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Abstract. It is important for semantic segmentation to learn two types of con-

text information. One is global context information for understanding objects, 

relations between objects, and scenes in input images. The other is multi-scale 

context information for adapting to changes in the scale and shape of objects. In 

this research, we tackle the problem of learning to extract them for semantic 

segmentation. To achieve this, we propose a novel unit that learns to perform 

structural and relational reasoning by selecting the multi-scale context. The 

multi-scale context is extracted from receptive fields of different sizes of the 

backbone network and then is implicitly utilized to improve the global context 

obtained by GloRe. By the proposed unit, our model allows us to perform struc-

tural and relational reasoning for semantic segmentation in complex scenes. We 

conduct experiments on Cityscapes. In particular, our model achieves the mean 

IoU score of 73.6, which is 1.1% higher than GloRe. Then, by comparing the 

prediction between the proposed method and GloRe unit, we confirmed the ef-

fect of incorporating two types of context information. 
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1 Introduction 

Semantic segmentation is a task that assigns a label to each pixel of an image. Recent 

semantic segmentation approaches have advanced considerably with deep neural net-

works. However, complex scenes that involve the interaction of multiple objects is 

challenging. In order to correctly recognize such scenes, it is important to learn to 

extract global context information and multi-scale context information. 

The global context information describes the whole image. It is used to understand 

the relations between objects, the layout of the objects and the scene in the image. 

Specifically, it can suppress misunderstanding objects with a similar appearance. 

Typical methods for extracting it are an approach based on attention mechanism [3] 

and graph structure [4]. DANet[5] is a method that uses the self-attention mechanism. 

In this method, the relations are calculated by a dot product of all pairs of elements on 

a grid and channel. Then, the extraction of features related to each element is per-

formed based on the relations. Therefore, each element can have global information. 

GloRe is a graph-structured approach for extracting global information. GloRe [1] 

unit can consider the relations between each feature by learning together with edge 
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weights in Graph Convolution (GC). Each node after GC has fused features with re-

lated nodes. By combining them with input features to GloRe unit, features with glob-

al context information are obtained. By adding GloRe unit, the model can effectively 

extract global context information for various recognition tasks. However, these 

methods are a lack of multi-scale context information. Therefore, these methods often 

fail to reconstruct objects with varying scale and detailed boundaries and shapes of 

objects. 

The multi-scale context information deals with the detail appearance and shape of 

objects. It can be used to recognize small objects, object boundaries, and objects with 

varying scales. There are two approaches for extracting it: an approach that uses dilat-

ed convolution [6] and feature maps extracted from receptive fields of different sizes. 

The former is a method using dilated convolution in the backbone network (ResNet 

[7]) that performs feature extraction to enlarge a receptive field without reducing the 

resolution. Furthermore, by fusing the features of the shallow layer and the features of 

the deep layer using the skip connection, it becomes possible to extract multi-scale 

context information. The latter is FCN [8] that utilizes feature maps extracted from 

receptive fields of different sizes. Detailed information missing during feature extrac-

tion is supplemented by using multi-scale features that are outputs from each block of 

the backbone network. However, there is a lack of global context information, be-

cause these methods do not consider the relations between features.  

Although recent semantic segmentation approaches have achieved a remarkable 

performance, it is an open problem to extract and consider two types of context in-

formation simultaneously. In this study, we propose a novel unit that extracts them. 

The unit is composed of two parts: the selection module and the relation module. In 

the selection module, it selects the context which is useful for relational reasoning 

from the output with receptive fields of different sizes. The selection allows us to 

perform relational reasoning while maintaining detail appearance and shape of ob-

jects. In the relation module, the features extracted by the selection module are used 

as a projection matrix for converting a feature map in coordinate space to node fea-

tures in graph space (or from node features to a feature map) in GloRe unit. Their 

context information can be extracted by considering the relations between their fea-

tures by GC. Then, as shown in Fig. 1, the difference between GloRe unit and the 

relation module lies in the projection matrix between a coordinate space and a graph 

space. 

In the experiment, the proposed unit extracts their context information and 

achieves higher accuracy compared to GloRe. 
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Fig. 1. Comparison between (a) original GloRe and (b) the proposed method. In GloRe, the 

output of the block 5 in the backbone network is used for the projection matrix from a feature 

map to node features (or from node features to a feature map) and the input of GloRe. The 

proposed method uses multi-scale features from the blocks 3, 4, 5 for projection matrix and the 

output of the block 5 for GloRe input. Then, by learning the relations between selected features 

obtained from different receptive fields in GloRe, our method can obtain features with two 

types of context information. 

2 Background 

We describe the background of the deep learning-based semantic segmentation ap-

proach. In early work [8, 9, 10], most models for semantic segmentation employ an 

encoder-decoder architecture. The architecture consists of an encoder, a decoder, and 

a classification layer. The encoder extracts the semantic information such as the ob-

ject and scene from the input image by convolution and pooling layers. The decoder 

takes the extracted features as input and then reconstructs the spatial resolution of 

them until that of the input image. The classification layer outputs the probability map 

based on the upscaled features by a softmax function. As a pioneer work, Fully Con-

volutional Network (FCN) [8] performs detailed segmentation by combining the 

prediction result from the deep layer and the shallow layer. SegNet [9] stores the in-

dex of each maximum value at each max-pooling layer in an encoder. The decoder 

maps each element of the feature map to the corresponding position by reusing it, 

which is called unpooling. As a result, the convolution following unpooling recon-

structs coarse features into dense features while considering of the mapped positions 

and features. However, since the features after unpooling are coarse, there is a limit in 

performing more detailed segmentation. 

To solve the above problems, U-Net [11] predicts segmentation maps by restoring 

the resolution while combining the features of the encoder whose resolution matches 

at each level of the decoder. The information before downsampling was supplemented 

by a path such as a skip connection in encoder and decoder. Therefore, U-Net allows 
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us to perform more detailed prediction. As described in section 1, the dilated convolu-

tion [6] model uses its convolution in a deep layer in the backbone network (ResNet 

[7]). As a result, there is no need to perform excessive pooling and a decrease in reso-

lution can be suppressed. Furthermore, the features in the shallow layer and the deep 

layer are combined by the skip connection in ResNet. 

As a recent segmentation model [12,13,14,15,16], the FCN-based method in which 

ResNet with dilated convolution is used as the backbone network has been proposed. 

FCN-based approaches commonly extract context information using feature maps in 

the middle or at the end of the backbone network. As an example, a module or unit for 

extracting global context information such as DANet [5] or GloRe [1] as described in 

Section 1 is often added. It is possible for ResNet with dilated convolution to extract 

multi-scale context information due to the following two points. One is dilated convo-

lution makes it possible to expand receptive fields without reducing resolution. The 

other is multi-scale information can be extracted by combining features of a shallow 

layer and a deep layer using skip connection. However, there is a problem that de-

tailed boundary information of an object or information of a small object is lost due to 

a dilation rate of a dilated convolution. In this work, we introduce a novel unit based 

on GloRe unit to extract two types of context information.  

 

GloRe Unit. The purpose of GloRe unit is to extract global context information for 

semantic segmentation and classification models. Fig. 2 shows the overview of Glo-

Re. It takes as input the feature map obtained from the backbone network and then 

outputs a feature map with global context information. First, two pointwise convolu-

tions ( ( )   and ( )  ) are performed on the input feature map 
C LX  to GloRe 

unit. C  is the number of channels in the feature map. H and W indicate the height and 

width, respectively. L is the number of spatial elements ( )L H W=  . The purpose  

( )   is to obtain the features to consider relations. It of ( )   is to reduce the dimen-

sions of a feature map. The outputs from their convolutions are ( ) N L X  and 

( ) C L X  respectively. N  is the number of features to be considered for the 

relations and is also the number of nodes in a graph. Therefore, ( ) X  can be consid-

ered as a projection matrix for converting the feature map in the coordinate space into 

node features in the graph space. As shown in equation (1), the feature in the coordi-

nate space is converted into the node features C NV  in graph space. It is consid-

ered as applying weighted global average pooling to ( ) X  using each of the N fea-

tures in ( ) X  as a weight. 

 
1

( ) ( ) .T

N
 =V X X   (1) 

A fully-connected graph is constructed from the adjacency matrix 
N NA  and the 

node features V . The relations between the N features of ( ) X  are learned by Graph 

Convolution (GC) with V input. GC is as shown in equation (2). 
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 ( ) ,= −V I A VW   (2) 

where N NW   is the parameter of GC, and C NV  indicates the node features 

after GC. The identity matrix I  is a residual pass that alleviates the difficulty of op-

timization. We randomly initialize A  and W . Therefore, it is possible to learn the 

strength of the relations between each node feature by learning the adjacency matrix 

A . The input V of the GC and the output V  of the GC have the same number of 

nodes and each node of the two graphs has a correspondence. Therefore, as in Equa-

tion 3, the weighted broadcast of each corresponding node features V  is performed 

using each of the N channels of ( ) X  as weights and the graph is returned to the co-

ordinate space. Moreover, it expands to the same dimension as the input of GloRe 

unit by pointwise convolution. 

 ( )( ),= f  X V X  (3) 

where ( )f   is pointwise convolution. Each node after the GC has fused feature with 

the related node features. When the fused node features are returned to the feature in 

the coordinate space, a feature map with global context information is produced by 

combining the feature before inputting to GloRe unit with the fused feature. 

 

 

Fig. 2. Overview of GloRe unit. X  is input features to GloRe unit. ( ) X  is a projection 

matrix from a feature map to node features (from node features to a feature map). ( ) X  is a 

feature map with a reduced dimension. V  is node features that input to GC. V  is node fea-

tures that output from GC. X  is a feature map after projection from node features to a feature 

map.  
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Fig. 3. Overview of our proposed unit. The selection module extracts multi-scale context in-

formation and the relation module extracts global context information. The proposed unit out-

puts a feature map with two types of context information. H and W are the height and width of 

the output from each block, respectively. N3, N4, and N5 are the number of features to select 

from the output of each block. 

3 Proposed Method 

The purpose of our proposed unit is to extract a feature map with both multi-scale 

context information and global context information. As shown in Fig. 3, our proposed 

unit is composed of two modules, a selection module and a relation module. The se-

lection module selects features that accurately capture objects in the image such that 

they are effective for semantic segmentation from the outputs of each block of the 

backbone network. In the relation module, GC fuses related information from each 

multi-scale features selected in the selection module. Hence, a feature map including 

two types of context information is produced. 

 

3.1 Selection Module 

The selection module selects features that are effective for semantic segmentation 

from the output in each block of the backbone network. The block 3 of the selection 

module in Fig. 3 is explained as an example. First, convolution and pooling are per-

formed on the features of the block 3 and the features are compressed. Then it applies 

global average pooling and softmax. The dimension of output from softmax is 1 × 1 × 

k, where k is the number of channels in a feature map from the block 3. Next, only N3 

features of the block 3 are selected in descending order of softmax value. By perform-

ing this operation on each feature map that output from the blocks 3, 4, and 5 of the 

backbone network, multi-scale context information is obtained. (The number of fea-

tures selected by the block 4, 5 is N4, N5) 
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3.2 Relation Module 

The relation module uses GloRe unit to obtain a feature map with two types of con-

text information using the multi-scale features selected by the selection module. In 

this module, the multi-scale features are used as the projection matrix between a co-

ordinate space and a graph space. Therefore, the multi-scale features selected by the 

selection module are converted to node features and the relations between their fea-

tures are learned by GC. Each node after GC has features obtained by fusing some 

node features related to the node. Then, when converting from node features to a fea-

ture map, each node features are weighted and broadcast using the corresponding 

multi-scale features as weight. Therefore, a feature map with two types of context 

information is produced. A detailed prediction of the boundary, shape, and layout is 

possible while considering global information because the class label of each pixel is 

predicted based on the features with the two types of context information. 

 

3.3 Auxiliary Loss 

Multi-scale features selected from each block in the selection module are combined to 

predict for semantic segmentation maps. The value of softmax is learned to be so 

large that it is a feature that accurately captures the object. Therefore, it is possible to 

extract multi-scale context information that accurately captures an object that is effec-

tive for semantic segmentation by the selection module. The optimized loss function 

Lopt is as shown in equation (1). 

 ,opt auxL L L= +    (4) 

where the final prediction loss L and auxiliary loss Laux. Both of them use the cross-

entropy loss for semantic segmentation. The term α is set a penalty in Laux to empha-

size the loss of the final prediction 

4 Experiment 

4.1 Experimental Settings 

We validate that the proposed method can extract two types of context information. 

Same with GloRe [1], the backbone network is ResNet-50 [7] with dilated convolu-

tion pre-trained by ImageNet [17]. Therefore, the output stride is 1/8. The number of 

features selected from the blocks 3, 4, and 5 in the backbone network is 11, 21, and 

32, respectively. The proposed method is compared with the original GloRe [1] and 

FCN [8] (without GloRe). We use stochastic gradient descent with momentum 0.9 

and weight decay 1 4e − . The scheduling used "ploy" of power 0.9, which is the same 

as [1]. The initial learning rate was set to 0.006, and the batch size is set to 26. We 

evaluate the proposed method on Cityscapes [2] (fine annotations). The dataset in-

cludes 2975, 500, and 1525 images for the training, validation, and test sets, respec-

tively. We resized the original size of 1024 × 2048 to the fixed size of 512 × 1024. In 



8 

the training, we cropped it at the center. The output size of the crop is 512 × 512. In 

the evaluation, we upscale the predictions to the size of 1024 x 2048 for calculating 

the IoU score on the test server. The auxiliary loss, which is a feature extracted from 

the selection module, was suppressed by multiplying it by 0.7 to emphasize the loss in 

the final prediction.  

 

4.2 Results 

Table 1 shows the results of IoU of each class and Mean IoU for each model. Our 

proposed method was superior to the conventional method in IoU of most classes and 

mean IoU. Fig. 4 and 5 show the predictions of GloRe and the proposed method. In 

the yellow boxes of Fig. 4, the small riders and narrow poles have disappeared in 

GloRe. On the other hand, we confirmed that the proposed method can perform 

recognition without loss of that features by extracting multi-scale context information 

from the shallow layer of the backbone network. The objects (wall vs. fence, truck vs. 

car, and bus vs. train) in yellow boxes of Fig. 5 have similar appearances. In GloRe, 

ambiguous recognition occurred in the object region. We confirmed that the proposed 

method can suppress such misclassification by using features that more accurately 

capture the objects selected by the selection module as the projection matrix in the 

relation module. Therefore, we confirmed the effect of collecting two types of context 

information. 

Table. 1.  Quantitative results on the Cityscapes test set. 
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Fig. 4. The comparison with GloRe and our proposed method. Each yellow box shows the 

effect of extracting multi-scale context information in the proposed method. 

 

 

Fig. 5. The comparison with GloRe and our proposed method. Each yellow box shows the 

effect of extracting both multi-scale and global context information in the proposed method.  
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It is important for semantic segmentation, which performs pixel-wise prediction, to 
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information. The former is necessary to deal with various scales of the objects. The 

latter is necessary to understand the relations between objects, the layout of the ob-

jects, and the scene in the image. In this research, we proposed a novel GloRe-based 

unit that learns the relationships between features with multi-scale context. It is useful 

for refinement of the global context for semantic segmentation. As a result, it became 

possible to suppress ambiguous recognition in the original GloRe. One of the limita-

tions of this study is that tuning of the penalty term in Auxiliary Loss and the number 

of selected features in the selection module is sensitive to the performance. Therefore, 

our model is slightly difficult to apply to other tasks or existing methods. As future 

work, we aim to resolve the issues and extend it to a versatile unit that can be easily 

incorporated into existing methods. 
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