
EasyChair Preprint
№ 6029

How to Estimate Web Application Concurrent
Events Using Either Load Generator Data or
Queueing Model Results

James Brady

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 15, 2021

How to Estimate Web Application Concurrent Events Using Either
Load Generator Data or Queueing Model Results

James F Brady
Computing System Capacity and Performance Specialist

JmsFBrdy@gmail.com

Some of the most sought-after web application load testing results are the
concurrent GET/POST event quantities used to dimension internal system
resources such as process thread pools and input queue buffers. The
concurrency information desired is the proportion of time there are 0, 1, 2,
etc. web events resident in the system under test. These proportions are
not always available from target system measurements but, as will be
shown, can be approximated with data produced by the load generator, or
estimated using queueing models. The data analysis and queueing model
tools that support the ideas presented were developed by this author and
contained in two of his GitHub repositories, web-generator-toolkit2 and
QueState, as free open source downloads.

1.0 Introduction

One of the many questions load testing professional are asked is, “how many concurrent users will the new web
application support?” This question normally refers to the number of user requests that can simultaneously be
resident in the System Under Test (SUT) while maintaining acceptable service levels. Often, there are no direct
measurements being performed in the SUT to draw a picture of concurrency, but load tool query statistics as well
as queueing model state probabilities can be used to estimate concurrency levels. The load tool approach taken
here is to combine query timestamps produced by the load generator with their associated round-trip response
times to manufacture an estimate of user request concurrency. The queueing model state probabilities are typically
useful as a concurrency estimator for applications that are in the early stages of design or development before
measurements are possible.

The web-generator-toolkit2 (Toolkit2) data analysis software on GitHub is this author’s approach to concurrency
distribution approximation using load tool data. It provides the statistical count and proportion of time there are “N”
user requests in the system being tested and it does this for specific query types as well as the total number of
requests outstanding. The example used in this document to illustrate the ideas presented is the one contained in
the Toolkit2 demo.

The queueing model state probabilities are produced with the QueState package on GitHub. This repository
contains eight queueing models and is somewhat unique in that it lists state probabilities along with the usual
performance statistics like average waiting time in system, i.e., mean response time. The state probabilities
produced by these computer programs are a modeling estimator of the request concurrency distribution.

The discussion begins in Section 2 with a pictorial representation of concurrent events within the context of a load
testing environment using the Toolkit2 demo as a basis. Section 3 expands upon this demo example with additional
load test specifics used to step through the concurrency calculations performed by the analysis program. This
section also summarizes the concurrency related results that program produces. This summary information leads
to the Section 4 queueing model discussion where Toolkit2 demo traffic parameters are applied to two candidate
models with a graphical comparison made between the model results and demo statistics. Section 5 wraps up the
discussion with some conclusions and summary remarks.

https://github.com/jfbrady
https://github.com/JFBrady/web-generator-toolkit2
https://github.com/JFBrady/QueState

2.0 Load Generator View of Concurrent Events

Figure 1 shows a load testing environment containing a traffic generator on the left and the System Under Test on
the right with the two of them communicating over Ethernet. The load generator is configured with 200 virtual user
threads operating in closed loops offering web traffic to the SUT containing 8 CPU cores. There are nine GET/POST
web events initiated by the traffic generator currently being processed in the SUT.

Figure 1: Load Generator and System Under Test (SUT) Topology

The concurrency information of interest is a list containing the fraction of the time the SUT is processing 0, 1, 2, ...
9, …, etc. web events. When this information is not available from the SUT, how can query/response information
collected by the load generator be used to estimate the SUT’s concurrency distribution? To clearly describe the
steps taken to produce SUT concurrency statistics from load generator data the topological setup of Figure 1 is
extended into the load testing specifics of Figure 2.

3.0 Concurrency Calculation Setup

Figure 2 contains the Toolkit2 demo list of web events being tested on the left and the layout of the JMeter load
testing script on the right. Six events are being queried to obtain state government statistics with a single group
containing 200 virtual user threads. Threads randomly select an event from the list each cycle (think + response)
and draw their think times from a uniform random timer.

Figure 2: Web Page Events and JMeter Load Testing Script

The test run is 25-minutes in duration with the first 2 and last 3 minutes excluded from the analysis to minimize the
impact of startup and shutdown time transients. The resulting JMeter Aggregate Report output file,
2000_AggRpt_120_1199.csv, contains 92,984 query/response records. The first two rows of that file are listed at
the top of Figure 3 where the timestamp and response time fields are shown in gray. The TimeStamp (ms) column

Web Page Name Purpose

010_Home Home Page

012_Home_jpg Background Image

020_Dept Department Information

022_Dept_jpg Department Image

030_Demographics Demographic Information

040_Statistics Summary Statistics

GOV Web Site – Web Page GET / POST Events

https://jmeter.apache.org/

is the launch time of the event in Unix time expressed in milliseconds and the R (ms) is the elapsed milliseconds
required for the response to be returned. The term “State” refers to the number of concurrent user queries estimated
to be resident in the SUT. The remainder of this figure uses the two records shown to illustrate how concurrency
calculations are performed within the entire file.

3.1 Concurrency Calculation Methodology

The first step implemented in the Toolkit2 software is to create End timestamps by adding the response time to the
Beg timestamp. A previously unset Beg timestamp hash is assigned a value of 1 and an unset End timestamp hash
is given a value of -1. Subsequent occurrences of a timestamp cause its hash value to be incremented by one if it
is a Beg occurrence and decremented by one if it is an End occurrence. When this analysis is complete, each
timestamp has a single hash number assigned to it that represents its state change contribution. The timestamp list
is then processed in sorted timestamp order where Prior State + Change State = Current State. For simplicity Figure
3 only shows (+1) or (-1) for a given timestamp’s hash/change value but that number is often greater than +1 or
less than -1 when the entire file is processed.

Figure 3: Concurrent Query Calculations Using Load Generator data

The time in a particular State is calculated by subtracting the current timestamp from the next one in ascending
order. Those calculated values are summed for each State with the example in Figure 3 yielding a total time in
State[1] = 39 milliseconds. This methodology produces an array of States[], i.e., [0], [1], [2], etc., with each element
equal to its total milliseconds. Dividing these millisecond sums by the total milliseconds for the test yields the
proportion of time in each State. This is the distribution of concurrent events in the SUT estimate using
measurements taken by the load generator. Obviously, long network latencies across the E-Net connection between
the load generator and the SUT will skew this estimate. See Appendix A for a concurrency function source listing.

3.2 Concurrency Calculation Results

Figure 4 is the resulting comma delimited output file saved as a spreadsheet for the Toolkit2 demo example where
data for all six web events, 010_Home through 040_Statistics, are included in the calculations. It contains a
statistical “Value” row, a state transition count by state, “Freq” set of numbers, and a proportion of time in each
state, “Prob” list of empirical state probabilities. The “Value” row mean, sdev, and var are calculated with the “State”
and “Prob” information using the formulas for grouped data, e.g., 𝑚𝑒𝑎𝑛 = ∑ 𝑆𝑡𝑎𝑡𝑒 𝑥 𝑃𝑟𝑜𝑏 = 5.81 concurrent events.
This row also lists the maximum number of concurrent queries in the SUT during the entire measurement period,
max = 33, and the total number of state change timestamps processes, freq_sum = 171,699.

Figure 4: Concurrent Events by Proportion of Time in State (Prob) and Frequency Count (Freq)

TimeStamp (ms) R (ms)

Web Event

Name

Response

Code

Response

Message User Thread

Data

Type Success

Byte

Count

R (1st Byte)

(ms)

1331866921294 23 022_Dept_jpg 200 OK Thread Group 1-182 bin TRUE 31541 20

1331866921325 16 010_Home 200 OK Thread Group 1-196 text TRUE 17991 14

Beg1 = 1331866921294 End1 = 1331866921294 + 23 = 1331866921317

Beg2 = 1331866921325 End2 = 1331866921325 + 16 = 1331866921341

TimeStamp Hash Prior Change Current Time In State

{1331866921294} = 1 0 1 1 23

{1331866921317} = -1 1 -1 0 8 Total Time In State[1] = 39 ms

{1331866921325} = 1 0 1 1 16

{1331866921341} = -1 1 -1 0 --

JMeter Aggregate Report Event File

State[i]

Concurrent Events (Count) {Total} - demo_2000_AggRpt_120_1199 Thursday 03/15/2012

------------Statistics------------

Statistic mean sdev var max p_sum freq_sum

Value 5.81 3.65 13.35 33 1 171699

State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Prob 0.01181 0.04314 0.08711 0.13177 0.14784 0.13866 0.11296 0.08505 0.06141 0.04481 0.03388 0.02629 0.01817 0.01442 0.01087 0.00780 0.00621

Freq 1091 4991 11664 19359 24583 24918 21655 16669 12091 8725 6538 4969 3586 2674 2037 1576 1174

State 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Prob 0.00506 0.00374 0.00252 0.00180 0.00140 0.00104 0.00074 0.00055 0.00034 0.00015 0.00020 0.00011 0.00004 0.00004 0.00005 0.00002 0.00001

Freq 925 685 489 338 277 218 167 116 68 27 26 21 10 11 13 6 2

https://en.wikipedia.org/wiki/Unix_time

The proportion of time across all states experienced (0 – 33) is the concurrency state probability distribution based
on this set of measurements. It should be noted that these empirical state probabilities differ from the frequency
count by state fraction of total values because they account for time in a state. For example, the frequency count,
“Freq”, decimal fraction for state zero is Freq[0] = 1091 / 171699 = 0.00635, but its empirical state probability is
Prob[0] = 0.01181. The GitHub location of the Toolkit2 demo output file that produces the Figure 4 results is provided
in Appendix B.

Figure 5 contains summary information for three of the Toolkit2 demo statistical reports. This figure includes results
for all six web events and is the “Total” row of the complete set of reports shown in Appendix B.

1. Concurrent Events
2. Response Times
3. Time Between Queries

Figure 5: Toolkit2 Demo Statistical Report Totals

The gray cells in Figure 5 are of interest from a concurrency perspective as well as a test traffic quality orientation.
The first data row reiterates two of the statistics listed in Figure 4, the total number of state transition timestamps
processed, n = 171,699 and the maximum number of concurrent queries observed, max = 33. The second data row
contains the query count, n = 92,984, the query rate, tps = 77.55 trans/sec, and response time statistics, e.g., mean
= 74.97 milliseconds. The query count is the total number of data rows in the file processed.

The last row provides “Time Between Queries” statistics with a count value, n, that is one less than the query count
because the numbers are the differences between sorted order query timestamps. The coefficient of variation, cv
= sdev / mean, of the “Time Between Queries” metric is an indication of request independence, a key measure of
offered traffic quality. The observed value of cv = 1.03 is very close to the ideal 1.00, indicating the load generator
is mimicking real-world user request timing. For a detailed discussion of request independence and its impact on
test traffic quality see [5.].

4.0 Queueing Model View of Concurrent Events

The Figure 1 load testing setup can be viewed as a queueing system with 200 traffic sources (virtual user threads)
and 8 servers (CPU cores) where the GET/POST circles in the SUT represent nine concurrent events. If an
application’s traffic flow characteristics match a queueing model’s mathematical assumptions, the SUT’s
concurrency distribution can be approximated by the model’s state probabilities.

One key assumption many common queueing models possess, including those in the QueState repository, is the
request independence property of the Toolkit2 demo. With this traffic flow characteristic in common, how well do
the empirical state probabilities, “Prob”, of Figure 4 fit the appropriate queueing model’s state probability
distribution? If there is a reasonable match, that model may be useful as a concurrency distribution estimator for
applications anticipated to have the independent request property but in the early stages of design or development
before measurements can be performed.

Two queueing models are chosen for this comparison, the details of which are contained in Appendix C. In Kendall
Notation the models are:

1. M/M/c/N - Markovian arrivals and service times with c servers and fixed number of traffic sources (N)

2. M/M/c - Markovian arrivals and service with c servers and an infinite number of traffic sources

The Markovian property, the two M’s in the Kendall notation, imply arrivals occur independently (M) and service

times are Negative-Exponentially distributed (M).

The M/M/c/N model accommodates the fact that the virtual user thread pool, i.e., users, is fixed and a thread in
queue or service cannot be an arrival, whereas, the M/M/c model assumes a dynamically changing set of users. As
will be illustrated, this model difference is superfluous for a group of user threads as large as 200.

Summary Statistics (ms) - demo_2000_AggRpt_120_1199 Thursday 03/15/2012

label n tps median mean sdev cv p90 p95 p99 min max

Concurrent Events 171699 143.20 5 6.21 3.66 0.59 11 13 19 0 33

Response Times 92984 77.55 11 74.97 228.82 3.05 88 617 1048 3 4060

Time Between Queries 92983 77.55 9 12.89 13.22 1.03 30 39 59 0 341

https://www.google.com/search?lei=s5T4X6qYC92T0PEP58Wu4AQ&q=coefficient%20of%20variation%20formula&ved=2ahUKEwjqvezX7IzuAhXdCTQIHeeiC0wQsKwBKAB6BAg_EAE&biw=1058&bih=727
http://www.mathcs.emory.edu/~cheung/Courses/558/Syllabus/00/queueing/queueing.html
http://www.mathcs.emory.edu/~cheung/Courses/558/Syllabus/00/queueing/queueing.html
https://en.wikipedia.org/wiki/Markov_property
https://www.sciencedirect.com/topics/mathematics/negative-exponential-distribution

Figure 6 lists the queueing model configuration parameters and their relationship to the information contained in
previous figures. Figure1 identifies the number of servers, c = 8, and traffic sources, N = 200, while Figure 4
includes the mean number of concurrent events, λ/µ = 5.81, and Figure 5 provides the query arrival rate, λ = 77.55
tps. This information is entered into the two models to produce their QueState demo state probabilities. Appendix
C contains GitHub repository execution logistics for these results.

Figure 6: Queueing Model Input Parameters

Figure 7 contains a comparison of the queueing model state probabilities (red triangles and green line) with the load
test proportion of time in state empirical state probabilities (black solid line) where “Probability” is plotted as a
function of “Concurrent Events”.

Figure 7: State Probability Distribution For 2000_Agg Test and Two Queueing Models

The graph is produced with the “Value” row of Figure 4 as Table A where the mean value statistic in that table is
the queueing model offered load, λ/µ = 5.81, in Table B. The Figure 4 “Prob” data is listed in the two 2000_Agg
rows of Table C and the queueing model state probabilities are enumerated in the MMcN and MMc rows of the
same table. The MMcN and MMc rows of Table C are the state probability portion of model output for the first thirty-
four states (0 – 33) which consume nearly all the probability, p_sum for M/M/c/N = .999993 and M/M/c = .999922.

Parameter Symbol Value Source Comment

Servers c 8 Figure 1 CPU Cores in SUT

Sources N 200 Figure 1 Load Generator Threads

Arrival Rate λ 77.55 Figure 5 Response Time Row - tps

Service Rate µ 13.34 Figure 4 and Figure 5 Calculated From λ and λ/µ

Traffic λ/µ 5.81 Figure 4 Mean Value Statistic

Queueing Model Input Parameters

Table A Table B

Statistic mean sdev var max p_sum f_sum Param Servers Sources λ/µ λ µ p_sum

Value 5.81 3.65 13.35 33 1.000000 171699 MMcN 8 200 5.81 77.55 13.34 0.999993

MMc 8 ∞ 5.81 77.55 13.34 0.999922

Table C

State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2000_Agg 0.01181 0.04314 0.08711 0.13177 0.14784 0.13866 0.11296 0.08505 0.06141 0.04481 0.03388 0.02629 0.01817 0.01442 0.01087 0.00780 0.00621

MMcN 0.00248 0.01482 0.04415 0.08723 0.12861 0.15093 0.14685 0.12184 0.08799 0.06322 0.04519 0.03213 0.02272 0.01599 0.01119 0.00779 0.00539

MMc 0.00266 0.01547 0.04496 0.08712 0.12661 0.14721 0.14263 0.11845 0.08607 0.06255 0.04545 0.03303 0.02400 0.01744 0.01267 0.00921 0.00669

State 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

2000_Agg 0.00506 0.00374 0.00252 0.00180 0.00140 0.00104 0.00074 0.00055 0.00034 0.00015 0.00020 0.00011 0.00004 0.00004 0.00005 0.00002 0.00001

MMcN 0.00371 0.00254 0.00173 0.00117 0.00079 0.00053 0.00035 0.00023 0.00015 0.00010 0.00007 0.00004 0.00003 0.00002 0.00001 0.00001 0.00000

MMc 0.00486 0.00353 0.00257 0.00187 0.00136 0.00099 0.00072 0.00052 0.00038 0.00027 0.00020 0.00015 0.00011 0.00008 0.00006 0.00004 0.00003

State Probabilities

User Request Concurrency - 2000_Agg Test Queueing Models

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 5 10 15 20 25 30

P
ro

b
a

b
il
it

y

Concurrent Events

Concurrency Event State Probabilities

2000_Agg MMcN MMc

A comparison of the 2000_Agg empirical results with the two sets of queueing model state probabilities leads to the
following observations regarding the Figure 7 illustration:

1. The queueing model state probabilities are biased to the right of the 2000_Agg test run empirical state
probabilities in the higher density section of the curve but fit well in the right-hand tail where the important
maximums are listed. It is unclear why this bias exists but perhaps it’s because both queueing models
assume Negative-Exponentially distributed service times and SUT service times are likely to have a smaller
variance.

2. The two queueing models (red diamonds and green line) have virtually identical state probabilities for all
states shown, making them interchangeable as modeling tools when user populations are this large, i.e.,
200 virtual user threads. This is important because M/M/c is a much easier model to implement than
M/M/c/N. See Appendix C for the set of equations and list of assumptions associated with these two models.

The queueing model plots are certainly a close fit from a modeling perspective, making them a potentially useful
tool for configuring internal system resources for applications anticipated to have the independent request property
but still on the drawing board or in the early stages of development.

5.0 Summary

Load testing professionals are often asked to estimate how many concurrent requests the new application will
support when there are no direct measurements available on the SUT to make that capacity determination. The
approach taken here is to approximate the concurrent user request distribution with either data generated by the
load tool or queueing models when test data is not available. It is hoped the Toolkit2 software combined with its
Apache JMeter setup is of value when approximating concurrency with test data and the QueState queueing models
are of use when preliminary estimation is required.

The approach taken to describe these two methods in detail beings with an overview of concurrency calculations
as a means of dimensioning internal SUT resources. That overview is followed by the Section 2 graphical illustration
of concurrent events residing in a load generation environment. This pictorial representation is enriched in the
Section 3 load testing example taken from the Toolkit2 demo. That demo’s input data is used as a vehicle for
explaining the Toolkit2 concurrency calculation methodology with software specifics listed in Appendix A. This
section also includes Toolkit2 demo summary results from a concurrency as well as traffic quality perspective with
each of these orientations expanded upon in the Appendix B set of tables. In Section 4, the demo’s traffic quality
indicator points to the same user request pattern as the QueState models assume so a comparison is made
between the load tool data and two of those eight models. The state probability equations and associated QueState
model assumptions are listed in Appendix C.

Because the Toolkit2 software uses data gathered by the load generator rather than recorded in the SUT, caution
should be used when interpreting the results. Long or erratic network latencies between the load generator and the
SUT may skew the concurrency numbers since time in SUT includes network latency with this technique.

There are other queueing model programs on the internet which generate performance metrics, but few of them
compute the state probabilities needed for concurrency estimation like the QueState programs. Although
concurrency estimation is the primary application in this environment, these eight models are general purpose and
can be used to analyze any situation where they are a reasonable fit.

The software contained in the web-generator-toolkit2 and QueState GitHub repositories is free, downloadable, and
modifiable, with all code in the “bin” directories written in Perl. It is hoped performance analysts will take advantage
of these repositories and share their experiences.

Acknowledgment

This author would like to acknowledge Xiaosong Lou [9.] for sparking my interest in user request concurrency
analysis and sharing the proportion of time in each state concurrency technique that I implemented in the Toolkit2
statistical analysis software.

References

[1.] A.O. Allen, “Probability, Statistics, and Queueing Theory”, Academic Press, Inc., Orlando, Florida, 1978.

[2.] J. F. Brady, “When Load Testing Large User Population Web Applications the Devil Is In the (Virtual) User
Details,” CMG Proceedings 2012, http://www.perfdynamics.com/Classes/Materials/Brady-CMG12.pdf

https://github.com/JFBrady/web-generator-toolkit2
https://github.com/JFBrady/QueState
http://www.perfdynamics.com/Classes/Materials/Brady-CMG12.pdf

[3.] J. F. Brady, “It’s Time to Retire Our 1970’s User Demand Model for Transaction Computing and Adopt One
That Reflects Modern Web User Traffic Flow,” CMG Proceedings, 2014,
https://jamesbrady.academia.edu/research

[4.] J. F. Brady and N. J. Gunther, “How to Emulate Web Traffic Using Standard Load Testing Tools,” CMG
Proceedings, 2016, https://arxiv.org/abs/1607.05356

[5.] J. F. Brady, “Is Your Load Generator Launching Web Requests In Bunches?,” CMG Proceedings 2019,
https://arxiv.org/abs/1809.10663

[6.] R. B. Cooper, “Introduction to Queueing Theory”, Elsevier Science Publishing Co., Inc, New York, N.Y., (1984),
http://www.cse.fau.edu/~bob/publications/IntroToQueueingTheory_Cooper.pdf

[7.] W.C. Giffin, “Queueing: Basic Theory and Applications”, Grid, Inc, Columbus, Ohio, 1978,
https://www.amazon.com/Queueing-theory-applications-industrial-engineering/dp/0882441337

[8.] L. Kleinrock, “Queueing Systems Volume 1 and 2”, John Wiley & Sons, New York, N.Y., (1975).

[9.] Xiaosong Lou, “CONCURRENT USERS: An Analytical Approach To Proper Workload Simulation,” CMG
Proceedings, 2021.

https://jamesbrady.academia.edu/research
https://arxiv.org/abs/1607.05356
https://arxiv.org/abs/1809.10663
http://www.cse.fau.edu/~bob/publications/IntroToQueueingTheory_Cooper.pdf
https://www.amazon.com/Queueing-theory-applications-industrial-engineering/dp/0882441337

Appendix A

Concurrency Function Source Code
 (web_generator_toolkit2.pl)

sub

concurrency

{

 my($concurrency_ref) = @_;

 ###

 # User Request Concurrency Analysis: #

 # - Technique Introduced To This Author By Xiaosong Lou #

 ###

 # Variable Declarations Not Shown - See GitHub Repo #

 # Variable Declarations - Initialized #

 ###

 my ($currentEvents)=0;

 my ($msec_sum)=0;

 ################################

 # Read list #

 ################################

 foreach $record (@$concurrency_ref){

 ($beg,$rt) = split ('\,',$record);

 ################################

 # Create End Timestamp #

 ################################

 $end = $beg + $rt;

 ##

 # Run Counter For Duplicate Begin Timestamps #

 ##

 if ($timestamps{$beg}){

 $timestamps{$beg}++;

 }

 else{

 $timestamps{$beg}=1;

 }

 ##

 # Run Counter For Duplicate End Timestamps #

 ##

 if ($timestamps{$end}){

 $timestamps{$end}--;

 }

 else{

 $timestamps{$end}=-1;

 }

 }

 ###

 # Process timestamps in ascending order #

 ###

 foreach $timestamp (sort keys(%timestamps)){

 ###

 # Calculate msec for last timestamp #

 ###

 if ($lastTimestamp){

 $msec = $timestamp-$lastTimestamp;

 }

 else{

 $msec = 0;

 }

https://github.com/JFBrady/web-generator-toolkit2/tree/master/bin/web_generator_toolkit2.pl

Appendix A - Continued
 ###

 # Add msec to current histogram entry #

 ###

 if ($histogram{$currentEvents}){

 ($count,$ms) = split('\,',$histogram{$currentEvents});

 $count++;

 $ms+=$msec;

 $count_ms = join ',',$count,$ms;

 $histogram{$currentEvents} = $count_ms;

 }

 else{

 $count=1;

 $count_ms = join ',',$count,$msec;

 $histogram{$currentEvents} = $count_ms;

 }

 ###

 # Put current event count on list #

 ###

 push @concurrentEvents,$currentEvents;

 ###

 # Update counter variables #

 ###

 $currentEvents += $timestamps{$timestamp};

 $lastTimestamp = $timestamp;

 $msec_sum += $msec;

 }

 ##

 # Create state probability array #

 ##

 foreach $pstate_val (sort keys(%histogram){

 ($count,$ms) = split('\,',$histogram{$pstate_val});

 if ($msec_sum){

 $prob = $ms/$msec_sum;

 }

 else{

 $prob = 0;

 }

 $count_prob = join ',',$count,$prob;

 $pstate[$pstate_val] = $count_prob;

 }

 ###

 # Sort concurrent events list #

 ###

 foreach $concurrentEvent (@concurrentEvents){

 $events = sprintf('%08d',$concurrentEvent);

 push @concurrentEvents_out,$events;

 }

 @concurrentEvents_out = sort @concurrentEvents_out;

 ##

 # Assign unobserved state probabilities zero #

 ##

 for($i=0;$i<@pstate;$i++){

 if (!$pstate[$i]){

 $pstate[$i] = join ',',0,0;

 }

 $pstate[$i] = join ',',$i,$pstate[$i];

 }

 return(\@concurrentEvents_out,\@pstate);

}

Appendix B

Toolkit2 Demo Output Files
(web-generator-toolkit2/demo)

Figure 4: Concurrent Events

The GitHub location of the concurrent events for “Total” csv file produced by running the Toolkit2 demo.

1. Toolkit2 -> histograms -> concur -> demo_2000_AggRpt_120_1199_Total_concur.csv

Figure 5: Full Reports:

The GitHub locations of the three full statistical reports produced by running the Toolkit2 demo.

1. Concurrent Events – Toolkit2 -> statistics –> demo_2000_AggRpt_120_1199_20120315_concur.csv
2. Response Times – Toolkit2 -> statistics –> demo_2000_AggRpt_120_1199_20120315_agg.csv
3. Time Between Queries - Toolkit2 -> statistics –> demo_2000_AggRpt_120_1199_20120315_arr.csv

1. Concurrent Events

2. Response Times

3. Time Between Queries

Concurrent Event Statistics (Count) - demo_2000_AggRpt_120_1199 Thursday 03/15/2012

label n tps median mean sdev cv p90 p95 p99 min max

010_Home 47751 39.83 1 1.12 1.13 1.01 2 3 5 0 10

012_Home_jpg 48798 40.70 1 1.37 1.25 0.91 3 4 5 0 13

020_Dept 24719 20.62 1 0.85 0.85 1.00 2 2 4 0 7

022_Dept_jpg 24825 20.71 1 0.81 0.77 0.96 2 2 3 0 6

030_Demographics 24560 20.49 1 0.80 0.81 1.02 2 2 3 0 7

040_Statistics 12331 10.28 4 3.83 1.95 0.51 6 7 9 0 13

Total 171699 143.20 5 6.21 3.66 0.59 11 13 19 0 33

Aggregate Stats [Response Time(ms)] - demo_2000_AggRpt_120_1199 Thursday 03/15/2012

label n tps median mean sdev cv p90 p95 p99 min max

010_Home 24384 20.34 9 31.60 161.33 5.11 20 62 516 5 3616

012_Home_jpg 24950 20.81 20 42.23 173.89 4.12 41 65 301 13 3864

020_Dept 12489 10.42 7 34.79 184.64 5.31 19 61 1412 4 3227

022_Dept_jpg 12533 10.45 5 30.07 183.20 6.09 14 33 1298 3 3430

030_Demographics 12424 10.36 7 30.04 164.54 5.48 17 53 1220 4 3217

040_Statistics 6204 5.17 622 638.70 171.31 0.27 674 768 1038 334 4060

Total 92984 77.55 11 74.97 228.82 3.05 88 617 1048 3 4060

Inter-arrival Summary Statistics (ms) - demo_2000_AggRpt_120_1199 Thursday 03/15/2012

label n tps median mean sdev cv p90 p95 p99 min max

010_Home 24383 20.34 34 49.17 49.55 1.01 113 148 228 0 533

012_Home_jpg 24949 20.81 33 48.06 48.66 1.01 111 145 227 0 527

020_Dept 12488 10.42 67 95.99 94.58 0.99 219 285 432 0 903

022_Dept_jpg 12532 10.45 66 95.67 95.74 1.00 221 288 437 0 871

030_Demographics 12423 10.36 67 96.51 97.87 1.01 224 295 450 0 990

040_Statistics 6203 5.17 133 193.24 196.31 1.02 445 579 910 0 1847

Total 92983 77.55 9 12.89 13.22 1.03 30 39 59 0 341

https://github.com/JFBrady/web-generator-toolkit2/tree/master/demo

Appendix C

Queueing Model State Probabilities
(QueState/demo)

Figure 6: State Probability Input Parameters

The GitHub location of the state probability files produced by running the QueState demo.

1. QueState – MMcN -> MMcN_QueState_Results -> MMcN_2000_AggRpt_results_yyyymmddhhmmss.csv
2. QueState – MMc -> MMc_QueState_Results -> MMc_2000_AggRpt_results_yyyymmddhhmmss.csv

Queueing Model Formulas

Below are the state probability formulas for the two queueing models. These equations are described in [6], [7], and
[8] with the syntax from [6]. The symbols in parenthesis at the right of each variable definition are QueState
repository terminology.

M/M/c/N Model State Probabilities:
Key assumptions:
 Source - the number of traffic sources is finite.
 Arrival - arrivals occur quasi-randomly and have full access to all the servers.
 Queue - blocked arrivals are delayed.
 Service - service times are Negative-Exponentially distributed

Quasi-random arrivals imply no coercion exists between sources when making requests but the arrival rate changes
as sources go in and out of the idle state, accounting for the fact that a source in queue or service cannot be an
arrival. In this closed source system, the outside observer’s and arriving customer’s view differ but happily they are
related in a simple way. The outside observer’s n-Source state probability distribution, Eq. C1.1 and Eq. C1.2, is
equal to the arriving customer’s [n-1]-Source state probability distribution.

 𝑃𝑗[𝑛] = {
(𝑛

𝑗
) �̂�𝑗𝑃0[𝑛] (𝑗 = 1,2, … , 𝑠 − 1)

𝑛!

(𝑛−𝑗)!𝑠!𝑠𝑗−𝑠 �̂�𝑗𝑃0[𝑛] (𝑗 = 𝑠, 𝑠 + 1, … , 𝑛)
 (𝐶1.1)

𝑊ℎ𝑒𝑟𝑒 𝑃0[𝑛] 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏y

𝑃0[𝑛] = [∑ (
𝑛

𝑘
) �̂�𝑘 + ∑

𝑛!

(𝑛 − 𝑘)! 𝑠! 𝑠𝑘−𝑠
�̂�𝑘

𝑛

𝑘=𝑠

𝑠−1

𝑘=0

]

−1

 (𝐶1.2)

𝑊ℎ𝑒𝑟𝑒:
𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (N)

�̂� = 𝑜𝑓𝑓𝑒𝑟𝑒𝑑 𝑙𝑜𝑎𝑑 𝑝𝑒𝑟 𝑖𝑑𝑙𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑎𝑖_𝑠𝑟𝑐)

𝑠 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 (c)
𝑃𝑗[𝑛] = 𝑠𝑡𝑎𝑡𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑗 𝑜𝑓 𝑡ℎ𝑒 𝑛 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 (𝑃[𝑗])

𝑃0[𝑛] = 𝑠𝑡𝑎𝑡𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑎𝑙𝑙 𝑛 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑎𝑟𝑒 𝑖𝑑𝑙𝑒 (𝑃[0])

𝑇ℎ𝑒 𝑜𝑓𝑓𝑒𝑟𝑒𝑑 𝑙𝑜𝑎𝑑 𝑝𝑒𝑟 𝑖𝑑𝑙𝑒 𝑠𝑜𝑢𝑟𝑐𝑒, �̂�, 𝑖𝑠 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝑏𝑦:

�̂� =
𝑎𝑠𝑟𝑐

1 − 𝑎𝑠𝑟𝑐
 (𝐶1.3)

𝑊ℎ𝑒𝑟𝑒:
𝑎𝑠𝑟𝑐 = 𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑 𝑜𝑓𝑓𝑒𝑟𝑒𝑑 𝑙𝑜𝑎𝑑 𝑝𝑒𝑟 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑎_𝑠𝑟𝑐)

𝑎𝑠𝑟𝑐 =
𝜆 𝜇⁄

𝑛
 (𝐶1.4)

𝑊ℎ𝑒𝑟𝑒:
𝜆 = 𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 (𝑙𝑎𝑚𝑑𝑎)

𝜇 = 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑎𝑡𝑒 (𝑚𝑢)

https://github.com/JFBrady/QueState/tree/master/demo

Appendix C - Continued

M/M/c Model State Probabilities:
Key assumptions:
 Source - the number of traffic sources is infinite.
 Arrival - arrivals occur randomly at a constant rate and have full access to all servers.
 Queue - blocked arrivals are delayed.
 Service - service times are Negative-Exponentially distributed.

Random arrivals imply no coercion exists between sources when making requests and arrivals are drawn from an
infinite population at a constant rate. It is the well-known Poisson process where times between arrivals are
Negative-Exponentially distributed and the number of arrivals in constant length intervals, are Poisson distributed.
Unlike the closed source model, the outside observer and arriving customer share the same view of the system
possessing the state probabilities shown in Eq. C1.5 and Eq. C1.6.

 𝑃𝑗 = {

𝑎𝑗

𝑗!
𝑃0 (𝑗 = 1,2, … , 𝑠 − 1)

𝑎𝑗

𝑠!𝑠𝑗−𝑠 𝑃0 (𝑗 = 𝑠, 𝑠 + 1, …)
 (𝐶1.5)

𝑊ℎ𝑒𝑟𝑒 𝑃0 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏y

𝑃0 = [∑
𝑎𝑘

𝑘!
+

𝑎𝑠

𝑠! (1 − 𝑎/𝑠)

𝑠−1

𝑘=0

]

−1

 (0 ≤ 𝑎 < 𝑠) (𝐶1.6)

𝑊ℎ𝑒𝑟𝑒:
𝑎 = 𝑜𝑓𝑓𝑒𝑟𝑒𝑑 𝑙𝑜𝑎𝑑 (𝑎)
𝑠 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 (c)

𝑃𝑗 = 𝑠𝑡𝑎𝑡𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑗 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑎𝑟𝑒 𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 (𝑃[𝑗])

𝑃0 = 𝑠𝑡𝑎𝑡𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦 (𝑃[0])

𝑎 = 𝜆 𝜇⁄ (𝐶1.7)
𝑊ℎ𝑒𝑟𝑒:
𝜆 = 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 (𝑙𝑎𝑚𝑑𝑎)

𝜇 = 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑎𝑡𝑒 (𝑚𝑢)

