
EasyChair Preprint

№ 656

A survey of feature space reduction methods for

context aware processing in IoBT networks

Andre Harrison, Darius Jefferson, Adrienne Raglin, Brian Jalaian
and Michael Lee

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 29, 2018

Symposium: 23nd International Command and Control Research and Technology
Symposium

Topic 7: Human Information Interaction

Title: A survey of feature space reduction methods for context aware processing in
IoBT networks

Authors:
Andre V. Harrison
U.S. Army Research Lab, RDRL-CII-B
2800 Powder Mill Rd, Adelphi, MD 20783
andre.v.harrison2.civ@mail.mil

Darius Jefferson II
U.S. Army Research Lab, RDRL-CII-B
2800 Powder Mill Rd, Adelphi, MD 20783
darius.e.jefferson.ctr@mail.mil

Adrienne J. Raglin
U.S. Army Research Lab, RDRL-CII-B
2800 Powder Mill Rd, Adelphi, MD 20783
adrienne.j.raglin.civ@mail.mil

Michael Lee
U.S. Army Research Lab, RDRL-CII-B
2800 Powder Mill Rd, Adelphi, MD 20783
michael.h.lee.civ@mail.mil

Brian Jalaian
U.S. Army Research Lab, RDRL-CII-B
2800 Powder Mill Rd, Adelphi, MD 20783
brian.a.jalaian.civ@mail.mil

mailto:andre.v.harrison2.civ@mail.mil
mailto:darius.e.jefferson.ctr@mail.mil
mailto:adrienne.j.raglin.civ@mail.mil
mailto:michael.h.lee.civ@mail.mil
mailto:brian.a.jalaian.civ@mail.mil

A survey of feature space reduction
methods for context aware processing in

IoBT networks

Abstract:
The military use of the Internet of Things within a battlefield environment aims to combine the information
collected from a system of heterogeneous sensors and actuators in order to create a cohesive model of the
relevant battlefield so that intelligent agents can provide risk-aware decisions or take proper actions, and to
collectively give warfighters an edge. To do inference and reasoning under uncertainty efficiently, the most
important and relevant features regardless of modality must be identified for each given context,
classification task, and classification approach. This can minimize the computational costs required to build
a specific model, increase the accuracy of the model and may also allow the model to be generalized.
However, the dynamic and adversarial nature of the battlefield may mean that the availability and reliability
of sensors will vary over time. Adding a certain amount of redundancy in the set of features used to train
an ensemble of classifiers may improve model robustness and minimize uncertainty. One approach to
achieve this is by modeling the feature space so that the likely importance of a given set of features can be
estimated when context, classification task, or approach is varied. To efficiently understand the shape of a
given feature space and to locate clusters of features in a locally distributed fashion, we surveyed methods
to select important features and to describe or explore a given feature space.

Introduction:

The increase in the number of things that can sense and react to events continues to increase as Internet of
Things (IoT) devices are used in more locations and for more tasks. As these systems become more co-
located, as a network of wearables systems, or in the form of intelligent environments, the capabilities and
intelligence of these systems can be improved through the fusion of their information. This is true in both
the commercial sector as well as within the military domain of battlefield environments. The combined
utility of these systems and their coordinated sensing and activity will substantially alter future military
capabilities. Already we have shown that the combined sensing of a set of heterogeneous sensors on a
common object can improve the ability of machine learning algorithms when attempting to predict the state
of the measured entity (Dennison et al. 2016; Vlachostergiou et al. 2018). The use of heterogeneous IoT
devices in a military setting or for military objectives is referred to as the Internet of Battlefield Things
(IoBT) (Kott, Swami, and West 2016), but leveraging the capabilities of IoT devices under battlefield
constraints adds a unique challenge to research around IoT systems.

Typically, within a given context there is a preferred sensing modality when trying to detect the state of an
object, but the state of that object may also cause detectable effects within other domains. Sensing the
effects caused by the state of an object in every relevant modality and combining that information may not
only improve the accuracy of predicting the state of that object within that known context, but the prediction
of the state may be made more robust through the simultaneous detection of the context that the state occurs
in. This approach may also provide a richer description of the state of the target under observation. The

use of multiple heterogeneous sensors may also enable the simultaneous detection and prediction of
multiple target states.

However, an increase in the number of sensors used will also increase the number of dimensions that
machine learning algorithms will have to search during training. If nothing is done to reduce the
dimensionality of the search space then every learning task would have to search all features concerning
the target from every sensor type near the target in order to build a model. However, techniques to
efficiently search through an available set of features have already been researched and implemented over
many years in the form of dimensionality reduction methods (Hira and Gillies 2015). This has become a
fairly standard problem within data science, but many of the current dimensionality reduction techniques
are not ideal within a battlefield environment. A popular method to reduce the search space for
classification methods is to apply feature extraction to a given set of input features in order to project these
input features into a lower dimensional space, however, the lower dimensional features are typically a
combination of most if not all of the input features. In a battlefield environment the reliability of a network
cannot be guaranteed; sensors may become lost, compromised, or corrupted. In these situations, the
network is expected to be dynamic adapting to sensors leaving or joining a given network at unpredictable
times. The corruption or compromise of sensor feeds may happen in potentially non-obvious or adversarial,
ways. Thus, feature extraction methods that project combinations of all of the original input features into
a lower dimensional space would have to be recalculated every time a sensor node is added or removed
from the relevant network. Also, the network limitations of the battlefield may not support the transmission
of all of the features from every sensor in proximity to the target.

Feature selection methods are another approach to dimensionality reduction that tries to reduce the
dimensionality of the search space by only using a subset of the full set of features as an input to train and
evaluate a model. This is in some sense more favorable to the constraints of an IoBT network, as feature
selection methods only have to be rerun when one of the selected features is lost (or removed) or when an
entirely new feature, or set of features, is added to the network. However, feature selection methods that
can identify the optimal set of features can be very computationally intensive as these methods often must
incorporate the training and evaluation of a specific learning model in order to identify the best set of
features. Also, identifying the best set of features has its own inherent computational complexity. Without
a well-defined relationship between features and learning methods, selecting the globally optimal set of
features to accurately predict an objects state is an NP hard task. In a battlefield environment the
unpredictable network and limited bandwidth will also limit available computational resources. Most
computation will have to be done at or near the edge, increasing the computation time of feature selection
methods or supporting only the simplest of feature selection methods.

The dynamic and potentially uncertain nature regarding the availability of sensors in an IoBT network
means that any machine learning algorithms running within this environment will have to quickly and
frequently adapt themselves to the changing network dynamics of the battlespace, the potential compromise
of sensor and network feeds, and the drift of concepts regarding the classification of state based on mission
needs. In some cases, the adaptation of machine learning algorithms can occur slowly and gradually in
response to gradually changing patterns or goals. This is true when classification label boundaries drift, the
statistical patterns of a given feature or set of features changes, or when new sensor nodes are added. Other
adaptations like, when a set of nodes becomes unusable, either due to network connectivity problems or
loss of trust, then the trained model needs to be adapted very quickly. Because while the model is being
retrained the prior model remains invalid leaving that system down for potentially an unacceptable amount
of time. The unpredictability of when a model may need to be quickly retrained is unacceptable in a military
setting due to optempo requirements. One method to minimize the impact that the loss a set of features

may have on a given machine learning model is to train an ensemble of different machine learning models
on different sets of sparse features where each set is independently able to achieve quality predictions.
Thus, when a set of features becomes lost, unreliable, or overly noisy only the subset of machine learning
models that they serve as an input to may be compromised. In the simplest scenario the compromised set
of models can quickly be dropped from the ensemble of machine learning models while new sets of features
can be later identified and added to the set of useful features for a given state. To minimize the overhead
that this approach incurs in terms of extra bandwidth and computational power for the redundant features
we need efficient methods to identify multiple sets of sparse features. These sets of features may or may
not share features between sets, but no feature should occur in every set.

In this paper we conduct a survey of dimensionality reduction methods that may provide guidance or a best
place to start towards identifying multiple sets of sparse features for classification and regression methods.
The challenge of this goal is that the identification of the best set of features that satisfies this requirement
in any given situation is an NP hard problem as there is no pre-defined relationship between a given set of
features, the class labels (values), and the learning model, potentially demanding that every possible
combination must be evaluated to find a global optimum. Dimensionality reduction methods have taken
different approaches to find solutions to this problem either by making certain assumptions about the
statistical properties of the underlying features or through heuristic methods, which we discuss further in
the following section. However, the primary goal of most of these methods has only been to find a single,
approximately optimal solution, not multiple solutions with near equivalent accuracy. We survey the set
of approaches in order to determine what methods may best locate these multiple sets of features.

Feature extraction
Feature extraction is one of the two major categories of dimensionality reduction methods (Joshi and
Machchhar 2014). It combines all of the input features and transforms them into a new set of features within
a smaller dimensional space (Joshi and Machchhar 2014; Khalid, Khalil, and Nasreen 2014). Feature
extraction methods aim to prioritize the relevant features obtained from the IoBT network. Feature
extraction methods are also useful due to the constrained bandwidth of IoBTs (Kott, Swami, and West
2016). The reduced size of the transformed features means that less bandwidth has to be used to transmit
the features if necessary. By combining features and reducing the feature space, the significant elements
of the original feature space can be propagated across the network with most of their information still intact.
In order to further investigate the advantages and disadvantages of feature extraction, it is necessary to
examine its various methods, both linear and nonlinear.

 Linear methods
One of the most popular linear methods, as well as being one of the most commonly-used feature extraction
methods is Principal Component Analysis (PCA) (Joshi and Machchhar 2014; Khalid, Khalil, and Nasreen
2014; Sharma and Saroha 2015). PCA is an unsupervised feature extraction method that extracts important
features from a dataset and transforms them through linear combinations. These linear combinations are
known as principal components, or PCs and they are all orthogonal and uncorrelated to each other. PCA
maximizes the information obtained from the original features, as measured by the variance of the data. It
then ranks each of the PCs by their variance value. The ones with the highest variances are kept for the new
representation. It also eliminates the PCs with the least amount of variance, as they are typically deemed as
not having significant information. By eliminating these PCs, the dimensional space is reduced while
keeping most of the original data intact. Some of its main applications include data compression, facial and
image analysis, and pattern recognition (Khalid, Khalil, and Nasreen 2014). One of the major advantages
of using PCA is that it useful for extracting important information from noisy or redundant data (Khalid,

Khalil, and Nasreen 2014). It has a better accuracy than some nonlinear methods, as well (Sharma and
Saroha 2015). A disadvantage of PCA is that, as a linear method, it will automatically assume that the
relationships between features are linear (Joshi and Machchhar 2014; Khalid, Khalil, and Nasreen 2014).
Another disadvantage is that the PCs generated by the algorithm are often very difficult to interpret (Sharma
and Saroha 2015). PCA is also sensitive to the scaling of the input features (Khalid, Khalil, and Nasreen
2014; Sharma and Saroha 2015).

Another linear feature extraction method is Linear Discriminant Analysis (LDA) (FISHER 1936). Its
main goal is to find a line, upon which data points can be projected, that best separates the different classes
of input features (Pali, Goswami, and Bhaiya 2014). As a result, unlike PCA, LDA is a supervised method,
meaning that it will use a training set of data with labels. If the number of dimensions within the input
dimensional space is represented by N and the different classes of features is represented by M, then LDA
will project the input features into an M-1 dimensional space (Pali, Goswami, and Bhaiya 2014). By doing
so, it can reduce the number of dimensions while still maintaining distinction between classes.
Simultaneously, this will maximize the ratio between the determinant of the between-class scatter matrix
and the determinant of the within-class scatter matrix (Pali, Goswami, and Bhaiya 2014). The between-
class scatter matrix shows how the various features are classified separately from each other, while the
within-class scatter matrix captures the distances between features within the same class. LDA is
particularly useful in facial recognition (Pali, Goswami, and Bhaiya 2014). Typically, when performing
feature extraction of data, PCA is completed first and then LDA is applied (Pali, Goswami, and Bhaiya
2014; Sharma and Saroha 2015). This is done because PCA focuses more on dimension reduction while
LDA focuses more on maintaining class distinction.

The final linear feature extraction method we describe in this paper is Independent Component Analysis
(ICA). ICA is also an unsupervised feature extraction method and the main objective of ICA is to maximize
the statistical independence of the input features of a multivariate signal (Joshi and Machchhar 2014;
Khalid, Khalil, and Nasreen 2014). For such a signal, ICA requires that there is an equal number of features
and samples (Joshi and Machchhar 2014). ICA assumes that the source signals are linearly independent
from each other and are also non-Gaussian (Khalid, Khalil, and Nasreen 2014). It has some advantages over
PCA, like having a better probabilistic model that can identify data in an n-dimensional space (Pali,
Goswami, and Bhaiya 2014). Another advantage is that it can find a (possibly orthogonal) basis that may
reconstruct data more accurately than PCA when dealing with noise (Pali, Goswami, and Bhaiya 2014).

 Non-linear methods
A nonlinear extension of the linear PCA feature extraction method is Kernel Principal Component Analysis
(KPCA). The main difference between PCA and KPCA is that KPCA performs an extra step before PCA
in order to handle nonlinear input data. It will first transform the input data, using a nonlinear function,
into a higher-dimensional kernel space (Joshi and Machchhar 2014). It will then perform PCA on the data
within that feature space (Joshi and Machchhar 2014). One of the disadvantages of KPCA is that the size
of the kernel dimensional space is proportional to the input data squared (Joshi and Machchhar 2014). Thus,
the kernel space will increase at a quadratic rate as the amount of input data does, which could affect the
processing time of the algorithm. Being that it is a variant of PCA, KPCA is also an unsupervised method.

Another well-known nonlinear method is Locally Linear Embedding (LLE). LLE is also an unsupervised
method that assumes the input samples are samples of a manifold and it transforms the manifold’s points
into a lower dimensional space while preserving information from neighboring points (Arechiga et al. 2017;
Ventura 2008). LLE has three major steps that it performs for the set of manifold points (Ventura 2008).
First, it finds the nearest k neighbors for every data point. Next, weights are calculated in order to find a

weighted approximation of the original points using a linear combination of those neighbors. Lastly, a
matrix containing those weights (W) is used to find a new set of data points within a lower dimensional
space while minimizing the reconstruction error. Graphically, a plot of the output coordinates should
resemble the topology of the original nonlinear manifold (Arechiga et al. 2017). Regardless of translations,
scaling, or rotations, the local relationships between the points during the reduction are comparable to that
of the original configuration (Arechiga et al. 2017). The main advantage of this algorithm is that it outputs
very sparse weight matrices (since most of the weights are 0) which save computational time and space
(Saul and Roweis 2000; Ventura 2008). LLE is another algorithm that could be well-suited to work with
other methods (Saul and Roweis 2000). However, one of the disadvantages related to LLE is that the
algorithm assumes that each of the original data points has a “preservable” geometric relationship (Arechiga
et al. 2017). That is to say, each point and its neighbors are expected to be located on a linear plane so that
the reconstruction can be done (He et al. 2008). If the nearest neighbors are not close enough to approximate
a linear plane the assumptions of the approach are violated.

Isometric Feature Mapping (Isomap) is an additional, unsupervised nonlinear method (Zheng, Qian, and
An 2010). It is very similar to LLE in that it is also nonlinear and assumes the input data sits on a manifold
and it also tries to preserve the manifold’s intrinsic geometry (Zheng, Qian, and An 2010). The main
difference between them is that isomaps estimate the geodesic distances between all points rather than the
Euclidean (Arechiga et al. 2017; Zheng, Qian, and An 2010). By doing so, it still preserves the geometry
of the manifold but does so on a global scale instead of locally like LLE. Like LLE, it has three steps. The
first step is to determine the nearest neighbors, which can be done using k-nearest neighbors, and builds a
graph (Zheng, Qian, and An 2010). The second step is to estimate the geodesic distances between all of the
points using a shortest-path algorithm such as Dijkstra’s algorithm (Arechiga et al. 2017; Zheng, Qian, and
An 2010). Lastly, the Multidimensional Scaling (MDS) algorithm is applied to the matrix formed from the
shortest-path algorithm (Zheng, Qian, and An 2010). The MDS algorithm will find a lower-dimensional
embedding that preserves the distances between those vectors within the matrix (Gupta and Bowden 2011).
Since isomaps are an extension of the MDS algorithm, it contains many of the same advantages as MDS
but also adds computational efficiency (Zheng, Qian, and An 2010).

Feature selection
Another approach to dimensionality reduction is through feature selection. Feature selection unlike
feature extraction does not try to create new features by combining prior features, but instead tries to
identify the best subset of a given set of pre-existing features. Because it cannot create new features using
feature selection methods depends on the given set of features to be already optimal for a given task. This
can mean that the features have been engineered to be relevant to the given task or these features have a
human interpretable meaning such that when those features are selected or used in a machine learning
algorithm their relevance and behavior is more interpretable.

The final assessment on the utility of a set of features is ultimately based on the performance of a
classification (regression) model that uses only those features during the training and testing steps. But
including the classification model in the feature selection process is not always efficient and as such feature
selection methods typically are divided into one of three categorizes (filter methods, wrapper methods, and
hybrid methods). Where the point of discrimination between these categories is based on how a subset of
features is identified as the best. For filter-based feature selection methods the feature selection process is
wholly independent from the classification method. Instead filter methods estimate the expected utility of
a subset of features through different measures (e.g. statistics, information theory, sparse learning, etc.).
Wrapper methods actually use a specific classification method to assess the quality of a subset of features
based on how well that classifier can be trained using those features. Now, while the classification approach

used is completely interchangeable, the classification method used may affect the final subset of features
identified as most relevant. Thus, wrapper methods focus tend to focus on heuristic search methods to arrive
at some optimum quickly, though that optimum is typically a local one. For hybrid approaches the feature
selection process is part of the classification (regression) algorithm, but within this paper we will primarily
focus on the feature selection elements of hybrid approaches. Due to the strong relationship with the
learning method must feature selection approaches that we will discuss are supervised.

 Filter methods
Filter methods use some form of proxy measure, in place of a classification method, to assess the utility of
a feature or a set of features. Because they don’t require training to attach a quality measure they can be
run much faster than other classes of feature selection methods. However, since they are not tied to a
specific classification approach the set of features identified may not be optimal with respect to a given
classification method, but they can also be more generic for those same reasons, potentially providing a
better starting point for further refinement for a specific classification approach. Filter methods typically
use a variety of mathematical functions as a proxy for a predictive model. These functions in lieu of a
classification approach aim to measure the similarity (e.g. T-score, F-score, Chi-squared Score (Y. Yang
and Pederson 1997)) or relevance (e.g. fisher score, mutual information (Guyon and Elisseeff 2003; Lewis
1992; Y. Yang and Pederson 1997), Pearson correlation coefficient) of a feature to a class label. Typically,
these approaches treat each feature independently and rank the importance of a given feature solely based
on their relationship with the class label. However, features are often not independent so after the first
feature is selected the relevance of any subsequent may be diminished due to redundancies between it and
previously selected features.

More advanced filter methods select sets of features in order to maximize the relevance of each feature to
a class label, while also minimizing redundancies between selected features. A popular approach that
considers both feature relevance and feature redundancy is minimum redundancy maximal Relevancy
(mRMR) (Peng, Long, and Ding 2005). In this method each feature is selected sequentially, where each
feature receives a score determined by the relevance of that feature with the target label and penalized by
the average redundancy of that feature with all previously selected features. The feature with the highest
score is selected and then each feature must be rescored again in order to pick the next feature.
Measurements of redundancy or relevance can use the same equations, in fact the original formulation for
mRMR used mutual information for both relevance and redundancy, however, in (Peng, Long, and Ding
2005), the authors found that using Pearson’s correlation measure for redundancy worked better when
mutual information was used to measure relevance. Several other methods have been developed to estimate
the relationship between features and have taken different approaches to minimize the redundancy between
features thereby maximizing the gain when adding a new feature (Brown et al. 2012; Lewis 1992;
Novovičová et al. 2007; H. H. Yang and Moody 1999),

Beyond just trying to minimize the redundancy between a feature and the set of features already selected
measures like the joint mutual information (Brown et al. 2012; H. H. Yang and Moody 1999) try to
maximize the relevance between the selected feature and the target class given a set of already selected
features. By considering the conditional mutual information between features these class of measures are
able to select new features based on binary feature interactions, where a pair of features have a much
stronger relevance to the target class than each feature would have on their own. The limitation with joint
mutual information and related approaches is that one feature has to been selected first due to its own
relevance to the target class or its interaction with an already selected feature. Pairs of features that
individually have a very weak relevance to the target class and do not have a strong interaction with other
features may never be selected. This is not the only limitation however; all of the filter selection approaches

that have been discussed only look at binary measure of relevance, redundancy, and conditional mutual
information measures; they do not consider higher and more complex interactions.

A more recent approach to filter based feature selection is known as Infinite Feature selection (Eskandari
and Akbas 2017; Roffo, Melzi, and Cristani 2015). Infinite feature selection uses an mRMR framework to
represent the relationships between all features. Information is represented in an adjacency graph and the
importance of each feature is calculated for all possible sets of features including infinitely long ones (with
repeats). Features that are selected the most often over more paths are ranked higher. This method was
originally developed as an unsupervised approach (Roffo, Melzi, and Cristani 2015), where rather than
maximizing the relevance of each feature to the target class each feature was ranked by the magnitude of
the variance of each feature. As features with small variance are likely to have poor class discrimination.

Filter based feature selection methods can operate very quickly as they use straightforward concepts of
similiarity, correlation, relevance, mutual information, and redundancy. But often these algorithms either
assume features are independent, which is often not the case. However, algorithms that try to account for
feature redundancy or feature interaction only do so in a limited fashion. Methods that look for feature
redundancy and feature interactions (through conditional mutual information) only evaluate binary
relationships and then only pairing up features that haven’t been selected with features that already have.
Redundancies or feature interactions for larger sets of features are often not considered presumably due to
the additional computational complexity.

 Wrapper Methods
As stated earlier since wrapper feature selection methods don’t use a proxy measure they must evaluate a
set of features based on how well a specific machine learning algorithm can be trained and evaluated using
those features as an input. Hence the set of features considered as optimal is likely to vary with the choice
of learning algorithm and the performance metric used (accuracy, F score, precision, recall, etc.). Despite
their classification method-based variability, wrapper methods can potentially lead to the development of
the best classification models as the input features are directly tied to the classification method. The primary
drawback of these methods is that the evaluation time to assess the utility of a set of features can be very
long.

Because of the long evaluation times wrapper methods focus on trying to search the available space of
possible feature combinations in order to converge to an optimal selection as quickly as possible. However,
the identification of the optimal set of features is fundamentally an NP hard problem as there is, in general,
no predefined relationship between any of the features and target labels. The most straightforward way to
identify the optimal set of features is to use an exhaustive search algorithm that tries every possible
combination of features to find the optimal one. This method obviously is not useful for datasets with even
a moderately sized number of features as the number of possible feature combinations grows exponentially.
Typically, heuristics methods are used that make certain assumptions about the relationships between the
data and target classes, but there is no guarantee that assumptions match the data and there often aren’t tests
to determine when those heuristic assumptions are violated. A well-known wrapper method to search for
the optimal set of features is to use the branch and bound method (Narendra and Fukunaga 1977).

The branch and bound (B&B) search method attempts to search the space of all possible feature
combinations more efficiently by making assumptions about the maximum accuracy of subsets of features.
The B&B method assumes monotonicity of a learning model 𝐽𝐽(∙) where if a set of features 𝐹𝐹𝑖𝑖 ⊂ 𝐹𝐹𝑗𝑗 then
𝐽𝐽(𝐹𝐹𝑖𝑖) ≤ 𝐽𝐽�𝐹𝐹𝑗𝑗�. In other words, the accuracy of 𝐽𝐽(𝐹𝐹𝑖𝑖) cannot be greater than 𝐽𝐽�𝐹𝐹𝑗𝑗� if all of the features in Fi
are in Fj. The B&B algorithm as described by (Narenda and Fukunaga 1977) forms a tree with all possible
combinations of features with the top node consisting of the set of all features. It then performs a depth

first search pruning one feature at each level. When the minimum number of features, m, has been reached
the performance of that set of features is set as the minimum performance, Jmin. The rest of the tree is
explored comparing the performance of every node in the tree with Jmin. If a node on the tree has a
performance at or below the current minimum all subsequent child nodes are eliminated from consideration
in the search. In this fashion the rest of the tree is searched where the Jmin is updated whenever a set of m
features is found with a performance greater than the current minimum. This method is guaranteed to find
the optimal set of features m in a more efficient manner than the exhaustive search, though the cost of the
B&B method is still exponential, meaning that a moderate number of initial features may be too large to
find an optimal solution in a reasonable amount of time.

Another popular wrapper method is sequential feature selection (SFS) method. This method finds a solution
in a much shorter amount of time than exhaustive search with minimal assumptions about the features or
their relationship, but the solution found is not guaranteed to be globally optimal. The method consists of
a forward and a backward approach where features are sequentially selected or removed, respectively. The
‘backward’ approach of this method operates in a similar fashion to the B&B method in that the search
occurs in a tree-like structure with the top node consisting of the set of all features. However, the
‘backward’ approach is a breadth-first search method, where the performance of a node is compared with
the performance of all of its child nodes. If a node has k features then there are k child nodes and each child
node has k-1 features such that the set of child nodes is the set of all possible combinations of k-1 features.
The child node with the maximum performance that is also greater than or equal to the performance of the
parent node becomes the next parent node and is the only one searched. When no child node has a
performance greater than or equal to its parent the search terminates. The ‘forward’ approach works in a
similar fashion, but instead of pruning features at each level a feature is added at each level. The forward
approach is typically faster than the backward approach, especially if there are a large number of potential
features in the beginning. Training and evaluating a classification model, with a few features, is faster than
training one with many features, however because neither approach is guaranteed to find a globally optimal
result applying both approaches could identify two separate sets of features, even with the same learning
approach and performance metric. Another drawback of this method is that like B&B it assumes a certain
monotonicity of the classification function. At each step of SFS a single feature with the largest contribution
to the classification accuracy is added or removed, depending on the approach. However, maximizing the
addition of a set of k features instead of 1 feature at a time may find a different subset, A subset closer to
the final optimal feature subset. Though as k is increased the number of evaluations at each step of the SFS
process is increased exponentially.

Sequential floating selection tries to get around some of the limitations of SFS by alternating between the
backward and forward steps of SFS (Pudil, Novovičová, and Kittler 1994). In sequential floating forward
selection (SFFS), sequential feature selection is done in the forward direction until the set of features
selection consists of three features or more. After that point after each new feature is added to the selected
set of features SFS is done going backward on those selected set of features. If the set of features is reduced
to 2 features or the performance stops or doesn’t improve with the removal of any further features SFS in
the forward direction is resumed. This is repeated until performance does not improve in the forward or
backward direction. In sequential floating backward selection (SFBS) the process is reversed. SFS is done
in the backwards direction starting with the full set of features and then alternates to sequential feature
selection in the forward direction once two or more features have been removed from the full set. For SFFS
and SFBS it is likely that some combination of features will need to be evaluated more than once so typically
all performance results for every already evaluated combination of features is saved. SFFS and SFBS are
likely to find sets of features closer to the global optimal and explore the space of all possible combinations
of features in a manner more thoroughly than sequential feature selection. But they are still not guaranteed

to find a global optimum or even find the same solution. Because of the more exploratory search path they
are also likely to take even longer to find a solution. Also, remembering all prior classification results can
become memory intensive for very large feature sets. However, the more exploratory pattern of SFFS and
SBFS means that more combinations of features will be evaluated and combinations of features that have
close to the final optimal set of features may be found and identified.

Hybrid Methods
Typically feature selection and training a learning model are two separate steps. However, certain classes
of learning methods contain within them steps to identify the most relevant features, while disregarding out
the features that have little to no influence on the final result, often in the form of zeroing out the weight of
those features. These methods can be classified as hybrid feature selection methods. Perhaps the most
well-known hybrid method is the least absolute shrinkage and selection operator (LASSO) regression
methods. LASSO is a regression method that tries to minimize the least squared error, while also
minimizing the l1-norm of feature weights to be below a given threshold (Tibshirani 1996). The l1-norm
term forces many feature weights to be zeros, effectively removing them from consideration. There are
several methods that use an l1-norm regularizer to perform feature selection as part of a regression problem,
such as BoLASSO, L1-SVM, and Elastic Net regularization. These form a class of hybrid algorithms based
on sparse learning (Bach 2008; Efron et al. 2004; Zare et al. 2013; Zou and Hastie 2005).

Elastic Net regularization aims to extend the LASSO approach by calculating the l2-norm along with the
l1-norm effectively combining LASSO and Ridge regularization (Zou and Hastie 2005). This method was
developed to handle cases when the number of samples (Ns) is less than the number of features (Nf,). In the
standard LASSO approach, only Ns features can be selected.

In the bootstrapped LASSO algorithm (BoLASSO) LASSO is applied multiple times to data (X,Y) that has
been randomly selected with replacement from the pool of training samples (Bach 2008). By repeatedly
apply LASSO to randomly selected sets of training data BoLASSO aims to improve the stability of LASSO
by identifying features that are consistently selected in the bootstrapped sets of training data. In many
feature selection algorithms when new data is added to a given training set the set of features selected often
changes making feature selection algorithms less consistent. But with BoLASSO there is an assumption
that if the original data that the features are measuring was sparse then there will be a set of features
consistently selected in all or most of the feature selection results.

In the LASSO approach the l1-norm regularization term constrains the solution to ensure a level of sparsity,
but the amount of sparsity can be scaled up or down through a scaler multiplier to the l1-norm (λ). LASSO
solutions with a few features selected will have a larger lambda than solutions with a higher number of
selected features. Also, LASSO solutions with more features selected will always contain the features
selected when lambda was bigger and fewer features were selected (for the same piece of data). But there
is no a priori way to specify lambda in order to ensure a pre-specified number of features are selected in the
LASSO solution. However, through a small modification of the least angle regression (LARS) algorithm
all LASSO solutions can be efficiently solved for every lambda value (Efron et al. 2004).

Using the LARS algorithm all LASSO solutions can be found for a given set of data, but there is no
indication about how consistent those features are if the training set is varied. FeaLect tries to provide some
guidance in this front by generating N random subsets from the total set of sample data, without
replacement, and then applying LARS to each subset (Zare et al. 2013). Each feature is then scored for
each subset based on if they were selected when only k features were selected, for all values of k. This
then provides an expectation for each feature overall of the subsets about how likely it is that it will be one
of the features selected when only k features are selected in a LASSO solution. Because there is no

thresholding in FeaLect every feature just receives a score and the number of features to be used in a
solution can be selected at will. Providing a sparse and more stable set of features, where like BoLASSO
it is expected that there is a consistently selected set of features overall iterations of FeaLect.

Decision Trees and Random Forests methods are popular classes of classification and regression algorithms
that use a set of weak learners to construct a strong learner (Breiman 2001; Tin Kam Ho 1995). The
selection and weighting of weak learners can also be thought of as a feature selection method as only a
subset of the weak learners may be selected by the algorithm. A decision tree consists of a set of nodes,
branches, and leaves where branches connect nodes to other nodes or terminate at a leaf node. At each
node based on the value of a given feature (weak learner) a decision is made to travel down one of two of
branches in order to make another decision at the next node. Each leaf node is associated with a class label
(classification) or continuous values (regression), so when the path down a tree ends at a leaf the label or
value is the answer. Random Forests are related to decision trees in much the same way that BoLASSO is
related to LASSO. Random Forests are ensembles of decision trees created through bagging (bootstrapped
aggregation). Multiple training sets are created from the full set of sample data through random sampling
with replacement to create a set of decision trees where the final result is the mode (classification) or mean
(regression) of the ensemble of decision trees. These ensembles of decisions are typically referred to as
bagged trees. Random forests have an extra step that distinguishes them from bagged decision trees,
because when the best feature is selected for a given decision node it is actually selected from a subset of
the set of features rather than the full set.

Decision trees are able to select only the most important features to help make better decisions by pruning
features that don’t help to make the best decisions, but they are not constrained to prioritize sparse solutions.
Specifically, many decisions trees and random forest methods will use a new feature for a decision node
when a feature that is already being used at another decision point in the tree could suffice. Regularized
trees and regularized random forests are two methods that aim to minimize the use of redundant features
by prioritizing features already used in the tree over adding a new feature to the tree (Deng and Runger
2012).

From the standpoint of identifying multiple clusters of sparse features with minimal single points of failure
(regularized) random forests present the best already existing approach to identify multiple sets of features
with potentially equivalent accuracy. The bootstrapping of the data and the selection of features based on
random subsets of features encourages the creation of decision trees that use mostly different features.
However, each decision node selects a feature from a different random subset of features depending on the
sampling behavior strongly correlated features may always eventually be added somewhere on every
decision tree. A simple method around this is to create each decision tree within a random forest from a
random subset of the features such that the random sampling of features at each decision node is already
from a subsample of the full set of features.

Another issue with decision tress is that decision trees are really modeled as a collection of weak learners
so a tree won’t really be doing feature selection unless each weak learner only takes one feature as an input
and that is done for all types of features. Alternatively, if the tree is trained over a large set of weak learners
where the set of learners takes in every possible subset of features of size k over the full set of features, this
would also be considered feature selection. However, the first approach limits the types of feature
interactions that the tree can make decisions over and the second approach will quickly have a prohibitively
large set of weak learners that need to be pruned.

Requirements of future battlefield capabilities
For the task for identifying sparse clusters of features within a volatile network of heterogeneous IoBT
systems feature selection methods are probably the most useful type dimensionality reduction to identify
subsets of sparse features from a larger set of features. However, feature selection assumes that some of
the features from the larger set of features are already useful regarding the learning task. It is unable to
resolve any issues or limitations within the features themselves. Feature extraction methods, however can
create new features that are potentially more useful than the original features, assuming the underlying
assumptions behind the specific feature extraction algorithm used is applicable to the situation. However,
those underlying features are still there. Feature extraction is simply a recombination of those original
features so within an IoBT network feature extraction methods have to applied in a way that considers the
volatility of the network. Generally, feature extraction methods should be applied to features that are linked
to each other, where if a feature in that group is lost or becomes unavailable in some way those other
features in the group are also likely to have been lost at the same time. It also should be applied to a small
number of features for similar reasons. Though, once a set of features have been selected feature extraction
can be applied to the selected set of features to create a new set of features with less redundancy and
potentially a smaller number of features or vice versa.

Within our survey of feature selection methods, we have shown that several approaches already can identify
multiple sets of features for a given problem. BoLASSO, FeaLect, and random forests use random subset
sampling, bootstrapping, and bagging, respectively, to create multiple training sets to identify and select
different subsets of features. As such these methods are one way to identify multiple sets of features,
however, there is little to no control over the variance in performance of these features when applied to the
complete dataset or out of sample data. Also, BoLASSO, and FeaLect assume that certain features will
always be selected within every permutation of the resampled data creating single points of failure for the
ensemble of feature sets. If one of those consistently selected features becomes compromised or is no
longer available all solutions become less accurate or may fail entirely. Also, FeaLect and BoLASSO are
hybrid methods that assume a linear relationship between the target values and sample data, limiting the
problems that they can used for. It should be noted that bootstrapping, random subset sampling, or cross-
validation can be applied to any feature selection method in order to identify multiple subsets of features
for a given dataset, though there remains no guarantee that one or more features will not be found in all of
the feature selection solutions.

Sequential floating selection presents another method to identify multiple subsets of features though as a
wrapper method it is computational expensive. By alternatively applying SFS in the forward and
backward directions every time a feature is added or removed many combinations of features are likely to
be identified along with their associated performance measures. Once a final feature subset is identified
previously evaluated sets of features with lower, but still within a given tolerance of the final performance
result, can be treated as alternative feature selection solutions, though in this case the number of shared
features between all solutions is expected to be relatively large. Though, by using bootstrapping or
random subset sampling multiple feature selection solutions may be identified.

None of the methods described within this paper are inherently optimal for the identification of multiple
sparse clusters of features given the challenging constraints of IoBT networks. But feature selection
methods like BoLASSO, FeaLect, random forests, and sequential floating selection are a first step towards
identifying multiple subsets of features, but these methods as they exist do not guarantee that one or more
features will not be present in all of the subsets. Random Forests and especially regularized random forests
are the best current feature selection method to identify multiple sets of features and only require minor
tweaking to ensure no feature is used in every decision tree. By restricting the creation of each decision

tree within a random forest to only a random subset of features a random forest, if large enough, can be
built with no feature that spans all solutions.

Another simple method to find multiple subsets of features and ensure there are no shared features between
selections, is to iteratively apply a feature selection method such that after a subset of features is selected
the feature selection method is applied again to the remaining set of features that weren’t selected. However,
there is no guarantee that these alternative features will have a comparable predictive performance and they
are likely to use a larger number of features. But these two or more sets of features are ensured to use
mutually exclusive sets of features. mRMR and other redundancy feature selection methods provide a
slightly more controllable method to select an alternative set of features with a controllable overlap of
features across feature sets. Unselected features that have a redundant relationship with features that were
selected are a good starting point to create an alternate set of features, while features that were selected, and
have little redundancy to other features may need to be included in alternative feature sets in order to achieve
a certain level of predictive quality.

Collecting, processing, and analyzing all of the relevant data from the available network of IoBT systems
is important for the effective command and control of the battlespace. However, the hostile activity between
coalition and adversarial forces makes the collection, processing, and interpretation of this data into
actionable information challenging as each force uses the assets available to them in order to achieve their
own mission while denying or attempting to deny the aims of their adversaries. Thus, it is expected that
the future IoBT battlespace will have degraded communication, limited network bandwidth, and data
sources whose trustworthiness, reliability, and value will vary over time. In spite of this Warfighters,
analysts, and their commanders need trustworthy, reliable, and accurate information about the state of the
battlespace and the state of the entities within it regardless of the constraints of the IoBT network. Doing
this will increasingly utilize machine learning algorithms that can operate and quickly adapt to changing
resources and mission goals, while operating on systems with limited computational power, memory, and
bandwidth. But beyond just the need for capable machine learning algorithms is the need for dimensionality
reduction methods that can select and identify relevant features for those machine learning algorithms to
train on given the constraints of the IoBT environment. Due to the many dynamic constraints of IoBT
networks, we have proposed the need for the identification and selection of multiple sparse clusters of
features within a given IoBT network. These clusters need not consist of mutually exclusive sets of features,
but no single feature should be found within all solutions (if possible). This is a unique requirement that
dimensionality reduction methods have not historically been tasked with solving. In fact, several feature
selection methods assume that some features exist in all if not most solutions (Bach 2008; Zare et al. 2013).
In this paper, we have described several feature extraction and feature selection methods in order to review
the operation of these approaches. The aim of this is to highlight how well these algorithms could serve as
a first order solution to identify multiple sparse clusters of features and the ways in which they fall short.
However, this document serves only as a broad sampling of the wide array of dimensionality reduction
methods that have been developed (El Aboudi and Benhlima 2016; Li et al. 2017; Tang, Alelyani, and Liu
2014). The benefit of one method over another will vary depending on the processing, networking, and
data constraints of a given situation, though there are some general broad tradeoffs to consider between the
approaches that were highlighted above.

Reference:
El Aboudi, Naoual, and Laila Benhlima. 2016. “Review on Wrapper Feature Selection Approaches.”

Proceedings - 2016 International Conference on Engineering and MIS, ICEMIS 2016.

Arechiga, A., E. Barocio, J. J. Ayon, and H. A. Garcia-Baleon. 2017. “Comparison of Dimensionality
Reduction Techniques for Clustering and Visualization of Load Profiles.” 2016 IEEE PES
Transmission and Distribution Conference and Exposition-Latin America, PES T and D-LA 2016
(2): 1–6.

Bach, Francis R. 2008. “Bolasso.” In Proceedings of the 25th International Conference on Machine
Learning - ICML ’08, New York, New York, USA: ACM Press, 33–40.
http://arxiv.org/abs/0804.1302.

Breiman, Leo. 2001. “Random Forests.” Machine Learning 45(1): 5–32.
Brown, Gavin, Adam Pocock, Ming-Jie Zhao, and Mikel Lujan. 2012. “Conditional Likelihood

Maximisation: A Unifying Framework for Mutual Information Feature Selection.” Journal of
Machine Learning Research 13: 27–66.
http://jmlr.csail.mit.edu/papers/v13/brown12a.html%5Cnhttp://scholar.google.com/scholar?hl=en&b
tnG=Search&q=intitle:Conditional+Likelihood+Maximisation+:+A+Unifying+Framework+for+Inf
ormation+Theoretic+Feature+Selection#0.

Deng, Houtao, and George Runger. 2012. “Feature Selection via Regularized Trees.” Proceedings of the
International Joint Conference on Neural Networks.

Dennison, Mark et al. 2016. “Using Cardiovascular Features to Classify State Changes during
Cooperation in a Simulated Bomb Defusal Task.” In Physiologically Aware Virtual Agents
Workshop at IVA, Los Angeles, CA.

Efron, Bradley, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. 2004. “Least Angle Regression.”
The Annals of Statistics 32(2): 407–99. http://projecteuclid.org/euclid.aos/1083178935.

Eskandari, Sadegh, and Emre Akbas. 2017. “Supervised Infinite Feature Selection.” : 1–10.
http://arxiv.org/abs/1704.02665.

FISHER, R. A. 1936. “The Use of Multiple Measurements in Taxonomic Problems.” Annals of Eugenics
7(2): 179–88. http://doi.wiley.com/10.1111/j.1469-1809.1936.tb02137.x.

Gupta, Ashish, and Richard Bowden. 2011. “Evaluating Dimensionality Reduction Techniques for Visual
Category Recognition Using Renyi Entropy.” (Eusipco): 913–17.

Guyon, Isabelle, and André Elisseeff. 2003. “An Introduction to Variable and Feature Selection.” Journal
of Machine Learning Research (JMLR) 3(3): 1157–82.

He, Chuan, Zhe Dong, Ruifan LI, and Yixin Zhong. 2008. “Dimensionality Reduction for Text Using
LLE.” In International Conference on Natural Language Processing and Knowledge Engineering, ,
1–7.

Hira, Zena M., and Duncan F. Gillies. 2015. “A Review of Feature Selection and Feature Extraction
Methods Applied on Microarray Data.” Advances in Bioinformatics 2015(1).

Joshi, S K, and S Machchhar. 2014. “An Evolution and Evaluation of Dimensionality Reduction
Techniques-A Comparative Study.” Computational Intelligence and Computing Research (ICCIC),
2014 IEEE International Conference on: 1–5.

Khalid, Samina, Tehmina Khalil, and Shamila Nasreen. 2014. “A Survey of Feature Selection and Feature
Extraction Techniques in Machine Learning.” 2014 Science and Information Conference: 372–78.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6918213.

Kott, Alexander, Ananthram Swami, and Bruce J. West. 2016. “The Internet of Battle Things.” IEEE
Computer 49.12: 70–75.

Lewis, David Dolan. 1992. “Feature Selection and Feature Extraction for Text Categorization.” In
Proceedings of the Workshop on Speech and Natural Language - HLT ’91, Morristown, NJ, USA:
Association for Computational Linguistics, 212.
http://portal.acm.org/citation.cfm?doid=1075527.1075574.

Li, Jundong et al. 2017. “Feature Selection: A Data Perspective.” ACM Computing Surveys 50(6): 1–45.
http://dl.acm.org/citation.cfm?doid=3161158.3136625.

Narendra, Patrenahalli M., and K. Fukunaga. 1977. “A Branch and Bound Algorithm for Feature Subset
Selection.” IEEE Transactions on Computers C-26(9): 917–22.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1674939.

Novovičová, Jana, Petr Somol, Michal Haindl, and Pavel Pudil. 2007. “Conditional Mutual Information
Based Feature Selection for Classification Task.” Proceedings of the Congress on pattern
recognition 12th Iberoamerican conference on Progress in pattern recognition, image analysis and
applications: 417–426. http://portal.acm.org/citation.cfm?id=1782964.

Pali, Vivek, Suchita Goswami, and Lalit P. Bhaiya. 2014. “An Extensive Survey on Feature Extraction
Techniques for Facial Image Processing.” 2014 International Conference on Computational
Intelligence and Communication Networks: 142–48. http://ieeexplore.ieee.org/document/7065462/.

Peng, Huanchuan, Fuhui Long, and C. Ding. 2005. “Feature Selection Based on Mutual Information
Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy.” IEEE Transactions on
Pattern Analysis and Machine Intelligence 27(8): 1226–38.
http://ieeexplore.ieee.org/document/1453511/.

Pudil, P., J. Novovičová, and J. Kittler. 1994. “Floating Search Methods in Feature Selection.” Pattern
Recognition Letters 15(11): 1119–25.
http://linkinghub.elsevier.com/retrieve/pii/0167865594901279.

Roffo, Giorgio, Simone Melzi, and Marco Cristani. 2015. “Infinite Feature Selection.” Proceedings of the
IEEE International Conference on Computer Vision 2015 Inter: 4202–10.

Saul, Lawrence K., and Sam T. Roweis. 2000. Introduction to Locally Linear Embedding.
Sharma, Nitika, and Kriti Saroha. 2015. “Study of Dimension Reduction Methodologies in Data Mining.”

International Conference on Computing, Communication and Automation, ICCCA 2015: 133–37.
Tang, Jiliang, Salem Alelyani, and Huan Liu. 2014. “Feature Selection for Classification: A Review.”

Data Classification: Algorithms and Applications: 37–64.
Tibshirani, Robert. 1996. “Regression Selection and Shrinkage via the Lasso.” Journal of the Royal

Statistical Society B 58(1): 267–88.
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7574.

Tin Kam Ho. 1995. “Random Decision Forests.” In Proceedings of 3rd International Conference on
Document Analysis and Recognition, IEEE Comput. Soc. Press, 278–82.
https://ieeexplore.ieee.org/abstract/document/598994/.

Ventura, Dan. 2008. “Manifold Learning Examples – PCA , LLE and ISOMAP.” October (x): 1–9.
Vlachostergiou, Aggeliki et al. 2018. “Unfolding the External Behavior and Inner Affective State of

Teammates through Ensemble Learning : Experimental Evidence from a Dyadic Team Corpus.” In
Proceedings of the Eleventh International Conference on Language Resources and Evaluation,
Miyazaki, Japan, 192–97.

Yang, Howard Hua, and John Moody. 1999. “Feature Selection Based on Joint Mutual Information.”
Proceedings of International ICSC Symposium on Advances in Intelligent Data Analysis: 22–25.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.41.4424&rep=rep1&type=pdf%5Cnpaper
s2://publication/uuid/E0508640-D7DF-41A9-BFA0-794AE77B3E0F.

Yang, Yiming, and Jan O. Pederson. 1997. “A Comparative Study of Feature Selection in Text
Categorization.” In ICML ’97, Proceedings of the Fourthteenth International Conference on
Machine Learning, Nashville, TN, 412–20.

Zare, Habil, Gholamreza Haffari, Arvind Gupta, and Ryan R. Brinkman. 2013. “Scoring Relevancy of
Features Based on Combinatorial Analysis of Lasso with Application to Lymphoma Diagnosis.”
BMC Genomics 14(Suppl 1): S14. http://www.biomedcentral.com/1471-2164/14/S1/S14.

Zheng, Kai-mei, Xu Qian, and Na An. 2010. “Supervised Non-Linear Dimensionality Reduction
Techniques for Classification in Intrusion Detection.” 2010 International Conference on Artificial
Intelligence and Computational Intelligence: 438–42. http://ieeexplore.ieee.org/document/5655625/.

Zou, Hui, and Trevor Hastie. 2005. “Regularization and Variable Selection via the Elastic-Net.” Journal
of the Royal Statistical Society 67(2): 301–20.

	Symposium: 23nd International Command and Control Research and Technology Symposium
	Topic 7: Human Information Interaction
	Title: A survey of feature space reduction methods for context aware processing in IoBT networks
	Authors:

	Abstract:
	Feature extraction
	Linear methods
	Non-linear methods

	Feature selection
	Filter methods
	Wrapper Methods
	Hybrid Methods

	Requirements of future battlefield capabilities
	Reference:

