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Abstract.This article presents the study of fuzzy multi-objective linear fractional programming (FMOLFP)
problem by using operators. In this approach, the FMOLFP problem is transformed to fuzzy multi-objective
linear fractional programming (FMOLFP) problem by using suitable transformation [1]. The reduced problem
is then solve by using min operator and average operator model and hence find out the solutions of the problem.
One numerical example is presented to demonstrate the approach.
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1 Introduction

Linear fractional programming problem was studied extensively in the middle of 1960s and early 1970s of the
last century [1]. In many practical applications like stock problems, ore-blending problems, shipping schedule
problems, optimal policy for a Markovian chains, sensitivity of linear programming (LP) problem, optimization
of ratio criterion gives more insight into the situations than the optimization of each criterion [9].
Multi-objective linear fractional programming (MOLFP) problem is used to describe the problem associated
with multiple objectives where objective functions are written in fractional formulas. These type of problems
has been used in production planning, inventory management, financial and banking sector, etc.

The concept of ’Decision making in fuzzy environment’ was first studied by Bellman and Zadeh [2]. Zim-
mermann [4] first proposed the fuzzy linear programming (FLP) problem. Charnes and Cooper [1] solved a
programming problem with linear fractional functionals by resolving it into two linear programming (LP) prob-
lem. By suitable transformation, Chakraborty and Gupta [18] have transformed MOLFP problem to formulate
an equivalent MOLP problem under fuzzy set theoretic approach. Furthere more, there are a few studies [6],[24],
[26],[27] on MOLFP problem. The min-operator model is proposed by Zimmermann [4] to solve multi-objective
linear programming (MOLP) problem. Luhandjula [5] proved some properties of min operator but the solution
obtained by min operator doesn’t give compensatory and efficient solutions [23],[14]. To overcome this difficulty,
Lee and Li [23] have proposed two-phase approach to get more efficient and satisfactory result. Guu et.al [13]
have applied two phase approach in MOLFP problem while Chen and Chou [12] proposed a fuzzy approach to
integrate the min operator, average operator and two-phase methods. In 1997, Guu and Wu [14] have solved
two phase approach with positive weighted coefficients, not necessarily equal, for solving the MOLP problems
gives an efficient solution and they [16] proposed a two-phase method to improve the solution yielded by the
max-min operator when solving the linear programming with imprecision parameters. Zimmermann and Zysno
[28] observed from an experiment that most of the real world problems are neither non-compensatory (min-
operator) nor full compensatory (average operator). In 2001, Wu and Guu have presented a compromise model
between non-compensatory (min-operator) nor full compensatory (average operator) for obtaining fuzzy effi-
cient solution of MOLP problem. To solve fuzzy linear programming problems (FLPP), Werner’s [7] proposed
membership functions for the fuzzy objective and applied the concept of max-min operator [4]. In this paper,
we have studied MOLFP problem under fuzzy environment where MOLFP problem is converted to MOLPP by
suitable transformation. Min-operator and average operator model are used to solve MOLP problem and hence
find out the solution of the problem.
The paper is organised as follows:-
Section 2 outlines the definitions of LFP and MOLFP. In section 3, we have discussed the transformation of
MOLFP to MOLP, the min operator and average operator models are used in transformed MOLP and hence
find out the solutions. Section 4 demonstrates one numerical example to illustrate our approach. Section 5
discusses the conclusions of this paper.
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2 Definitions and Preliminaries

Definition 2.1. [25] Linear Fractional Programming- The general format of linear fractional programming
(LFP) may be written as:

MaxZ(x) = cx+α
dx+β ,

subject to the constraints:

x ∈ S = {x|Ax = b, x ≥ 0}

where A ∈ Rm×n, b ∈ Rm, x ∈ Rn, c, d ∈ Rn, α, β ∈ R and S is a non-empty and bounded set.

Definition 2.2. [25] Multi-objective Linear Fractional Programming Problem- The general format of a multi-
objective linear fractional programming problem which is stated as follows-

Max Z(x)={Z1(x), Z2(x), ....., Zn(x)}

subject to the constraints:

x ∈ S = {x ∈ Rn : Ax

 ≤=
≥

 b, x ≥ 0}

with b ∈ Rm, A ∈ Rm×n

and Zi(x) = cix+αi

dix+βi
= Ni(x)

Di(x)
;

where ci, di ∈ Rn and αi, βi are constants and S 6= φ.

3 Methodology

Transformation of FMOLFP problem to FMOLP problem:
Consider the following fuzzy multi-objective linear fractional programming problem as follows-

Max Z(x) = {Z1(x), Z2(x), ....., Zn(x)}

subject to the constraints:

x ∈ S = {x ∈ Rn : (Ax)j

 ≤
=
≥

 b̌j , x ≥ 0}...........(1)

with b ∈ Rm, A ∈ Rm×n and

Zi(x) = cix+αi

dix+βi
= Ni(x)

Di(x)
;

for all i=1,2,...,n and j=1,2,...,m ;

where ci, di ∈ Rn and αi, βi are constants.

By using Charne’s and Cooper method [1], substituting y=tx in (1), we get,

Max fi(y, t) = ciy + αit

subject to the constraints:

(Ay − bt)j

 ≤=
≥

 0,

diy + βit = 1

where y, t ≥ 0.

The above FMOLFP problem is equivalent to the following FMOLP problem as follows:

Maxfi(y, t) = ciy + αit
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subject to the constraint:

(Ay − bt)j

 ≤
=
≥

 0, ..............(2)

diy + βit = 1

where y, t ≥ 0
where fi(y, t), i=1,2,.....,n are affine functions, fuzzy resources p̌j is in [pj , pj + qj ] with given qj (without loss
of generality we assume that 0 < qj <∞) for each j.

Werners [7],[8] proposed a max-min operator method for crisp objective function of problem (2), which is similar
to Zimmermann [4]. The possible range [f0i , f

1
i ] for the ith objective function can be obtained as follows-

f0i = Maxfi

subject to the constraints:

(Ay − bt)j

 ≤=
≥

 pj , ..........(3)

diy + βit = pj
where y, t ≥ 0

and

f1i = Maxfi

subject to the constraints:

(Ay − bt)j

 ≤
=
≥

 pj + qj , ..........(4)

diy + βit = pj + qj
where y,t ≥ 0.

A non-decreasing linear membership function for the ith objective function is defined as follows:

µ0i(y, t) =


1 , fi(y, t) > f1i

fi(y,t)−f0
i

f1
i −f0

i
, f0i ≤ fi(y, t) ≤ f1i .........(5)

0 , fi(y, t) < f0i

A non-increasing linear membership function for the jth fuzzy constraint is defined as follows:

µj(y, t) =


1 , (Ay − bt)j < pj

(pj+qj)−(Ay−bt)j
qj

, pj ≤ (Ay − bt)j ≤ pj + qj .........(6)

0 , (Ay − bt)j > pj + qj

When all the membership functions corresponding to objective functions and constraints are known, the
FMOLFP problem is solved by following approach-
Let λi be the minimum acceptability of the ith objective and λn+j be the minimum acceptability of the jth

constraint.

Let λ = min{λi, λn+j} ∀i, j

Using the max-min principle of Bellman and Zadeh [2] and introducing the variable λ adopts the following
formulation [4]:

Maxλ

subject to the constraints :
1 ≥ µ0i(y, t) ≥ λ ≥ 0,∀i = 1, 2, ..., n

1 ≥ µj(y, t) ≥ λ ≥ 0,∀j = 1, 2, ....,m.......(7)

λ ∈ [0, 1], y, t ≥ 0.
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Solving the model (7), one optimal value λ∗ can be obtained. In fact, this λ∗ denotes that the satisfaction level
for all membership functions can simultaneously obtain. Further, let us assume that the membership functions
of all objective and constraint are equally important. The model (2) can be solved to the following average
operator model:

Max λ∗∗ =
1

n+m

n+m∑
k=1

λk,

subject to the constraints:
1 ≥ µ0i(y, t) ≥ λi ≥ 0, ∀i = 1, 2, ......., n
1 ≥ µj(y, t) ≥ λn+j ≥ 0, ∀j = 1, 2, .......,m (8)
λ ∈ [0, 1], y, t ≥ 0.

The optimal value λ∗∗ represents the total amount of all membership functions.

To obtain Fuzzy efficient solutions:
Definition 3.1 [22]: A decision plan x∗ ∈ S is said to be a Pareto-optimal solution to the MOLP problem (2)
iff there doesn’t exist another x ∈ S such that

fk(x) ≤ fk(x∗) for all k (k=1,2,....,N)
and fl(x) < fl(x

∗) for atleast one l.

Definition 3.2 [7],[8]: A decision plan x∗ ∈ S is said to be fuzzy-efficient solution to the FMOLFP problem
(7) if and only if there does not exist another x ∈ S such that

µk(fk(x)) ≥ µk(fk(x∗)) for all k (k=1,2,....,N)
and µl(fl(x)) > µl(fl(x

∗) for atleast one l.

It is obvious that any fuzzy-efficient solution x∗ to FMOLFP problem such that fi(y, t) ∈ (pj , pj + qj) for all j,
is a pareto-optimal solution to the FMOLFP problem (1). But if membership degree is 1, the fuzzy-efficiency
does not gurantee pareto-optimality which is given in the following observation-

Observation 1 [22]: Let x∗ be a fuzzy-efficient solution to the FMOLFP problem (1) such that µl(fl(x
∗)) = 1

for some l, i.e., fl(x
∗) ≤ pl, then it could be the case that x∗ is not a pareto-optimal solution. This is due to

the fact that on the left of pl the membership function µl is constantly equal to 1.

4 Numerical Example

Consider a FMOLFP problem with two objective functions as follows: [18]

Max (Z1(x) = 6x1+5x2

2x1+7 , Z2(x) = 2x1+3x2

x1+x2+7 )

subject to the constraints:

x1 + 2x2 ≤ 3,
3x1 + 2x2 ≤ 6,
x1, x2 ≥ 0.

Solution:
Here, Z1(x), Z2(x) ≥ 0 for some x in the feasible region. The above MOLFP problem is equivalent to the
following MOLP problem-

Max(f1(y, t) = 6y1 + 5y2, f2(y, t) = 2y1 + 3y2)

subject to the constraints:

g1(y, t) = y1 + 2y2 − 3t ≤ 0,
g2(y, t) = 3y1 + 2y2 − 6t ≤ 0,

g3(y, t) = 2y1 + 7t = 1,
g4(y, t) = y1 + y2 + 7t = 1,

y1, y2, t ≥ 0

where the fuzzy resources with the corresponding maximal tolerances are p1 = 0.5, p2 = 0.15, p3 = 5, p4 = 15.
Solving by LP package, the range of the objective function are as follows:

[f01 , f
1
1 ] = [1.21, 6.60]

and [f02 , f
1
2 ] = [0.55, 3.96].
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The membership function of the two objective functions are defined as follows:

µ01(y, t) =


1 , if f1(y, t) > 6.60

f1(y,t)−1.21
5.39 , if 1.21 ≤ f1(y, t) ≤ 6.60
0 , if f1(y, t) < 1.21

and

µ02(y, t) =


1 , iff2(y, t) > 3.96

f2(y,t)−0.55
3.41 , if 0.55 ≤ f2(y, t) ≤ 3.96
0 , if f2(y, t) < 0.55

For each of fuzzy constraints, the non-increasing linear membership functions are written as follows:

µ1(y, t) =


1 , if g1(y, t) < 0

0.5−g1(y,t)
0.5 , if 0 ≤ g1(y, t) ≤ 0.5
0 , if g1(y, t) > 0.5

µ2(y, t) =


1 , if g2(y, t) < 0

0.15−g2(y,t)
0.15 , if 0 ≤ g2(y, t) ≤ 0.15
0 , if g2(y, t) > 0.15

µ3(y, t) =


1 , if g3(y, t) < 1

5−g3(y,t)
4 , if 1 ≤ g3(y, t) ≤ 5
0 , if g3(y, t) > 5

µ4(y, t) =


1 , if g4(y, t) < 1

15−g4(y,t)
14 , if 1 ≤ g4(y, t) ≤ 15
0 , if g4(y, t) > 15

When the membership functions of each objective and fuzzy constraints are determined, the Phase 1 of two-phase
approach as the same with min operator will be as follows:

Max λ

subject to the constraints:

6y1 + 5y2 ≤ 6.60,
6y1 + 5y2 − 5.39λ ≥ 1.21,

2y1 + 3y2 ≤ 3.96,
2y1 + 3y2 − 3.41λ ≥ 0.55,

y1 + 2y2 − 3t ≥ 0,
y1 + 2y2 − 3t+ 0.5λ ≤ 0.5,

3y1 + 2y2 − 6t ≥ 0,
3y1 + 2y2 − 6t+ 0.15λ ≤ 0.15,

2y1 + 7t ≥ 1,
2y1 + 7t+ 4λ ≤ 5,
y1 + y2 + 7t ≥ 1,

y1 + y2 + 7t+ 14λ ≤ 15,
y1, y2, t ≥ 0, and λ ∈ [0, 1].

Solving we get, the optimal solution is-

y∗ = (0.38, 0.46, 0.34)

The optimal value and membership function for all objectives and constraints are as follows:

λ∗ = 0.46, f1(y∗) = 4.58, f2(y∗) = 2.14,
µ01(y∗) = 0.63, µ02(y∗) = 0.47 = µ3(y∗),

µ1(y∗) = 0.44, µ2(y∗) = 0.87, µ4(y∗) = 0.84.........(9)
∴ x∗ = (1.12, 1.35).

Hence, Z1(x∗) = 1.46, Z2(x∗) = 0.66.
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Applying the results y∗ generated from phase 1, the second phase of two-phase approach as model (8) is to
solve the following problem:

Max λ̄ =
1

6

6∑
k=1

λk

subject to the constraints:

λk ≥ 0.46,
6y1 + 5y2 ≤ 6.60,

6y1 + 5y2 − 5.39λ ≥ 1.21,
2y1 + 3y2 ≤ 3.96,

2y1 + 3y2 − 3.41λ ≥ 0.55,
y1 + 2y2 − 3t ≥ 0,

y1 + 2y2 − 3t+ 0.5λ ≤ 0.5,
3y1 + 2y2 − 6t ≥ 0,

3y1 + 2y2 − 6t+ 0.15λ ≤ 0.15,
2y1 + 7t ≥ 1,

2y1 + 7t+ 4λ ≤ 5,
y1 + y2 + 7t ≥ 1,

y1 + y2 + 7t+ 14λ ≤ 15,
y1, y2, t ≥ 0, and λ ∈ [0, 1].

Solving the above problem, the optimal solution is

y∗∗ = (0.13, 0.13, 0.11).

The value of the objective functions and membership functions are as follows:

λ̄ = 0.46, f1(y∗∗) = 1.43, f2(y∗∗) = 0.65,
µ01(y∗∗) = 0.04, µ02(y∗∗) = 0.03 ,

µ1(y∗∗) = 0.88, µ2(y∗∗) = 1, µ3(y∗∗) = 0.99 = µ4(y∗∗).........(10)
∴ x∗∗ = (1.18, 1.18).

Hence, Z1(x∗∗) = 1.39, Z2(x∗∗) = 0.56.

Let us compare the two-phase approach results (10) with the solution (9) obtained by min-operator. It is
observed that the membership function µ2(y∗∗) = 1 which is larger than µ2(y∗) = 0.87, which means that the
two phase approach really obtains fuzzy-efficient solution and improves the min-operator’s solution. But by
observation 1 [22], we see that a fuzzy efficient solution is is not pareto-optimal solution.

5 Conclusions

In this paper, we have studied FMOLFP by using min-operator and average operator model. By using Guu and
Wu [13] approach we have found out the fuzzy-efficient solution of the FMOLFP problem. We have shown that
the membership degree in average operator model gives fuzzy-efficient solution and improves the min operator
solution. With the help of this approach, one numerical example is solved and from that we see that the solution
obtained by average operator is fuzzy-efficient.
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