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Abstract. Arti�cial general intelligence (AGI) should be founded on a
suitable framework. Existing rule-based design is problematic, since it
has to be manually updated if new and unaccounted for data is encoun-
tered. Current Deep Learning (DL) is also insu�cient to become AGI,
but it has the potential to be extended into one. Therefore an appropriate
AGI has to be de�ned, followed by its appropriate DL implementation.
We introduce an AGI, in the form of cognitive architecture, which is
based on Global Workspace Theory (GWT). It consists of a supervisor,
a working memory, specialized memory units, and processing units. Ad-
ditional discussion about the uniqueness of the visual and the auditory
sensory channels is conducted. Next, we introduce our DL module, which
is dynamic, �exible, and evolving. It can be also considered as a Network
Architecture Search (NAS) method. It is a spatial-temporal model, with
a hierarchy of both features and tasks, tasks such as objects or events.

Keywords: Deep learning · General intelligence · Dynamic · Evolving.

1 Introduction

DL, as one of the Arti�cial intelligence (AI) approaches, is not as fully exploited
as it could be. First, deep neural networks (DNNs) are passive models, since they
have a �xed structure, while in reality there are dynamic processes, such as the
neurons' construction/destruction in the brain. Second, Learning in DL is simply
a categorization process without involving any thinking or imagination. Next, a
successful DL model (DLM) requires its designers to know the system, i.e., apply
implicit or explicit prior knowledge in the DLM. Moreover, a carefully designed
rule-based system may outperform a DLM, due to its dataset limitation, while
a rule-based system is designed for much broader and more diverse scenarios.
Finally, DL is highly task-speci�c. Even multi-tasking in DL must be pre-de�ned.
However, real AGI can generalize not only to unseen data but also to unseen
tasks (as in transfer/continual learning). Nevertheless, we propose a dynamic
and �exible DLM that can be extended to AGI. We use DNN and not another
machine-learning (ML) tool, since it is based on genuine intelligence.

2 Proposed architectures

In this section, we present an AGI architecture and a DLM, which can function
as a module in this AGI architecture, e.g. in the perception/actuation module.
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2.1 Proposed AGI model

Fig. 1. AGI proposed architecture

A general AGI model sketch is shown in
Fig. 1. This AGI is based on GWT [26, 29],
which describes a multi-agent system. In
GWT, the agents are local controllers be-
having reactively, and compete with each
other over access to the working memory
(WM). Our AGI, however, has no compe-
tition among its di�erent and independent
modules, i.e. processors and memories. In-
stead, it has centralized control with di�erent
elements, where each element has a speci�c
function.

Cognitive Architecture The diagram in
Fig. 1 is also referred to as cognitive architec-
ture, which represents an AI agent structure
and functioning. For example, in the tra�c
control �eld, two studies [12, 24] implementing AI are based on distributed cog-

nitive architectures [19].

The �rst study [24] is based on GWT, containing agents imitating four brain
function types: (i) sensory type, holding positions and velocities of vehicles; (ii)
behavioral type, determining the light of the tra�c signal in some intersection;
(iii) consciousness type, representing the WM and interacts with other brain
functions; and (iv) motor type, executing the chosen signal phase for each inter-
section.

In the second study [12], an AI is implemented on a single intersection us-
ing a Multipurpose Enhanced Cognitive Architecture (MECA) [11], which was
adapted for the tra�c signal control problem. The design consists of a Cognitive
manager, i.e. a special kind of agent, like a car or an intersection agent, man-
aging a set of physical objects available on the Internet. These objects provide
information about themselves and receiving commands. MECA is composed of
two independent systems communicating with each other: (i) a fast reactive sys-
tem holding the input sensors and output actuators, which is suited for normal
situations, and (ii) a goal-oriented motivational system suited for unexpected
situations. Overall, the automatic reactive and conscious elements of MECA
produce an intelligent behavior.

These papers are rule-based designs using small-scale networks. However, for
more adaptive and �exible designs, the DL is preferable to the rule-based design.
Moreover, any cognitive architecture is limited and constrained by its structure.
Therefore, we should have a wider view of it, thus considering the boundaries
between the components to be not so well de�ned and perhaps changing.

Additionally, as in infant-parent and student-teacher interactions, the DL
agent should be guided and supported.
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AGI function Here the function of the proposed AGI in Fig. 1 is described.

As in humans, our AGI uses 1D (audio) input and 3D (visual) input, however,
it also uses them as outputs. Moreover, the visual channel can be extended to
be 1 or more dimensions, depending on the environment our agent is deployed
in.

There is separate sequential processing of 1D and multi-D data, for feature
extraction and categorization of objects (static entities) or events (dynamic en-
tities). Next, these objects/events propagate into the WM. Finally, an output
is produced either through the 1D or the multi-D channel. If the output is an
emerging idea/thought, it can be expressed via 1D channel, similarly to humans
describing verbally their inner thoughts to the outer world. Alternatively, it can
be expressed via the multi-D channel, thus can be regarded as �screening imag-
ination", which is like projecting the current thought into a screen.

Additionally, 1D information (such as language) has a shared memory for in-
put, output, and WM, denoted as 1D memory. This is also true for the multi-D
information. The bidirectional arrows in Fig. 1 represent the acquisition (read-
ing) and the update (writing) operations with the storage module.

The output communication of 1D and multi-D information can have various
modes, such as continuously monitoring thoughts or waiting for a meaningful
output. In addition, the AGI may have a degree of independent choice of when
to interact and through which of the two channels.

This particular AGI is based upon Stimulus-Response behavioral theory [31],
which states that the mind can be communicated with, although unobservable.
This assumption is similar to the Chinese Room Argument, since there is only
direct access to the output of the agent and not to the operations within. In other
words, there is no explainability over the AGI's inner operations (it is a black-
box), and so only the output can be analyzed. It is referred to as �intelligent
behavior", also expressed by a human productivity over time, in �elds such as
science, psychology, and technology.

This AGI does more than static/dynamic object identi�cation or scene un-
derstanding [18], as in DL. It extends to the temporal dimension, by including:
events, objects' behavior and function, associations from past experiences, etc.
It is illustrated by comparing the current AI and the proposed AGI, in Fig. 2.

(a) AI identifying. (b) AGI interpretating.

Fig. 2. Comparison between AI and AGI comprehending the environment.
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AGI characteristics Firstly, If AGI's main purpose is to organize information
to be utilized optimally in a variety of tasks, prediction might be only a tool to
estimate this main goal. Additionally, DNN is an e�cient algorithm and mem-
ory structure, which can achieve this goal, since it organizes the data with the
intention of recovering it later.

Secondly, we advocate that e�ciency is more important than e�ectiveness, in
AGI, since it is about the exploitation of available resources, while e�ectiveness
is about how well a goal is achieved [1], e.g. the common attitude in DL to
compare performances.

Finally, other characteristics an AGI should have are those imitating humans,
such as correct teaching order (simple to complex) and the ability to grow/evolve
in compulsory stages.

Two information types Here we discuss the rational behind the unique func-
tioning of the visual and auditory channels.

Firstly, we examine why humans do not posses an imagery output tool like
the multi-D output we permit in our AGI. One can argue it would hurt our
basic desire for privacy, but then just as we choose whether to talk or not, we
can similarly choose when to turn this tool on. Our current opinion is that the
world we see with our eyes is what we all agree upon. Other than that, our inner
models of the world are totally di�erent.

Secondly, we re�ect upon the reasons for humans not having a symbolic or lin-
guistic channel to be objective as vision, i.e. why we end up with inner and unique
symbolic representation. We think it is because language is highly context-
dependent, and since each person has di�erent contexts along with his life, or dif-
ferent experiences, then he develops a di�erent meaning/feeling/understanding
of the objective concepts we all agree upon. Hence, the concepts we use in exter-
nal communication are objective and common to all people, but their interpreta-
tion is di�erent for each one. Therefore, physical reality's purpose is nothing but
the objective agreement for e�ective communication between humans, realized
via language. However, vision is not a communicative channel for us.

Consequently, the purpose of having two channel types is distinguishing the
outer and inner world that the agent interacts with. Furthermore, humans (as
should be followed by AGI) base their inner representation on spatio-temporal
events, or operational language. A language comprised of objects, actions and
attributes, and expressed by words/symbols. Therefore spatio-temporal infor-
mation can be transferred to humans not by the static/objective world, but
rather by language. Agents denoted as green circles, communicating via 1D and
individually perceiving multi-D input are illustrated in Fig. 3.
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Fig. 3. Objective (right) verse Subjective inner representation (left).

2.2 Proposed DLM

Until now we presented a general AGI model. Now we turn to discuss which DLM
can implement such AGI, or implement each or some of its di�erent modules.

Some necessary background is needed. We start by reviewing prior knowledge
in DL, also known as inductive bias. Then due to di�culties with matching the
most proper prior knowledge to each speci�c problem we encounter - we continue
with reviewing NAS dealing with these di�culties. Finally, we present our DLM
as a possible NAS strategy.

Prior knowledge in DNNs Prior knowledge can appear in many forms. One
form is structure's general type, such as CNN and RNN. These NNs present
better prediction results in accuracy and stability compared to other ML meth-
ods [21, 33, 34]. Nonetheless, it is due to being tailored to their particular prob-
lem, having fewer variables and containing more prior knowledge, compared to
fully-connected (FC) layers of regular/vanilla NN.

Another forms are the hyper-parameters and the regularization method, e.g.
dropout or constraints. Other form is the decision about sharing or grouping [28]
or separating features/variables. For example, when tra�c data is set apart from
weather data [17], or when roads being separated from stations [15] and then
being fused later. Tasks can also be separated into groups [15]. Finally, [16] sug-
gests sparsifying the NN, e.g. removing connections in CNN, or grouping/sharing
parameters, results with fewer parameters, more prior knowledge and e�ciency,
and redundancy elimination.

However, these structures can be too restricted or best perform for narrow
data variations. Hence, many studies try di�erent hyper-parameters or architec-
tures, to get better performance, e.g. they use Network Architecture Search.

Network Architecture Search (NAS) Firstly, in NAS, e.g. AutoML [2],
the search space for models is de�ned/restricted. For example, grid and random
search are often used in hyper-parameter tuning.

NAS has various approaches, such as reinforcement learning (RL), Evolu-
tionary Algorithms (EA), and Hypernetworks.

EA [9] is usually used in various search tasks, such as in the generation
of DNNs, hyperparameters, NN building blocks, activation functions, and even
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the algorithms for learning (rules). For example, in NEAT [6], it is used to
replace back-propagation with Genetic Algorithm (GA) or combine them both,
in searching for weights.

A more e�cient/faster approach use weight sharing between proposed net-
works, instead of putting them in the search and training them from scratch, as
in EA. It is done by sampling sub-networks from a large parent network where
they force all sub-networks to share weights. Only the best �nal model is trained
from scratch. Alternatively, only speci�c parts in NN can be modi�ed, while
leaving the rest unchanged.

Unlike EA and RL, the search in Di�erentiable Architecture Search (DARTS)
[20], is de�ned as a di�erentiable and continuous problem. DARTS use multiple
categories, where the �nal architecture is discretized after the search is over.

In hypernetwork approach [8], the weights are learned not by training original
NN but rather determined via other NN. That is, for every tested input, di�erent
weights are generated to predict the output. For example, in [13] there is a
hypernetwork for both CNN and RNN as two ends of a spectrum, which allow
it to be a relaxed weight-sharing approach and allows controlling the trade-o�
between the number of model parameters and model expressiveness.

Another example is the SMASH method [3], where a hypernetwork is trained
to predict network weights in one shot instead of training all candidate networks
from scratch. First a hypernetwork is trained to predict the weights of some
given arbitrary network, then it randomly generates many architectures. Then,
rather than training those models, a hypernetwork is used to obtain the weights.
Finally, best performing architecture is selected and trained from scratch.

Next, our evolving DLM is presented as an additional NAS method, and
implemented in a continual learning strategy.

Proposed DLM function Our proposed DLM is based on the inductive bias
principle. It states that small data requires simpler model while bigger data
requires a more complex one. Complexity in DLMs is expressed in the NN size.
Hence, assuming gradual learning like in infants, we propose an evolving DLM,
starting from small NN, extending successively to a bigger one while encountering
new data. Similar models to our DLM can be found in [25]. In the following, we
describe our DLM evolution with comparison to an infant, while perceiving a
spatial-temporal type of data.

We presume, that an infant does not have any supervised learning at the
beginning of his life, rather an unsupervised one. The �rst thing he does is
segment the time period into simple events. But he starts with a single event
detection (e.g. his total awaking period) through some initial DNN. See Fig. 4(a).

After a while, when enough counts detected the single event, a split of this
event performed into two (or more) classes of events, e.g. day and night, see
Fig. 4(b). Counts are the number of times the output class was triggered. Now,
the agent can di�erentiate two events, sharing the same features. Later it can
extend the number of events, and recognize as many events as necessary. Con-
sequently, it is an adaptive NN structure, adaptive by necessity.
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At some point of evolution, when connections (weights in DNN) and event
identi�cation (output layer's counts) are strengthened and established, the model
can change its attention or free its resources, since the given level had become
more automatic, similar to the idea in [14]. It can now build a new layer/level
if a simultaneous re-occurrence of several events is detected. For example, the
re-occurrence of seeing the mom appearing and preparing herself to give milk
suggests to the infant that it is a composite event on its own, see Fig. 4(c).

(a) (b) (c)

Fig. 4. Neuron separation and composition in the proposed approach (Ev.=Event).

Opposite structure-changing operations could be (i) deleting extremely rare
nodes/edges in the DNN, a bit similar to dropout regularization in DL; and (ii)
decomposing an event, if it appears to be more complex than it was supposed to
be. In other words, if previously it was treated as a speci�c-level event, now it is
�ne-grained, thus decomposed into simpler events (re�nement). It is decomposed
into either existing events or new ones. If new ones, then they have to be attached
to lower-level events/features, e.g. see Fig. 5, where the "ball in the air" event
is decomposed into its three basics.

(a) (b) (c) (d)

Fig. 5. Neuron decomposition in the proposed approach (Ev.=Event).

Decomposition is highly uncertain operation, since it is unknown weather an
event is compositional, and if it does - how many events it consists of, and which
of these events are new and which are not. There are numerous ways to deal
with it, but it is out of the scope of this paper.
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For this dynamic algorithm to work, the number of visits have to be stored
for each weight (edge in DNN) and for each node in the DNN. If scalability is an
issue for large DNNs, the visits memorization can be reduced from being stored
for each neuron to being stored in each cluster of neurons in large enough DNN.

Furthermore, the visits can be counted during �waking" periods (when the
DNN is �xed), and the structure update can be done during �sleeping" periods,
when there is no stimulus from the sensors, while the trajectory frequency within
the DNN is stored in the neurons themselves, as mentioned above. Perhaps it may
even be so in the actual human brain. The rate of structure changing can also
be modeled with a learning rate as in RL, where at �rst it is mostly exploration
(i.e. fast NN growth), and then lesser exploration and more exploitation. Finally,
a �nite number of nodes and connections is presumed, i.e. limited resources (so
that it would not grow in�nitely), thus result with adjusting the learning rate
accordingly.

An issue can be in the recoverability, i.e. the ability to restore once deleted
elements. One possible solution assume that the infant �rst should grow up, and
only later re�ne its categorization, i.e. �rst phase is only enlarging the network.
Then, in a big enough network, a node/connection removal can begin, because
then the agent accumulated enough con�dence/experience.

Another issue in dynamic structure NN could be splitting or deleting features
that are supposed to be frequent or rare, yet they should be left as they are. A
possible solution is via relative frequency, i.e. to have some min-max range of
relative frequency among neurons (e.g. for all of them or for each level), which
will not be split/deleted. Only those extremely frequent/rare outside of this
range would be split/deleted.

Finally, the proposed DLM could bene�t from other optional additions, such
as:

* Besides being an event, the task/output could be also an object or an action.
* The inner neurons could also be updated.
* Allow reallocation of activated-together neurons to be in proximity to each
other, to ease on computation.

* The model should be constrained in all its adaptive parameters, such as
the number of total layers and number of neurons per layer, to eliminate
redundancy and encourage competition/trade-o�s.

* The neurons can have di�erent functions, such as convolutional, recurrent,
recursive, or attentional.

Advantages of the proposed DLM This approach is self-supervised and
not unsupervised, since it is not about clustering into a pre-de�ned number of
categories. Here, similar to NAS, the number of categories and connections are
all dynamic, and change according to the decision of some supervising algorithm.

Another reason for this dynamic algorithm is that real intelligence does not
end up with categories like a cat or a dog. Moreover, most AI research works
backwards. It always starts from high-complexity data and try to learn it from
scratch, instead of simple to complex learning as it should be in an evolving AGI.
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Additionally, this dynamic algorithm is less computational since it has fewer
connections compared to FC NN, similar to sparse NN.

Finally, NAS is used to �nd some optimal hierarchical structure of features
represented via neurons for a given dataset. Thus, it is probably wrong to guess
the number of best-describing features at each layer. Dynamic NN deals with
this issue, by keeping only the relevant and true features/events.

Task hierarchy in the proposed DLM The extending of classes converts
this DLM into hierarchical multi-class DNN. Such DNNs exist in the literature.
In [4] we have feature layers and then task layers. Sometimes these layers can be
mixed up. Labels structure can be found separately from the model [5,23], or as
a part of the model [10, 18, 22]. All the tasks can be learned over one classi�er,
i.e. globally or in the last layer of the NN [5, 30], or alternatively, intermediate
tasks can be inserted inside the NN, i.e. locally [4, 22,27, 32]. The structure can
be learned from the data [18], e.g. by unsupervised clustering of the labels via
some similarity measure [23], or it can be imported from external knowledge
base [7], or used to change this structure [5, 10].

Similarly to these papers, additional features can be inserted between task
layers in our proposed DLM, for example.

Additionally, unlike features that are distributive representatives of data,
holding only some piece of the actual information, tasks are end-point indepen-
dent representatives of data, thus ruining in a way, the distributive nature of
NN. However, this is not their main drawback. The fact that they are informa-
tional points - enforces a huge memory, since we need lots of them to represent a
huge amount of terms and concepts. As opposed to a small group of inter-related
features, which can characterize an enormous amount of input data. Therefore,
at some point, a replacing/converting tasks with/into features should be consid-
ered.

Fig. 6. Branching due to multiple hierarchies.

Generally, there may be dif-
ferent hierarchies besides compo-
sitional ones, e.g.: family tree,
parts of speech, table of contents,
topics and sub-topics. One solu-
tion could be, is for the evolu-
tion to develop into di�erent hi-
erarchies, just like tree expansion:
in di�erent locations of a given
NN and in di�erent structures.
An illustration of multiple hierar-
chies formed in a given NN is in
Fig. 6.
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Temporal dimension of the DLM Until now the presented DNNs in the
proposed DLM were represented via static structure, i.e. a single simultaneous
set of inputs produced a single simultaneous set of outputs. In other words, there
were no recurrent connections to include a temporal sequence of inputs.

Usually, spatial-temporal models combine CNN with RNN in di�erent ways.
Either separately: CNN�RNN or interchangeably: CNN�RNN�CNN�RNN...
Another way is to separate CNN and RNN to separate inputs, e.g. textual for
RNN and visual for CNN, with a fusion module at the end. In conclusion, event
tasks, such as classi�cation/clustering, can be done using the methods above.

On the other hand, regular FC DNNs are used for spatial object tasks. But
if our goal is to extract features along the temporal dimension also, a simple
addition of recurrent connections could be made. Alternatively, an extension of
the DNN could be done to include the temporal dimension, without changing the
spatial dimension, i.e. orthogonal to it. See Fig. 7 illustrating static and dynamic
object tasks.

(a) (Front view) Objects tasks (b) (Side view) Events tasks

Fig. 7. Spatio-temporal DNN model.

In Fig. 7 it is shown a FC NN. However, if required, it could be specialized
in di�erent ways, e.g. by shared connections/parameters or convolutions. And it
can be done for either the spatial or temporal dimensions, or both.
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