 ⊕D′3),
r ⊕ f1(Lπ1 ⊕ r)⊕ f2(Lπ1 ⊕ r) ∈ (D2 ⊕D′3) ∪ (D′2 ⊕D3)


Recall that f1, f2, x 7→ x ⊕ f1(x), x 7→ x ⊕ f2(x), x 7→

f1(x)⊕ f2(x) and x 7→ x⊕ f1(x)⊕ f2(x) are bijective. Thus,
for any adversary A that makes at most σ total queries to its
oracles, we can prove that

Pr[T (A) : findL] ≤ 3

4

(σ + 1)2

2n

This concludes the proof of Lemma 8, and we can now seek
to apply it to the security of CMAC.

Lemma 9 (Indistinguishability of CMAC and FCBC). For
any natural numbers q, σ, n, an adversary A making at most
q queries, of total size in the number of blocks of at most σ, has
a low probability of distinguishing CMAC from FCBC, when

CMAC is parameterized by a random permutation and FCBC
is parameterized by three independent random permutations.

AdvprfCMAC(A) ≤ AdvprfFCBC(A) +
2(σ + 1)2

2n
+

0.5q2

2n
(5)

Proof. This is a direct application of the definition of
MOMAC and Lemma 8. In CMAC, the assumptions involving
bijections are reduced in GF(2n) to the fact that, for every
p ∈ {x, x ⊕ 1, x2, x2 ⊕ 1, x2 ⊕ x, x2 ⊕ x ⊕ 1}, the function
q 7→ p× q is bijective.

Theorem 5 (Security of CMAC). For any natural numbers
q, l, σ, n, an adversary A making at most q queries, each query
of maximum size ln and of total size in the number of blocks
of at most σ, has a low probability of distinguishing CMAC
from a random function, when parameterized by a random
permutation.

AdvprfCMAC(A) ≤ 2.5(σ + 1)2 + 1.5q2 + 2q2l2

2n
(6)

Proof. This is a direct application of Theorem 2, Theorem 3
and Lemma 9.

V. DISCUSSION AND RELATED WORK

We have formalized the security of CMAC in EasyCrypt,
assuming only that the underlying block cipher is secure.
Our proof relies on the computational indistinguishability of
CMAC from FCBC. With this formalization, we also verify
that all intermediate lemmas are correct and correctly instan-
tiated, identifying and preventing minor flaws in previously
published proofs [BR05]. We have already contributed some
of these intermediate lemmas, in their general forms, to
EasyCrypt’s standard library.

Formalizing Black and Rogaway’s bound on the proba-
bility of collisions in CBC-MAC [BR05] would tighten our
verified bound, but requires changes to the EasyCrypt tool.
In addition, Black and Rogaway’s proof does not yield the
best known bounds. Bellare, Pietrzak and Rogaway [BPR05]
provide improved bounds for CBC-MAC and ECBC using
less generic arguments in their reduction. Our formalization
effort can be used as a basis for a formalization of these
specific arguments, and perhaps a further generalization, left
as future work. Nandi [Nan09] describes an alternative proof
strategy for XCBC and CMAC, which yields better bounds
for these two constructions by relying on a general theorem–
the Strong Interpolation Theorem. Using this theorem, Nandi
obtains a much tighter asymptotic bound on the security of
CMAC: O(l·q

2

2n). However, our goal was not only to formalize
a security proof for CMAC, but also to obtain generic results
applicable to intermediate constructions and variants. Nandi’s
direct approach would not have supported this dual goal.
The formalization of this theorem, making it suitable for
concrete security analysis, and formally applying it to the
MAC schemes discussed here would certainly be an interesting
lead for future work.

Beringer et al. [BPYA15], [App15] verify the security
and functional correctness of a restricted case of OpenSSL’s
HMAC-SHA256 implementation of the HMAC scheme. Their
verification is carried out entirely within the Coq proof assis-
tant through the VST [App11] and FCF [PM15] libraries. Ye
et al. [YGS+17] further extend their proof to cover an HMAC-
based random number generator. We do not push our proof to
implementation level, but could leverage their techniques, and
those of others [ABBD16] to get similar implementation-level
results, including considerations of side-channel security. In a
similar direction of verifying implementations, Zinzindohoué
et al. [ZBPB17] present a verified low-level cryptographic
library whose functional correctness and some aspects of
side-channel security are verified. Their verification does not
include cryptographic security considerations, but combining
their approach with formal cryptographic proofs as performed
in EasyCrypt or FCF is an interesting direction for future work.

Malozemoff et al. [MKG14] propose automated techniques
for the analysis and synthesis of secure modes of operation for
block cipher modes of operation, including CBC. Hoang, Katz
and Malozemoff [HKM15] present an extended approach for
the analysis and synthesis of block-cipher modes of operation
for authenticated encryption, which combine confidentiality
and authenticity guarantees. Their technique needs the mode of
operation to operate on pairs of blocks, making it inapplicable
to CBC-MAC. Automated analysis has also been implemented
using EasyCrypt [BCG+13], and has been used to synthesise
and verify many public-key encryption schemes built from hash
functions and trapdoor permutations. However, the approach
is very focused and has only limited applicability to other
cryptographic constructions. It would be interesting, based on
the insights gained from this formal effort, to see whether
either technique could be used to analyze and synthesize block
cipher-based MAC schemes, including CMAC. Formalizing a
primitive’s security proof is very different from proving secu-
rity properties for larger systems, such as protocols. Indeed,
if proofs for primitives often involve relatively complex prob-
abilistic arguments, proofs for larger protocols are typically
made complex by the presence of state and by their sheer
scale. Others have succeeded in formalising security proofs for
much larger constructions such as electronic voting [CDD+17]
multi-party computation [ABB+17] or authenticated key ex-
change [BCLS15], including TLS [BFK+13]. Again, our work
is complementary to theirs in that these large proofs often stop
short of formalising the security of their primitives.

CryptoVerif [Bla08] is another tool for finding sequences
of games that constitute proofs in the computational model.
This highly automated tool attempts to synthesize interme-
diate games to prove the security of primitives and proto-
cols [BJST08] and has been used to produce a provably secure
implementation of SSH [CB13]. Its automated nature makes
some proofs very easy, but proofs for very low-level primi-
tives such as CMAC are for now out of its reach. Studying
interactions between automated techniques, such as those used
in CryptoVerif, and finer-grained but more effort-intensive
interactive techniques such as those used in EasyCrypt is also

an interesting direction for future work.
Acknowledgments: C. Baritel-Ruet, P.-A. Fouque and B.

Grégoire are grateful for the support of the ANR through grant
16 CE39 0012 (SafeTLS) and 14 CE28 0015 (BRUTUS).

REFERENCES

[ABB+17] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Fran-
cois Dupressoir, Benjamin Grégoire, Vincent Laporte, and Vitor
Pereira. A fast and verified software stack for secure function
evaluation. In Proceedings of The 2017 ACM Conference on
Computer and Communications Security (CCS 2017). Associa-
tion for Computing Machinery (ACM), 2017.

[ABBD16] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and
François Dupressoir. Verifiable side-channel security of crypto-
graphic implementations: constant-time MEE-CBC. In Interna-
tional Conference on Fast Software Encryption, pages 163–184.
Springer, 2016.

[App11] Andrew W. Appel. Verified software toolchain - (invited talk). In
Programming Languages and Systems - 20th European Sympo-
sium on Programming, ESOP 2011, Held as Part of the Joint
European Conferences on Theory and Practice of Software,
ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011.
Proceedings, pages 1–17, 2011.

[App15] Andrew W Appel. Verification of a cryptographic primitive:
SHA-256. ACM Transactions on Programming Languages and
Systems (TOPLAS), 37(2):7, 2015.

[BCG+13] Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César
Kunz, Yassine Lakhnech, Benedikt Schmidt, and Santiago
Zanella-Béguelin. Fully automated analysis of padding-based
encryption in the computational model. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications
security, pages 1247–1260. ACM, 2013.

[BCLS15] Gilles Barthe, Juan Manuel Crespo, Yassine Lakhnech, and
Benedikt Schmidt. Mind the gap: Modular machine-checked
proofs of one-round key exchange protocols. IACR Cryptology
ePrint Archive, 2015:74, 2015.

[BDG+14] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César
Kunz, Benedikt Schmidt, and Pierre-Yves Strub. EasyCrypt:
A Tutorial, pages 146–166. Springer International Publishing,
Cham, 2014.

[BFK+13] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss,
Alfredo Pironti, and Pierre-Yves Strub. Implementing TLS with
verified cryptographic security. In Security and Privacy (SP),
2013 IEEE Symposium on, pages 445–459. IEEE, 2013.

[BGM04] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The power
of verification queries in message authentication and authenti-
cated encryption. IACR Cryptology ePrint Archive, 2004:309,
2004.

[BJST08] Bruno Blanchet, Aaron D Jaggard, Andre Scedrov, and J-K Tsay.
Computationally sound mechanized proofs for basic and public-
key kerberos. In Proceedings of the 2008 ACM symposium on
Information, computer and communications security, pages 87–
99. ACM, 2008.

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of
cipher block chaining. In Advances in Cryptology—CRYPTO’94,
pages 341–358. Springer, 1994.

[Bla08] Bruno Blanchet. A computationally sound mechanized prover
for security protocols. IEEE Transactions on Dependable and
Secure Computing, 5(4):193–207, 2008.

[BPR05] Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Im-
proved security analyses for CBC MACs. In Crypto, volume
3621, pages 527–545. Springer, 2005.

[BPYA15] Lennart Beringer, Adam Petcher, Katherine Q. Ye, and An-
drew W Appel. Verified correctness and security of openssl
HMAC. In USENIX Security Symposium, pages 207–221, 2015.

[BR05] John Black and Phillip Rogaway. CBC MACs for arbitrary-length
messages: The three-key constructions. Journal of Cryptology,
18(2):111–131, 2005.

[BR06] Mihir Bellare and Phillip Rogaway. Code-based game-playing
proofs and the security of triple encryption. In Advances in
Cryptology–EUROCRYPT, volume 4004, page 10, 2006.

[CB13] David Cadé and Bruno Blanchet. From computationally-proved
protocol specifications to implementations and application to
SSH. JoWUA, 4(1):4–31, 2013.

[CDD+17] Véronique Cortier, Constantin Cătălin Drăgan, François Dupres-
soir, Benedikt Schmidt, Pierre-Yves Strub, and Bogdan Warin-
schi. Machine-checked proofs of privacy for electronic voting
protocols. In Security and Privacy (SP), 2017 IEEE Symposium
on, pages 993–1008. IEEE, 2017.

[DR13] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-
the advanced encryption standard. Springer Science & Business
Media, 2013.

[Dwo16] Morris J Dworkin. Recommendation for block cipher modes
of operation: The CMAC mode for authentication. Special
Publication (NIST SP)-800-38B, 2016.

[EMST78] William F Ehrsam, Carl HW Meyer, John L Smith, and Walter L
Tuchman. Message verification and transmission error detection
by block chaining, February 14 1978. US Patent 4,074,066.

[HKM15] Viet Tung Hoang, Jonathan Katz, and Alex J Malozemoff.
Automated analysis and synthesis of authenticated encryption
schemes. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 84–95. ACM,
2015.

[IK03a] Tetsu Iwata and Kaoru Kurosawa. OMAC: One-key CBC MAC.
In FSE, volume 2887, pages 129–153. Springer, 2003.

[IK03b] Tetsu Iwata and Kaoru Kurosawa. Stronger security bounds for
OMAC, TMAC and XCBC. Cryptology ePrint Archive, Report
2003/082, 2003. https://eprint.iacr.org/2003/082.

[MKG14] Alex J Malozemoff, Jonathan Katz, and Matthew D Green.
Automated analysis and synthesis of block-cipher modes of
operation. In Computer Security Foundations Symposium (CSF),
2014 IEEE 27th, pages 140–152. IEEE, 2014.

[Nan09] Mridul Nandi. Improved security analysis for OMAC as a
pseudorandom function. Journal of Mathematical Cryptology,
3(2):133–148, 2009.

[PM15] Adam Petcher and Greg Morrisett. The foundational cryptogra-
phy framework. In Riccardo Focardi and Andrew Myers, editors,
Principles of Security and Trust, pages 53–72, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

[Vau00] Serge Vaudenay. Decorrelation over infinite domains: the en-
crypted CBC-MAC case. In Selected Areas in Cryptography,
volume 2012, pages 189–201. Springer, 2000.

[YGS+17] Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart
Beringer, Adam Petcher, and Andrew W Appel. Verified correct-
ness and security of mbedtls HMAC-DRBG. 2017.

[ZBPB17] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. Hacl*: A verified modern
cryptographic library. In ACM Conference on Computer and
Communications Security (CCS), 2017.

https://eprint.iacr.org/2003/082

	Introduction
	Constructing CMAC: An Informal View
	Message Authentication Codes
	Block Ciphers
	Constructing CMAC

	Formal Definitions
	Block cipher security
	MAC security
	Pseudo-random Functions

	Security Proof
	Security of ECBC
	FCBC security
	Security of XCBC
	Security of CMAC
	MOMAC
	CMAC and FCBC as instances of MOMAC
	Security proof

	Discussion and Related Work
	References

