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Abstract. Hyperspectral and multispectral image (HS-MSI) fusion aims
to generate a high spatial resolution hyperspectral image (HR-HSI), us-
ing the complementarity and redundancy of the low spatial resolution
hyperspectral image (LR-HSI) and the high spatial resolution multispec-
tral image (HS-MSI). Previous works usually assume that the spatial
down-sampling operator between HR-HSI and LR-HSI, and the spectral
response function between HR-HSI and HR-MSI are known, which is
infeasible in many cases. In this paper, we propose a coarse-to-fine HS-
MSI fusion network, which does not require the prior on the mapping
relationship between HR-HSI and LRI or MSI. Besides, the result is im-
proved by iterating the proposed structure. Our model is composed of
three blocks: degradation block, error map fusion block and reconstruc-
tion block. The degradation block is designed to simulate the spatial
and spectral down-sampling process of hyperspectral images. Then, er-
ror maps in space and spectral domain are acquired by subtracting the
degradation results from the inputs. The error map fusion block fuses
those errors to obtain specific error maps corresponding to initialize HSI.
In the case that the learned degradation process could represent the real
mapping function, this block ensures to generate accurate errors between
degraded images and the ground truth. The reconstruction block uses the
fused maps to correct HSI, and finally produce high-precision hyperspec-
tral images. Experiment results on CAVE and Harvard dataset indicate
that the proposed method achieves good performance both visually and
quantitatively compared with some SOTA methods.
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1 Introduction

With the steady development of sensor technology, the quantity and expression
form of information are gradually enriched. Hyperspectral remote sensing image
is mainly formed by acquiring electromagnetic waves of different wavelengths
which are reflected from the ground objects after processing. Thus, the hyper-
spectral image generally consists of tens to hundreds of wavelengths and con-
tains rich spectral information. Using different feature signals in hyperspectral
images, many computer vision tasks such as detection [16,11] and segmenta-
tion [13] can be implemented. However, due to the limitation of existing optical
remote sensing systems, it is difficult to guarantee both the spectral resolution
and spatial resolution of HSI. High precision HR-HSI can provide high-quality
data for subsequent more complex hyperspectral image processing tasks, and it
can be produced by making full use of the MSI or HSI which can be captured
by existing imaging equipment. Therefore, researchers have proposed a variety
of hyperspectral image fusion methods to generate accurate HR HSI.

When composed of a single band, the multispectral image is reduced to a
panchromatic image [10]. Consequently, the comprehensive evaluation of HS-MS
fusion can be incorporated into the system of pan-sharpening, and the methods
of HS-MS fusion and pan-sharpening are convergent. Most recent HS-MS fusion
methods are based on image prior models, which formulate the fusion prob-
lem as an optimization problem constrained by HRI priors. In addition, some
methods exploit the low-rank and sparse properties of HSI. These methods use
matrix factorization or tensor factorization to characterize HSI and address the
corresponding image fusion problem.

As recent years, deep learning (DL) in inverse problem reconstruction has
gradually attracted wide attention from researchers with the continuous devel-
opment of neural networks. Using back propagation of neural networks and
optimization algorithms, the optimization problem can be solved effectively
and achieve excellent reconstruction results. Compared with conventional fu-
sion methods, DL-based ones need fewer assumptions on the prior knowledge
from the to-be-recovered HR-HSI and the network can be trained directly on a
set of training data. Although the network architecture itself needs to be hand-
crafted, properly designed network architectures have been shown to solve many
problems and achieve high performance because of the robust feature extrac-
tion capabilities of convolutional networks [6]. Hence, based on CNN and the
generation mechanism, we propose a spatial-spectral joint correction HS-MS fu-
sion network (SSJCN). The implementation of the method revolves around the
following points:

1. Improving the resolution accuracy of the fused images by concatenating the
degradation models and the reconstruction models.

2. The error map between the degraded image and the input data maintains
the high-frequency information of the input to ensure that the network does
not lose detail information during forward propagation.
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The rest of this article is organized as follows. In Section 2, we present some
existing methods of hyperspectral fusion. In Section 3, we introduce the detailed
implementation of the proposed model. Experimental results on two publicly
available datasets and comparisons with other methods are reported in Section
4. Lastly, this paper ends with the summary of Section 5.

2 Related Work

2.1 Traditional methods

Generally, the traditional approach is based on artificial priori assumptions.
There are several pan-sharpening methods often assume that the spatial details
of panchromatic and multispectral images are similar [9]. While some methods,
such as [3,7], use sparse matrix decomposition to learn the spectral dictionary
of LR-HSI, and then use the spectral dictionary and the coefficients learned
from HR-MSI to construct HR-HSI. In [3], W. Dong et al. take the spatial
structure into account to make full use of the priors. Also, tensor factorization-
based methods have made great strides in hyperspectral image fusion problems,
which treat HR-HSI as a three-dimensional tensor [8]. Although these methods
are constantly evolving and have yielded positive results, the methods based on
handcrafted priors are not flexible enough to adapt to different hyperspectral
image structures because HR-HSI acquired from real scenes are highly diverse
in both spatial and spectral terms.

2.2 Deep learning methods

Unlike traditional methods, deep learning-based fusion methods do not require
building a specific priori model. Chao Dong [2] et al. proposed a three-layer super
resolution model of convolutional neural networks (SRCNN) to learn the inher-
ently unique feature relationships between LRI and HRI. SRCNN first demon-
strates that the traditional sparse coding-based approach can be reformulated
as a deep convolutional neural network, but the method does not consider the
self-similarity of the data. Shuang Xu [15] et al. designed a multiscale fusion
network (HAM-MFN), where the HSI was upscale 4 times and fused with MS
images at each scale with the net going deeper. As existing imaging equipment
cannot directly obtain HR-HSI, some methods use up-sampled LR-HSI or HR-
MSI to simulate the target image. Based on that, Han et al. proposed spatial
and spectral fusion CNN [4]. Even though this algorithm achieved better perfor-
mance than state-of-the-art methods, the up-sampled images not only increased
the number of pixels but also the computational complexity. Then in [5], a multi-
scale spatial and spectral fusion architecture (MS-SSFNet) is proposed in order
to reducing the computational complexity and alleviating the vanishing gradients
problem.
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3 Proposed Method

3.1 Problem Formulation

Given two input images: HR-MSIX ∈ Rc×W×H , and LR-HSI Y ∈ RC×w×h (c ≪
C, w ≪ W, h ≪ H) where C, W and H represents the numbers of spectral
bands, image width and height respectively. The purpose of hyperspectral image
fusion is to produce a potential HR-HSI Z ∈ RW×H×C from the observed im-
ages. Usually, we describe the relationship between Z and X, Y in the following
equation.

X = Z ×3 P (1)

Y = Z ×1 S1 ×2 S2 (2)

Eq.(1) indicates how to obtain HR-MSI X with the spectral response opera-
tor P ∈C×c (c < C). S1 ∈W×w and S2 ∈H×h in Eq.(2) is for blurring HR-HSI
Z (usually using Gaussian filtering) and S denotes the spatial down-sampling
operator. That is, X is a down-sampling of Z in the spectral dimension while
the LR-HSI Y is generated by down-sampling the HR-HSI. The proposed model
estimates Z using an end-to-end mapping function f (•) with the network pa-
rameters as

Ẑ = fθ (X, Y ) , θ = {w1, . . . , wl; b1, . . . , bl} (3)

where Ẑ is the reconstructed HSI by the fusion network and wl and bl represent
the weight and bias of the lth layer.

Fig. 1. The structure of the degradation block, the error map fusion block and the
reconstruction block.
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3.2 Degradation Block

Our network includes two inputs: LR-HSI Y and HR-MSI X. Since the HR-MSI
is spectral down-sampled, it has more spatial information than LR-HSI. Corre-
spondingly, the LR-HSI preserves more spectral information than the HR-MSI.
In order to simulate the degradation model using the convolutional network, we
upscale LR-HSI by bicubic interpolation to obtain input data of the same size
as the HR-HSI. The result of the up-sampling is denoted by Z0,which can be
considered as a rough estimate of HR-HSI.

At first, we feed Z0 into the network and let it pass through the spectral and
spatial degradation blocks respectively, which can be expressed as

X̂1 = Dspe

(
Z0

)
(4)

Ŷ 1 = Dspa

(
Z0

)
(5)

Many algorithms consider the spectrum down-sampling operator P in Eq.(1)
as a matrix and then HR-MSI can be calculated by simple matrix multiplication.
We apply the Dspe (•) for modelling the HR-HSI spectral degradation mecha-
nism, which is composed of a convolutional layer and an activation function
layer. While the operator B and S in Eq.(2) have usually been implemented
with convolution and pooling. The function Dspa (·) has the same structure as
Dspe (•) and represents the non-linear mapping between LR-HSI and HR-HSI.
Secondly, the spatial and spectral residuals of Z0 are obtained by differencing
the degradation results obtained in the first step with the observed data, which
can be written as

X1
res = X − X̂1 (6)

Y 1
res = Y − Ŷ 1 (7)

Finally, X1
res and Y 1

res are used as the input of the error map feature extraction
block to estimate residual map E1 between Z0 and Z. The implementation detail
is described in section 3.3.

Fig. 2. The specific structure of the error map fusion block.
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3.3 Error Map Fusion Block

In this section, we will specify the network structure of the error map fusion
block like the Fig. 2. The X1

res and Y 1
res outputted from the degradation block

are used to produce the particular error map corresponding to Z0. Degraded
images X̂1 and Ŷ 1 retain the effective low-level semantic information of the Z0

during the forward propagation of the network. Thus, residual data X1
res and

Y 1
res are more accurate for the correction of Z0. The error map fusion process

can be expressed as
Z0 = Φ(X1

res , Y 1
res ) (8)

Feature map size alignment subnetwork. The size of LR-HSI Ŷ 1 is smaller
than the HR-MSI X̂1 as it is spatially down-sampled. To maintain the consis-
tency of the feature size between the extracted features and the fusion results,
we up-sample the Y 1

res using deconvolution while the learnable CNN can im-
prove the up-sampling results for each channel. And then passed it through a
down-sampling layer for initial feature extraction. Meanwhile, the X1

res is passed
through a low-level feature extraction block consisting of one convolution layer
and one PRelu layer. After that, it was also seed to a down-sampling layer.

Fusion subnetwork. The features extracted from X1
res and Y 1

res are concate-
nated along the spectral dimension. The fusion subnet consists of two convolution
layers with separate activation functions. We incorporate a channel attention
mechanism to the results of the first fusion layer to better preserve the spectral
structure and reduce redundant information. The feature map is down-sampled
again after this subnetwork. At this time, we have obtained the feature maps con-
taining the spatial and spectral information simultaneously, which will be used
to reconstruct the residual map of Z0 by the subsequent up-sampling network.

Error map reconstruction subnetwork. The error map reconstruction sub-
network is composed of two sets of network structures, each comprising succes-
sive convolutional, deconvolution layers and activation functions. In an effort to
take advantage of the complementary nature of the higher-level and lower-level
features, jump connections are added to the features after each deconvolution.
The last concatenated feature maps are then convolved in two layers to obtain
the final result. In this way, the error feature map Ê1 is acquired from this
subnetwork. Ê1 contains high frequency information proposed from X1

res and
Y 1
res, and used to rebuild the final result.

3.4 Reconstruction Block

The reconstruction block refines the Z0 with the error map Ê1 outputted after
the first two blocks. In order to make the error maps obtained in the previous
part better modify the initial hyperspectral image, we apply spatial and spectral
attention model to the maps. And then Ê1 are added to the Z0 as shown by the
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skip connection in Fig. 1 to produce the reconstructed hyperspectral image Z1,
which can be written as

Z1 = Z0 + Ê1 (9)

To improve the accuracy of Z1, we refine it by one more degradation and
reconstruction operation and the implementation process is the same as the three
blocks above. The whole process is shown in the Fig. 3, and the final output is
expressed as

Z2 = Z1+ Ê2 = Z1+Φ
(
X2

res, Y 2
res

)
= Z1+ Φ

(
Dspe

(
Z1

)
, Dspa

(
Z1

))
(10)

Fig. 3. The overall structure of the proposed spatial spectral joint correction network.

3.5 Loss Function

In our model, we reconstruct the HR-HSI by learning the mapping function
fθ (X, Y ). The parameters θ are optimized by minimizing the loss between
the outputs and the observed images. We choose the L1 norm function as the
loss function for it is simple to implement and achieves good results in image
super-resolution [17]. Thus, the loss function defined as

l (θ) = ∥Z − Z2∥ = ∥fθ(X,Y )− Z2∥ (11)

X and Y represent known LR-HSI and HR-MSI, which are obtained from the
spatial and spectral down-sampling of the true value Z respectively.

4 Experiments and Analysis

4.1 Data and Experimental Setup

We conducted experiments on CAVE and Harvard dataset. The CAVE dataset
consists of HR-HSI captured under 32 indoor scenes with manipulated illumi-
nation. Each HR-HSI is 512∗512∗31 in size, where 512 is the spatial size of the
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image and 31 is the number of channels in the image, representing the reflectance
of the material in the scene at different spectra. The Harvard database contains
50 images taken under daylight illumination, and 27 images under artificial or
mixed lighting. In this experiment we use 50 images under daylight illumination.
The first 20 of these HSIs are assigned as the training set, the middle 5 are used
as the validation set, and the last 25 HSIs are used for testing.

We compare the proposed method with HySure [12], DHSIS [1] and DBIN [14].
HySure formulates the fusion problem as a convex optimization problem, which
is solved by the split augmented Lagrange algorithm (SALSA). DHSIS optimizes
the modeling results using the prior information extracted from the convolutional
network, while DBIN is a network structure built entirely from convolutional
layers. Fig. 4 shows the output images obtained by the several methods and
corresponding error maps.

Fig. 4. The results from stuffed toys at band 20 in the CAVE dataset. (a) the ground
truth at band 20 and the HR-MSI. (b-d) reconstructed images and the corresponding
error maps after image enhancement while light color represents the error.

4.2 Comparison with Other Methods on CAVE

We take the HSIs from the database as the ground truths. We first blur the
ground truths with a Gaussian filter and then down-sample the blurred image
by a factor of 1/4. The result of the down-sampling is the simulated LR-HSI.
While HR-MSI is generated by multiplying the HS-HSI and the spectral response
matrix, and the total number of channels for the HR-MSI is 3. As an image of
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size 512∗512 is a heavy burden for reading data with CPU and training with
GPU, we take 8∗8 blocks of images from the training set and use the extracted
blocks for training.

The test set is being processed in the same way as the training set and the
final restored images are obtained by patching the resulting images together in
sequence. To better discern the difference, the image enhancement process was
implemented on the error maps. The second row in Fig. 4 is a local enlargement
of the results obtained by the different methods in the first row, where the
results obtained by DHSIS have a clear rectangular block distortion. Although
HySure and DBIN maintain the overall structure of the image, obviously results
obtained by our proposed method have the least error with the original image.
And also, according to the results shown in Table 1, the performance of the
proposed method on CAVE dataset was best than those of other methods.

Table 1. Average performance of the compared methods of CAVE dataset.

PSNR SSIM SAM EGRAS

+∞ 1 0 0

HySure 40.5841 0.9779 6.2523 2.5095

DHSIS 45.1842 0.9903 3.3527 1.3427

DBIN 47.2403 0.9933 3.2230 1.1669

SSJCN 48.5434 0.9937 3.0916 1.0165

4.3 Comparison with Other Methods on Harvard

The images in the Harvard data are processed in the same way as the CAVE
data. Fig. 5 shows the reconstructed results and the corresponding error maps,
again with image enhancement for ease of observation. Combining Fig. 5 and
Table 2 we can clearly see that our proposed method yields the lowest error
results.

Table 2. Average performance of the compared methods of Harvard dataset.

PSNR SSIM SAM EGRAS

+∞ 1 0 0

HySure 44.5991 0.9788 3.9709 2.8675

DHSIS 45.7591 0.9812 3.7445 3.1335

DBIN 46.1493 0.9839 3.6503 2.9645

SSJCN 47.1581 0.9847 3.3153 2.1151
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Fig. 5. The results at band 20 of the selected part in the Harvard dataset. (a) the
ground truth at band 20 and the HR-MSI. (b-d) reconstructed images and the corre-
sponding error maps after image enhancement while light color represents the error.

4.4 Effectiveness of Degradation Block

As mentioned in the previous section, we hold the opinion that learning the
degradation model and error maps to improve the accuracy of the fusion results.
Therefore, in this section we demonstrate the effectiveness of the degradation
model of the proposed end-to-end model. Take CAVE dataset as an illustration,
the results are shown in Fig. 6. Although the output image after RB (1) of
Fig. 3 is visually close to the original image, we can see a considerable amount
of rectangular deformation in the error image in the Fig. 6, which is reflected
in the LR HSI acquired from the degradation of DB (2). It can be inferred
that the degradation model in this experiment effectively preserves the details
and structural information of the degraded images, which helps to improve the
network results. Moreover, we can also observe that the estimation error map
outputted from DB (2) is very close to the error between the results reconstructed
after RB (1) and the true value, which indicates that the correction map is
effective. Besides, performing two iterations on the input data further improves
quality assessment values, and the comparison results showed on Table 3.

Table 3. The proposed methods with different iteration numbers of CAVE dataset.

PSNR SSIM SAM EGRAS

+∞ 1 0 0

SSJCN(1) 47.1570 0.9928 3.2652 1.1584

SSJCN(2) 48.5434 0.9937 3.0916 1.0165
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Fig. 6. The results from stuffed toys and real and fake apples at band 30. (a, d)
first row: original RGB image, second row: the HR MSI obtained after DB (2). (b,
e) original LR HSI and the LR HSI obtained after DB (2). (c, f) first row: the error
map between the reconstructed result after RB (1) and the true value, second row: the
estimated error map in DB2.

5 Conclusion

In this article, a spatial-spectral joint correction network is proposed for HS-MS
fusion. SSJCN consists of degradation blocks, error map fusion blocks and the
reconstruction blocks, which are used to simulate the degradation mechanism
and make corrections to the initialized data respectively. The parameters of net-
work are optimized by minimizing the loss between the outputs and the ground
truth. The comparison results between the proposed method and other SOTA
methods demonstrate the effectiveness of the proposed method.
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