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ABSTRACT

Inspired by dynamic programming, we propose Stochastic Virtual Gradient Descent (SVGD) algo-
rithm where the Virtual Gradient is defined by computational graph and automatic differentiation.
The method is computationally efficient and has little memory requirements. We also analyze the
theoretical convergence properties and implementation of the algorithm. Experimental results on mul-
tiple datasets and network models show that SVGD has advantages over other stochastic optimization
methods.

Keywords computational graph · automatic differentiation · stochastic optimization · machine learning

1 Introduction

Stochastic gradient-based optimization is most widely used in many fields of science and engineering. In recent years,
many scholars have compared SGD[1] with some adaptive learning rate optimization methods[2, 3]. [4] shows that
adaptive methods often display faster initial progress on the training set, but their performance quickly plateaus on the
development/test set. Therefore, many excellent models [5, 6, 7] still use SGD for training. However, SGD is greedy
for the objective function with many multi-scale local convex regions (cf. Figure 1 of [8] or Fig. 1, left) because the
negative of the gradient may not point to the minimum point on coarse-scale. Thus, the learning rate of SGD is difficult
to set and significantly affects model performance[9].

Unlike greedy methods, dynamic programming (DP) [10] converges faster by solving simple sub-problems that
decomposed from the original problem. Inspired by this, we propose the virtual gradient to construct a stochastic
optimization method that combines the advantages of SGD and adaptive learning rate methods.

Consider a general objective function with the following composite form:

J = F (σ), σ = f(θ) ∈ Ωσ, (1)

where θ ∈ Ωθ = Rn,Ωσ = f(Ωθ) ⊆ Rm, functions F and each component function of f is first-order differentiable.

We note that:
F (σ∗) = F (f(θ∗)), σ∗ = arg min

σ∈Ωσ

F (σ), θ∗ = arg min
θ∈Ωθ

F (f(θ)). (2)

In addition, when we minimize F (σ) and F (f(θ)) with the same iterative method, the former should converge faster
because the structure of F is simpler than F ◦ f . Based on these facts, we construct sequences {σ(t)} and {θ(t)} that
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converge to σ∗ and θ∗, respectively, with equations:

σ(t) = f(θ(t)), t = 0, 1, · · · . (3)

Fig. 1 (right) shows the relationship between {σ(t)} and {θ(t)}. The sequence {σ(t)} can be obtained by using
first-order iterative methods (see Sec.5 for details):

σ(t+1) = σ(t) − αT ∗∇σJ
∣∣
σ=σ(t) , (4)

where α is the learning rate, T ∗ is an operator of mappping Rm → Rm.
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Figure 1

The difficulty in constructing operator T ∗ is how to make the condition (3) holds true. LetM =
(
∂f i(θ)
∂θj

∣∣∣
θ=θ(t)

)
m×n

,

T is an operator of mapping Rm → Rm, we give the following iterations:

σ(t+1) = σ(t) − αMMTT ∇σJ
∣∣
σ=σ(t) , (5)

θ(t+1) = θ(t) − αMTT ∇σJ
∣∣
θ=θ(t) . (6)

SinceMTT ∇σJ in Eqn.(6) is equivalent to the position of∇θJ in gradient descent method, we defineMTT ∇σJ
as the virtual gradient of function J for variable θ.

For Eqn.(6), it is easy to prove that the condition (3) holds when f is a linear mapping. If f is a nonlinear mapping, let
the second-derivatives of f be bounded and α = o(1),σ(t) = f(θ(t)), owing to (5) and (6) and Taylor formula, the
following holds true:

||σ(t+1) − f(θ(t+1))|| = ||(σ(t) − αMMTT ∇σJ
∣∣
σ=σ(t))− f(θ(t) − αMTT ∇σJ

∣∣
θ=θ(t))||

= O(||αMTT ∇σJ
∣∣
θ=θ(t) ||22) = O(α2), (7)

In this case, the condition (3) holds, approximately.

According to the analysis above, the sequence {F (f(θ(t)))} yields similar convergence as {F (σ(t))} in Eqn.(6) and
Eqn.(5), but faster than minimizing the function F (f(θ)) with the same first-order method, directly.

Note that the iterative method (6) is derived based on the composite form (1) and this form is generally not unique, it is
inconvenient for our algorithm design. We begin by introducing the computational graph. It is a directed graph, where
each node indicates a variable that may be a scalar, vector, matrix, tensor, or even a variable of another type, and each
edge unique corresponds to an operation which maps a node to another. We sometimes annotate the output node with
the name of the operation applied. In particular, the computational graph corresponding to the objective function is a
DAG(directed acyclic graphs) [11]. For example, the computational graph of the objective function J shown in Fig. 2
(a), the corresponding composite form (1) is:





J = F (σ),σ =

[
σ̃1

σ̃2

]
= f(θ) =

[
f̃1(θ̃1, θ̃2)

f̃2(θ̃2, θ̃3; σ̃1)

]
, θ = [θ̃

T

1 , θ̃
T

2 , θ̃
T

3 ]T

f̃1 : Rnθ
1 × Rnθ

2 → Rnσ
1 , f̃2 : Rnθ

2 × Rnθ
3 × Rnσ

1 → Rnσ
2

. (8)

2
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Figure 2: , , are nodes associated with leaf values, hidden values and output value, and , , are
edges associated with operations f̃1, f̃2, F .

For a given general objective function, let G correspond to a computational graph that maps the set of leaf values
V Gθ = {θ̃j |j = 1, · · · , N} to the output value J , where the set of hidden values is V Gσ = {σ̃i|i = 1, · · · ,M}. Let
V Gθ→σ := {σ̃′i|i = 1, · · · ,M ′} = {σ̃i ∈ V Gσ |dist(σ̃i,V

G
θ ) = 1}. In this paper, the objective function J in Eqn.(1)

will be expressed as the following composite form:

J = F (σ),σ =



σ̃′1
...

σ̃′M ′


 = f̃(θ) =




f̃1(θ̃1,1, · · · , θ̃1,N1
; σ̃′1,1, · · · , σ̃′1,N ′

1
)

...
f̃M ′(θ̃M ′,1, · · · , θ̃M ′,NM′ ; σ̃

′
M ′,1, · · · , σ̃′M ′,N ′

M′
)


 (9)

where σ̃′i = f̃ i(θ̃i,1, · · · , θ̃i,Ni ; σ̃′i,1, · · · , σ̃′i,N ′
i
) ∈ V Gθ→σ , i = 1, · · · ,M ′, and

{ {θ̃i,1, · · · , θ̃i,Ni} = {θ̃k ∈ V Gθ | dist(θ̃k, σ̃
′
i) = 1}

{σ̃′i,1, · · · , σ̃′i,N ′
i
} = {σ̃k ∈ V Gσ | dist(σ̃k, σ̃

′
i) = 1, σ̃k � σ̃′i}

.

For example, Eqn.(8) can be expressed as:

J = F (σ),σ =

[
σ̃′1
σ̃′2

]
= f̃(θ) =

[
f̃1(θ̃1,1, θ̃1,2)

f̃2(θ̃2,1, θ̃2,2; σ̃2,1)

]
,

where
{
σ̃′1 = σ̃1, θ̃1,1 = θ̃1, θ̃1,2 = θ̃2

σ̃′2 = σ̃2, σ̃2,1 = σ̃1, θ̃2,1 = θ̃2, θ̃2,2 = θ̃3
.

In deeping learning, the gradient of the objective function is usually calculated by the Automatic Differentiation (AD)
technique[12, 9]. Our following example introduces how to calculate the gradient of J in Eqn.(8) using AD technique.

1. Find the Operation F associated with output value J and its input node {σ̃′1, σ̃′2}, cf. Fig. 2 (b). Then,
calculate the following gradients:

gJw := gw→J(σ̃′1, σ̃
′
2) = ∇wF, w = σ̃′1, σ̃

′
2.

2. Perform the following steps by the partial order � of {σ̃′1, σ̃′2}:
(a) Find Operation f̃2 and it’s input nodes {θ̃2,1, θ̃2,2, σ̃

′
2,1} which associated with hidden value σ̃′2, cf. Fig.

2 (c). Let:
F2(θ̃2,1, θ̃2,2; σ̃′2,1) := F (·, f̃2(θ̃2,1, θ̃2,2; σ̃′2,1)),

where ’·’ denotes that it is treated as a constant during the calculation of gradients and will not be declared
later. Calculate the following gradients:

g
σ̃′

2
w := gw→σ̃′

2
(∇σ̃′

2
J ; θ̃2,1, θ̃2,2; σ̃′2,1) = ∇wF2 =

(
∂σ̃′2
∂w

)T
∇σ̃′

2
J, w = θ̃2,1, θ̃2,2, σ̃

′
2,1,

where∇σ̃′
2
J = ∇σ̃′

2
F .

3
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(b) Find Operation f̃1 and it’s input nodes {θ̃1,1, θ̃1,2} which associated with hidden value σ̃′1, cf. Fig. 2
(d). Let:

F1(θ̃1,1, θ̃1,2) := F (f̃1(θ̃1,1, θ̃1,2), f̃2(·, ·, f̃1(θ̃1,1, θ̃1,2))).

Calculate following gradients:

g
σ̃′

1
w := gw→σ̃′

1
(∇σ̃′

1
J ; θ̃1,1, θ̃1,2) = ∇wF1 =

(
∂σ̃′1
∂w

)T
∇σ̃′

1
J, w = θ̃1,1, θ̃1,2,

where∇σ̃′
1
J = ∇σ̃′

1
F +∇σ̃′

1
F2.

3. Calculate the gradients of J :

∇θ̃1
J = g

σ̃′
1

θ̃1,1
,∇θ̃2

J = g
σ̃′

1

θ̃1,2
+ g

σ̃′
2

θ̃2,1
,∇θ̃3

J = g
σ̃′

2

θ̃2,2
.

According to the analysis above, the computational graph of {∇θ̃kJ | k = 1, 2, 3} can be shown as Fig. 3 (a). If
T is a broadcast-like operator, the computational graph of vitrual gradients can be shown as Fig. 3 (b), where
z1 = gθ̃2→σ̃1

(T ∇σ̃1J ; θ̃1, θ̃2), z2 = gθ̃2→σ̃2
(T ∇σ̃2J ; θ̃2, θ̃3; σ̃1) and {∇(G,T )

θ̃k
J | k = 1, 2, 3} is defined by the

Eqn.(10).

σ̃1σ̃2

gJ
σ̃1

∇σ̃2
Jθ̃2 θ̃3

gσ̃2
σ̃1

gσ̃2

θ̃2
∇θ̃3J

∇σ̃1
J θ̃1

gσ̃1

θ̃2
∇θ̃1J

∇θ̃2J

(a)

σ̃1σ̃2

gJ
σ̃1

∇σ̃2
Jθ̃2 θ̃3

gσ̃2
σ̃1

z2 ∇(G,T )

θ̃3
J

∇σ̃1
J θ̃1

z1 ∇(G,T )

θ̃1
J

∇(G,T )

θ̃2
J

(b)

Figure 3: are edges associated with operation + and x y denotes T x y.

According to the definition of virtual gradient, for any θ̃k ∈ V Gθ :

∇(G,T )

θ̃k
J =

∑

σ̃′
i∈V θ→σ

(
∂σ̃′i
∂θ̃k

)T
Ti∇σ̃′

i
J

=
∑

σ̃′
i∈V θ→σ

∑

j

δ(θ̃i,j , θ̃k)gθ̃i,j→σ̃′
i
(Ti,j∇σ̃′

i
J ; θ̃i,1, · · · , θ̃i,N1

; σ̃′i,1, · · · , σ̃′i,N ′
i
). (10)

Obviously, ∇θ̃kJ = ∇(G,I)

θ̃k
J where I is an identity operator. The bprop operation gw→σ̃′

i
is uniquely determined by

f̃ i.

Then, the Eqn.(6) can be written as the following virtual gradient descent iteration:

θ̃
(t+1)

k = θ̃
(t)

k − α∇(G,T )

θ̃k
J
∣∣
θ=θ(t) , ∀θ̃k ∈ V Gθ (11)

We prove that the SVGD (Alg. 1) has advantages over SGD, RMSProp and Adam in training speed and test accuracy
by experiments on multiple network models and datasets.

In Sec.2 we describe the operator T and the SVGD algorithm of stochastic optimization. Sec.3 introduce two methods
to encapsulate SVGD, and Sec.4 provides a theoretical analysis of convergence. Sec.6 compares our method with other
methods by experiments.

4
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2 Stochastic Virtual Gradients Descent Method

In this section, we will use the accumulate squared gradient in the RMSProp to construct the operator T . According
to Eqn.(7), Eqn.(3) holds when the mapping f is linear. Based on this fact, we designed the following SVGD algorithm.
The functions and variables in the algorithm are given by Eqn.(9) and Eqn.(10).

Algorithm 1: SVGD, our proposed algorithm for stochastic optimization. (∇J)2 indicates the elementwise square
∇J �∇J . Good default settings for the tested machine learning problems are ε = 10−6 and ρ = 0.9. All operations
are element-wise.
Require: G: computational graph associated with function J (τ) = L(ŷ(x(τ),θ), y(τ))
Require: α: Learning rate
Require: m: Minibatch size
Require: s ∈ [0,+∞): Scaling coefficient
Require: θ: Initial parameter
/* define operator ∇(G,T ) before training */
for σ̃′i ∈ V Gθ→σ do

ri = 0 // Initialize gradient accumulation variable
for j ∈ {1, · · · , Ni} do

if f̃ i about θ̃
′
i,j is linear then

gθ̃′
i,j→σ̃′

i
(Ti,j∇σ̃′

i
J (τ); · · · ; · · · ) = gθ̃′

i,j→σ̃′
i
(s
∇σ̃′

i
J(τ)

√
ri+ε

; · · · ; · · · ) // define Ti,j

else
gθ̃′

i,j→σ̃′
i
(Ti,j∇σ̃′

i
J (τ); · · · ; · · · ) = gθ̃′

i,j→σ̃′
i
(∇σ̃′

i
J (τ); · · · ; · · · ) // define Ti,j

end
end

end
/* update θ */
while V Gθ(t) not converged do

Sample a minibatch of m examples from the training set {x(1), · · · ,x(m)} with corresponding targets y(i).
for σ̃′i ∈ V Gθ→σ parallel do

ri ← ρri + (1− ρ) 1
m

m∑
i=τ

(
∇σ̃′

i
J (τ)

)2
// Accumulate squared gradient

end
for θ̃j ∈ V Gθ parallel do

θ̃j ← θ̃j − α 1
m

m∑
i=τ

∇(G,T )

θ̃j
J (τ) // apply update

end
end

SVGD works well in neural network training tasks (Fig.9, 11, 12), it has a relatively faster convergence rate and better
test accuracy than SGD, RMSProp, and Adam.

For the linear operation Conv2D [13] and matrix multiplication MatMul as follows:

{
Conv2D : (RN × RHin × RWin × RCin ,RHk × RWk × RCin × RCout)→ RN × RHout × RWout × RCout
MatMul : (RN × RCin ,RCin × RCout)→ RN × RCout ,

there are Dim(rConv2D) = HoutWoutCout < HkWkCinCout and Dim(rMatMul) = Cout < CinCout. Thus, SVGD
also has less memory requirements than RMSProp and Adam for deep neural networks.

For the same stochastic objective function, the learning rate at timestep t in SVGD has the following relationship with
the stepsize in the SGD and RMSProp:

αSV GD(t) ≈ αSGD(t), s ∗ αSV GD(t) ≈ αRMSProp(t).

5
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3 Encapsulation

In this section, we introduce two methods to generate the computational graph of virtual gradient. We begin by
assumming that the objective function is J (cf. Fig. 4 (b)), the set V Gθ→σ = {σ̃′1, σ̃′2} (cf. Fig. 4 (a)), and the function
used to construct the computational graph of gradients is "gradients", cf. Fig. 4 (c).

f̃ i
∼ gw→σ̃′

i
(∇σ̃′

i
J ; · · · ; · · · )

|| ⇓

f̂ i
∼ gw→σ̃′

i
(T ∇σ̃′

i
J ; · · · ; · · · )

(a)

J = F (f̃2 ◦ f̃1, f̃1)

⇓

Ĵ = F (f̂2 ◦ f̂1, f̂1)

(b)

∇wJ = gradients(J,w)

⇓

∇(G,T )
w J = gradients(Ĵ ,w)

(c)

Figure 4

We hope to generate the computational graph of virtual gradients by using the function "gradients", Fig. 4 (c).

3.1 Extend the API libraries

As shown in Fig. 4, We begin by replacing f̃ i with f̂ i, where f̂ i is a copy of f̃ i but corresponds to a new bprob
operation. Then, call the function "gradients" to generate the computational graph of virtual gradients.

In order to achieve the idea above, in programming, we need to extending core libraries to customize new operations of
f̂ i and its bprop operation. Fig. 5 shows that we need to extend 3 libraries in the layered architecture of TensorFlow
[14].

Mathematical Mapping

Conv2D MatMul

f gx→f(x,θ) gθ→f(x,θ) f gx→f(x,θ) gθ→f(x,θ) · · ·

Kernel Function(CUDA API)

Conv2D MatMul

f gx→f(x,θ) gθ→f(x,θ) f gx→f(x,θ) gθ→f(x,θ) · · ·

Register Operation (C++ API)

function automatic differentiation

Conv2D MatMul · · · Conv2D MatMul · · ·

Front End (Python API)

conv2d mat mul · · ·

T

T

function automatic differentiation

Conv2D MatMul · · · Conv2D MatMul · · ·

conv2d mat mul · · ·

Origin libs Extension libs · · ·

Figure 5: Layered architecture of Tensorflow

3.2 Modify the topology of the calculation graph

According to Eqn.(10) and Fig. 3, the computational graph of the virtual gradients can be obtained by adding new nodes
on the computational graph of the gradients and reroute the inputs and outputs of new nodes. cf. Fig. 6.

6
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θ̃1 σ̃′
1

∇σ̃′
2
J σ̃′

3 θ̃2

g
σ̃′
2

σ̃′
1
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1

∇σ̃′
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J σ̃′

3 θ̃2

T ∇σ̃′
2
J

g
σ̃′
2

σ̃′
1

∇(G,T )

θ̃2
J

g
(σ̃′

2)

σ̃′
1

g
(σ̃′

2)

θ̃2
T

Figure 6: Subgraph views of gradients and virtual gradients. Left: the part of the computational graph of the gradients.
Right: the part of the computational graph of the virtual gradients.

4 Convergence Analysis

In this section, we will analyze the theoretical convergence of Eqn.(6) under some assumptions.

Lemma 4.1. LetM be a random (m×n)-matrix,M11, · · · ,M ij , · · · ,Mmn be an i.i.d. variable from U(−∞,+∞).
Then

fλ(v,u) := E
[
vTMTMu

∣∣ ||M ||2 = λ
]
∝ vTu, ∀λ > 0,∀v,u ∈ Rn. (12)

Proof. Let ei be the unit vector whose i-th component is 1, fλ is bilinear, Then

fλ(v,u) =

n∑

i=1

n∑

j=1

viujfλ(ei, ej) = vTCu, Cij := E
[
eTi M

TMej
∣∣ ||M ||2 = λ

]
. (13)

SinceM11, · · · ,M ij , · · · ,Mmn be an i.i.d. variable from U(−∞,+∞), the following holds true:
{
E[eT1M

TMe1| ||M ||2 = λ] = · · · = E[eTnM
TMen| ||M ||2 = λ] := c0 > 0

E[eTi M
TMej | ||M ||2 = λ] = 0, i, j ∈ {1, · · · , n} .

Thus:
fλ(v,u) = c0v

Tu. (14)

Fig. 7 proof our lemma.

−1 −0.5 0 0.5 1

−1

0

1

vTu

f̃ λ
(v
,u

)

f̃λ(v,u) =
1

10000

∑10000
t=1 uTMT

t M tv, ||M t||2 = λ

n = 2;λ = 1
n = 5;λ = 2
n = 10;λ = 3
n = 25;λ = 4

Figure 7: The relationship between vTu and the estimate of fλ(v,u). Each point corresponds to a pair of random
vector (v,u) and a random matrix set {M t|t = 1, · · · , 10000}.
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Corollary 4.1.1. ForM defined in Lemma 4.1, if vTu > 0, then:

E
[
vTMTMu

]
> 0. (15)

Theorem 4.2. Let F and f be second-order differentiable functions with random variables in their expression, we set:

vTT v > 0, i ∈ 1, · · · ,m, ∀v ∈ Rm\{0}.

If each component of Jacobian matrixM =
(
∂f i(θ)
∂θj

)
m×n

is an i.i.d. variable from U(−∞,+∞), then, for θ(t+1) =

θ(t) − α ∗MT ∇f(θ)F (f(θ))|θ=θ(t) and ∇θF (f(θ)|θ=θ(t) 6= 0 there exists a α > 0 such that

E
[
F (f(θ(t+1)))− F (f(θ(t)))

]
< 0,

Proof. Without loss of generality, we can assume θ ∈ Rn,σ = f(θ) ∈ Rm,m > n. Then, the Maclaurin series for
F (f(θ))) around the point θ(t) is:

F (f(θ(t+1)))− F (f(θ(t))) = −α(∇θJ |θ=θ(t))TMT ∇σJ |θ=θ(t) + o(α)

= −α(∇σJ |θ=θ(t))TMTMT ∇σJ |θ=θ(t) + o(α).

Let v = ∇σJ |θ=θ(t) . According to corollary 4.1.1:

E
[
F (f(θ(t+1)))− F (f(θ(t)))

]
= −αE

[
vTMTMT v

]
+ o(α) < 0.

Although our convergence analysis in Thm.4.2 only applies to the assumption of uniform distribution, we empirically
found that SVGD often outperforms other methods in general cases.

5 Related Work

First-order methods. For general first-order methods, The moving direction p(t) of the variables can be regarded as
the function of the stochastic gradient g(t):

• SGD: p(t) = T g(t) := −g(t).

• Momentum:[15] Letm(0) = 0,m(t+1) = cm(t) + g(t). Then:

p(t) = T g(t) := −m(t+1).

• RMSProp: Let r(0) = 0, r(t+1) = ρ r(t) + (1− ρ) g(t) � g(t). Then:

p(t) = T g(t) := − g(t)

√
δ + r(t+1)

.

• Adam: Let s(0) = r(0) = 0, s(t+1) = ρ1 s
(t) + (1 − ρ1) g(t), r(t+1) = ρ2 r

(t) + (1 − ρ2) g(t) � g(t).
Then:

p(t) = T g(t) := − s(t+1)/(1− ρt1)√
δ + r(t+1)/(1− ρt2)

.

However, in SVGD method, p(t) = −∇(G,T )
θ J cannot be written as a function of g(t). Thus, SVGD is not essentially

a first-order method.

Global minimum. A central challenge of non-convex optimization is avoiding sub-optimal local minima. Although
it has been shown that the variable can sometimes converges to a neighborhood of the global minimum by adding
noise[16, 17, 18, 19, 20], the convergence rate is still a problem. Note that the DP method has some probability to
escape “appropriately shallow” local minima because the moving direction of the variable is generated by solving
several sub-problems instead of the original problem. We use computational graph and automatic differentiation to
generate the sub-problems in DP, such as what we did in the SVGD method.

8



SVGD: A Virtual Gradients Descent Method for Stochastic Optimization A PREPRINT

6 Experiments

In this section, we evaluated our method on two benchmark datasets using several different neural network architectures.
We train the neural networks using RMSProp, Adam, SGD, and SVGD to minimize the cross-entropy objective function
with L1 weight decay on the parameters to prevent over-fitting. To be fair, for different methods, a given objective
function will be minimized with different learning rates. All extension libs, algorithm, and experimental logs in this
paper can be found at the URL: https://github.com/LizhengMathAi/svgd.

The following experiments show that SVGD has a relatively faster convergence rate and better test accuracy than SGD,
RMSProp, and Adam.

6.1 Multi-layer neural network

In our first set of experiments, we train a 5-layer neural network (Fig. 8) on the MNIST [21] handwritten digit
classification task.

image 784×256
MatMul

flat 256×128
MatMul

bias/BN

ReLU

128 × 64
MatMul

bias/BN

ReLU

64 × 32
MatMul

bias/BN

ReLU

32 × 10
MatMul

bias/BN

ReLU
logits

bias

Softmax

Figure 8: MLP architecture for MNIST with 5 parameter layers (245482 params).

The model is trained with a mini-batch size of 32 and weight decay of 1.0 × 10−4. In Table 1, we decay α at 1.6k
and 3.6k iterations and summarize the optimal learning rates for RMSProp, Adam, SGD, and SVGD by hundreds of
experiments.

RMSProp Adam SGD SVGD(s=0.1)

α
iter: [0 ∼ 1599] 0.001 0.001 0.1 0.01
iter: [1600 ∼ 3599] 0.0005 0.00005 0.05 0.005
iter: [1600 ∼ 5999] 0.00005 0.00005 0.01 0.001
test top-1 error 1.80% 1.94% 1.76% 1.60%

Table 1: The test error and learning rates in MLP experiments.

In Table 1 and Fig. 9 we compare the error rates and their descent process process on the CIFAR-10 test set, respectively.
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Figure 9: Comparison of first-order methods on MNIST digit classification for 3.75 epochs.

6.2 Convolutional neural network

We train a VGG model (Fig. 10) on the CIFAR-10 [22] classification task and follow the simple data augmentation in
[23, 24] for training and evaluate the original image for testing.
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bias
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Figure 10: VGG model architecture for CIFAR-10 with 6 parameter layers (46126 params).

The model is trained with a mini-batch size of 128 and weight decay of 1.0 × 10−5. In Table 2, we decay α at 12k
and 24k iterations and summarize the optimal learning rates for RMSProp, Adam, SGD, and SVGD by hundreds of
experiments.

RMSProp Adam SGD SVGD(s=0.001)

α
iter: [0 ∼ 11999] 0.02 0.02 2.0 2.0
iter: [12000 ∼ 23999] 0.01 0.01 0.5 0.5
iter: [24000 ∼ 34999] 0.002 0.005 0.005 0.005
test top-1 error 17.78% 18.02% 17.32% 17.07%

Table 2: The test error and learning rates in VGG experiment.

In Table 2 and Fig. 11 we compare the error rates and their descent process on the CIFAR-10 test set, respectively.
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Figure 11: Comparison of first-order methods on CIFAR-10 dataset for 90 epochs.

6.3 Deep neural network

We use the same hyperparameters with [24] to train ResNet-20 model(0.27M params) on the CIFAR-10 classification
task. In Table 3, we decay α at 12k and 24k iterations and summarize the optimal learning rates for RMSProp, Adam,
SGD, and SVGD by hundreds of experiments.

RMSProp Adam SGD SVGD(s=0.01)

α
iter: [0 ∼ 31999] 0.001 0.001 0.1 0.5
iter: [32000 ∼ 41999] 0.0001 0.0001 0.01 0.02
iter: [42000 ∼ 49999] 0.0001 0.00005 0.001 0.01
test top-1 error 11.18% 11.12% 10.69% 8.62%

Table 3: The test error and learning rates in ResNet experiments.

In Table 3 and Fig. 12 we compare the error rates and their descent process on the CIFAR-10 test set, respectively. The
top-1 error fluctuations in experiments do not exceed 1%. See [25] for more information on the CIFAR-10 experimental
record.
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Figure 12: Comparison of first-order methods on CIFAR-10 dataset for 125 epochs.
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