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Information Theoretical Principles of Software Development 

Mark Burgin*, Rao Mikkilineni† 

Abstract 
Contemporary software, which started from a simple observation by Alan Turing that a man in the 

process of computing numerical functions can be replaced by a machine that is capable of only a finite 

number of simple operations, has become a powerful means for advanced machines, automating 

business processes, and mimicking behaviors learned through processing big data. Software is all 

pervasive and touches us in some form or another by facilitating communication, collaboration, and 

commerce on a global scale. However, on the flip side, it also threatens our privacy and data security. 

Despite many layers of complex systems and processes attempting to protect our software systems, 

they are still vulnerable to hackers and fraudsters exploiting global access through the Internet. 

In this paper, we argue that the increased complexity as well as the resulting instabilities and 

inefficiencies are a result of foundational issues of the computing model upon which current software 

systems are built. We use the general theory of information to suggest ways to improve the current 

state of the art of software development, deployment, and operation through the infusion of self-

monitoring, self-regulation, and self-protection processes at both the component and system levels. A 

new computing model using super-symbolic computing provides an autopoietic, and cognitive process 

overlay over the current symbolic and sub-symbolic computing structures without having to change 

them. This software system is analogous to biological systems using the mammalian neocortex to 

manage the knowledge obtained from various reptilian cortical columns using embedded, embodied, 

extended and enactive cognition. 

Introduction 

With a humble beginning of being a set of data, instructions, and programs used to operate computers 

and execute specific tasks, the software has evolved to become the human knowledge about a specific 

domain captured as digital workflows in executable form. Beginning from encapsulating knowledge 

about the process of computing with numbers in executable form (using the storied program control 

implementation of the Turing Machine), the software has helped us to execute operations not only on 

numbers, but also on multimedia and other advanced structures, and enables us to communicate, 

collaborate, and conduct commerce on a large scale by exchanging information. It is not an exaggeration 

to say that software has become the lifeblood of contemporary civilization and impacts our daily lives on 

conscious levels as well as on the levels unknown to us. Software controls many of the systems and 

activities that impact our everyday lives. While software has brought many conveniences into our daily 

lives both personal, and professional, we are also highly vulnerable to many of the shortcomings 

resulting from our software dependency. Our privacy, personal and business data security, and safety 

from disruption of our lives by hackers, and fraudsters are at high risk. Despite layers of solutions to 

improve the safety, security, stability, and survival of software systems, the complexity, and cost of 
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these systems have only increased with no significant improvement in addressing the risk and its 

mitigation (Tisdale, 2015; Burgin, Mikkilineni, 2022). 

In this paper, we argue that the existing shortcomings are foundational in nature originating from the 

current practice of using symbolic and sub-symbolic computing software systems based on the stored 

program implementation of the Turing Machine. As the requirements of scale, resiliency, and efficiency 

become more demanding, current computing paradigms based on the Turing Machine model of 

computation that represents programs, and data as sequences of symbols with various operations 

defined to execute algorithm-based task definitions, reach their limits to meet the new requirements. 

The result is higher complexity, cost, and unreliability of operational stability, safety, security, and 

survival of systems that depend on software (Razian, et al, 2022). 

We take the cue from biological systems (Mikkilineni, 2022) that have devised the ultimate software 

system with a high degree of scale, resiliency, and efficiency using the genome as a model for the 

specification and execution of the system requirements. Genome is a good example of working software 

architecture that integrates the processes of replication, and metabolism to execute the specification of 

an autopoietic and cognitive system with self-regulation that maintains stability and achieves the goal of 

managing the interactions of various components within the system and its interactions with the 

external world consisting of material structures. It uses metabolism to exploit matter and energy 

transformations to create symbolic and sub-symbolic information processing structures - the networks 

of genes (symbolic) and neurons (sub-symbolic). Sentience, resilience, and intelligence (local, clustered, 

and system-wide) are outcomes of cognitive and autopoietic behaviors implemented as super-symbolic 

structures. Autopoiesis refers to the behavior of a system that replicates itself and maintains identity 

and stability while facing fluctuations caused by external influences. Cognitive behaviors model the 

system’s state, sense internal and external changes, analyze the observations, predict, and take action 

to mitigate any risk to its functional fulfillment. 

In addition, we use the General Theory of information (GTI) (Burgin, 2010; Burgin, 2016; Burgin, 

Mikkilineni, 2021), which does not only provide a model to explain how the genome specifies and 

executes replication and metabolism to exhibit autopoietic and cognitive behaviors using symbolic, sub-

symbolic, and super-symbolic computing, but also provides a schema, and associated operations to 

model and execute digital software systems with a super-symbolic computing structure to execute both 

autopoietic and cognitive behaviors. The super-symbolic computing structure is an overlay over current 

digital symbolic, and sub-symbolic structures very similar to the neocortex in the brain integrating the 

knowledge derived from information gathered from symbolic, and sub-symbolic computing structures. 

In section 2, we define software as operational process knowledge and show both the genome and the 

digital computing systems based on the Turing Machine computing model as examples of executable 

operational process knowledge. In Section 3, we present theoretical models of algorithms and 

computation used as the base for software system development. By their nature, these models are 

implicitly or explicitly based on the GTI. This provides various tools for software construction such as 

structural machines, knowledge structures, generalized oracles as operational agents, and super-

symbolic computing allowing infusion of autopoietic and cognitive behaviors into digital systems. In 

Section 4, we discuss the operational aspects of the GTI and its utilization in software specification and 

execution. In Section 5, we discuss the relationship between data, information, and the conversion of 

information into operational knowledge. In Section 6, we present a new approach to applying the 
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principles of the GTI to building the next generation of software systems with improved resilience and 

efficiency at scale. The new approach brings the super-symbolic computing structures integrating 

current generation symbolic, and sub-symbolic computing structures. As mentioned earlier, this is 

analogous to how biological systems evolved the neocortex structure integrating the reptilian cortical 

column-based 5E (embedded, embodied, extended, elevated, and enacted) cognitive machines. Finally, 

we conclude by summarizing the application of the GTI-based approach to software specification and 

execution of domain-specific knowledge and suggest future directions for improving the current state-

of-the-art information technologies. 

Software as Operational Knowledge 

Digital software is a set of instructions (a program) represented in the form of sequences of symbols 0 

and 1, used to operate computers and execute specific tasks using data, also represented in the form of 

sequences of symbols 0 and 1. Data includes any observables represented by a sequence of symbols in 

the form of labels. The observables are either physical entities in the material world or mentally 

conceived entities in the mental worlds of biological systems. Examples are cat, dog, point, triangle, etc.  

It is the opposite of hardware, which describes the physical aspects of a computer that provide the 

required processing structures for executing the software (providing the metabolism that uses energy to 

perform specified tasks using material structures) with a processing unit, and memory. Figure 1 shows 

the stored program implementation of the Turing machine showing both software and hardware. A 

computational operator defines the operations on the data converting the input to the output. 

Figure 1: Stored Program Implementation of the Turing Machine model (symbolic computing) 

Figure 2 shows the diagram of a computing device based on the Turing Machine schema. While the data 

are the labels describing the observables defined as sequences of symbols, data structures define the 

relationships between data items. A state vector defines a named set of data or data structures. Control 

Processor (a human operator or an “automaton”) sets up the hardware (CPU, Memory) and Software (a 

program that defines the algorithm and data). The program specifies the operations to be performed on 

the data structures that transform the state vector from the current state to the next. Information 

processor executes the operations on the state vector in sequence. 
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Figure 2: Turing Machine Schema and operations.  

State history contains information as the difference between the state vectors. In general, the software 

can be defined as the symbolic component of a computer system, which determines the functioning of 

this system. 

In general, there are two types of software: 

1. Authentic computer software is a system of computer programs (functional requirements). 

2. Extended computer software consists of a system of computer programs and additional symbolic 

components of the computer system used for determining the functioning of the computer system 

(non-functional requirements). 
 

There are also other classifications of computer software. The target classification consists of the 

following categories: 

1. System computer software, or platform software, consists of programs the goal of which is to control 

hardware functioning (often represented as IaaS, infrastructure as a service). 

2. Application computer software consists of programs the objective of which is to provide tools for the 

user for solving various problems (often represented as PaaS, platform as a service). 
 

In turn, the system computer software consists of the following parts: 

1. An operating system 

2. Firmware  

3. Devices drivers 

4. Utilities  
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Application computer software consists of the following categories: 

1. Acquired software 

2. User-written software 
 

The justification classification of computer software consists of the following categories: 

1. Affirmative computer software consists of programs the goal of which is to control hardware 

functioning. 

2. Malicious computer software, or malware, is aimed at harming the computer system, disrupting its 

normal functioning, stealing information, and other mischievous actions. 

Software design characteristics include three distinct components: 

1. Functional Requirements  

2. Non-Functional Requirements 

3. Stability, Scalability, Safety, and Security Maintenance Using Best Practices  

Software architecture is the structure of a software system which includes various sub-systems, which 

interact with each other to exchange information. The hardware architecture is the structure of 

hardware components providing the metabolism for the execution of software components housed in 

them. 

An approach to unveil the operational nature of computer and network software and hardware is made 

in the operator theory of computation (Burgin and Dodig-Crnkovic, 2020). The operator theory suggests 

describing computational software, hardware, and the whole computing systems by their functioning, 

i.e., by their pure external structures in the sense of the general theory of structures (Burgin, 2012). In 

this context, the system of all processes generated by a computing system Q is described as an operator 

AQ, while each such process (transformation) is an application of operator AQ to the input objects. For 

instance, a Turing machine operator describes the transformation of the input words into the output 

results by a Turing machine. At the same time, a structural machine operator describes the 

transformation of the input words into the output results by a structural machine. 

Symbolic computing is exploited to execute those tasks that can be easily described by a list of formal, 

mathematical rules or a sequence of event-driven actions such as modeling, simulation, business 

workflows, interaction with devices, etc. In addition, symbolic computing is also used to execute an 

algorithm that models the neural network or connectionist computing (known as sub-symbolic 

computing) used to analyze vast amounts of data generated in executing these tasks and gaining an 

understanding of the hidden correlations and insights associated with tasks that are easy to do 

“intuitively”, that feel automatic, but are hard to describe formally or a sequence of event-driven actions 

such as recognizing spoken words or faces. 

Symbolic computing and sub-symbolic computing structures provide a means to encapsulate 

operational knowledge of a process that specifies the state of a system (containing various entities, their 

relationships, and behaviors when events change their state) as sequences of symbols and operations 

on them. This is very similar to how the body and brain function using the two information processing 

structures, namely the genes and neurons. Genes specify and execute the metabolic processes that 
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convert energy and matter (metabolism) to build and operate various information-processing structures 

in the form of five senses. The neurons provide the means to process information received from the 

senses to convert it into operational knowledge and execute various operations to achieve various 

operational processes. Figure 3 shows the similarities. 

While they are similar in using symbolic, and super-symbolic information processing structures, 

biological systems have evolved through natural selection to develop a super-symbolic structure in the 

form of the neocortex and a sense of “self” and its relationship with its environment which enable them 

to exhibit autopoietic and cognitive behaviors that 4E cognition alone cannot support. The genome of 

biological systems, is in essence, software that specifies and executes operational processes that 

support both cognitive and autopoietic behaviors. 

Figure 3: Symbolic and Sub-symbolic computing structures processing information in the physical and digital 

worlds 

There are three foundational shortcomings that prevent Turing Machine-Based computing structures cannot 

incorporate autopoietic and cognitive behaviors exhibited by biological systems: 

1. A digital computing process is executed by several distributed software components using 

computing resources often owned and managed by different providers and the assurance of end-to-

end process sustenance, its stability, safety, security, and compliance with global requirements 

requires a complex layer of additional processes that increase complexity leading to who manages 

the manager’ conundrum. Any failure in the system requires information access and analysis from 

multiple sources which results in a reactive approach to fixing the problems., 

2. As Cockshott et al, pointed out in the last paragraph of the last chapter of the book, 'Computation 

and its Limits', the concept of the universal Turing machine has allowed engineers and 

mathematicians to create general-purpose computers and “use them to deterministically model any 
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physical system, of which they are not themselves a part to an arbitrary degree of accuracy. Their 

logical limits arise when we try to get them to model a part of the world that includes themselves” 

(Cockshott, et al., 2012) p. 215). 

3. Sub-symbolic computing with a neural net computing model provides insights into data, but 

integrating the new knowledge with other processes is cumbersome if not existent. In this paper, we 

discuss how super-symbolic computing integrates knowledge from both symbolic and sub-symbolic 

computing structures. The black box nature of neural networks has to be integrated with other 

process models that execute various autopoietic and cognitive behaviors that integrate the 

computer and the computed seamlessly. This requires super-symbolic computing which integrates 

the symbolic and sub-symbolic processes just as the neocortex does in the human brain. 

In the next section, we discuss various theoretical models depicting the software systems and pave the 

path to infusing autopoietic and cognitive behaviors into current-generation software systems. 

Software Systems and Their Theoretical Models 
Authentic computer software is the core of a computer system and the principal goal of software 

development processes. It is possible to separate three stages of software development: 

• System design 

• Programming and documenting 

• Testing, validation, and adaptation 
 

Thus, we come to programs as the central component and predominant objective of software 

development. As the result, the main efforts of computer scientists have been pointing toward the 

development of theoretical tools for modeling computer programs as specific algorithms. 

In general, the concept of a program is more encompassing than the concept of a computer program. 

Namely, we have the following definition. 

Definition 3.1. A program is a compact description of a process or a system of processes. 

This characterization allows the specification of the concept of a computer program. 

Definition 3.2. A computer program is a compact description of a process or a system of processes 

performed by a computer system under the control of this program.  

Consequently, a computer program is a kind of algorithm, or more exactly, of the symbolic 

representation or description of algorithms (Burgin, 2005). Thus, the mathematical models of algorithms 

are theoretical models of computer programs. 

Various types of such models have been elaborated by computer scientists and mathematicians. The 

most popular models are: 

• Turing machines       

• neural networks 

• partial recursive functions        
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• formal grammars 

• finite automata 
In general, there are three major methods for the development of modeling algorithms and programs:  

• pure generation means that the new model is created from scratch  

• extension means that a new model is created by taking an existing model and its extension 

• crossbreeding means that a new model is created by taking two or more existing models and 

combining them 
The theory of algorithms shows that purely created models are oriented at definite forms of 

computation and thus, performing well in their problem domain, they have many limitations when it 

comes to solving problems outside their domain. 

As a result, researchers started devising other types of models of algorithms and programs. One of the 

techniques for doing this was the extension of the existing models. Let us consider examples of such 

models. 

One of the first models of algorithms and programs was recursive functions introduced by Gödel in 1934 

(Gödel, 1934). However, it was demonstrated that this model did not represent some important 

algorithms, and to eliminate this deficiency, Kleene extended recursive functions to partial recursive 

functions by adding operation minimization (Kleene, 1936). 

The most popular model of algorithms and programs was an ordinary Turing machine with one linear 

tape and one operating head constructed by Turing in 1936 (Turing, 1936). Later researchers extended 

this model in a different way creating a variety of Turing machines:  

• multi-head Turing machines were obtained by adding to the ordinary Turing machine 

additional heads 

• multi-tape Turing machines were obtained by adding to the ordinary Turing machine 

additional heads and tapes 

• Turing machines with n-dimensional tapes were obtained by adding to the ordinary Turing 

machine n-dimensional tapes 

• nondeterministic Turing machines were obtained by making rules of Turing machines more 

flexible 

• probabilistic Turing machines were obtained by making rules of Turing machines random 

and assigning probabilities to them (Leeuw, et al, 1956)  

• alternating Turing machines are nondeterministic Turing machines with special restrictions 

(Chandra and Stockmeyer, 1976; Kozen, 1976)  

• reflexive Turing machines were obtained by adding rules for changing programs of Turing 

machines (Burgin, 1992) 

• Turing machines with oracles were obtained by adding an additional component called an 

Oracle to Turing machines and adding rules for interaction with the Oracle (Turing, 1939) 

• inductive Turing machines were obtained by adding two additional tapes to the working 

tape of an ordinary Turing machine and adding rules for interaction with these tapes as well 

as the new rules of the second order (metarules) for obtaining the result (Burgin, 2010). 
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Another technique for building new models of algorithms and programs was crossbreeding of the 

existing models. 

An interesting computational crossbreed is a relational machine, which is a Turing machine augmented 

with a relational memory and operations with relations (Abiteboul and Vianu, 1991). Relational memory 

can store a set of relations of certain arities‡. Some of them are input relations while others are output 

relations. In addition to the conventional operations of a Turing machine such as changing the internal 

state, writing on and reading from the tape, and moving the head on the tape, the machine can perform 

operations with relations. Each such operation is counted as one parallel step of the computation. 

Another interesting computational crossbreed is a Neural Turing machine (NTM), which is a recurrent 

neural network model augmented with a Turing machine (Graves, et al, 2014). These machines 

amalgamate the fuzzy pattern-matching capabilities of neural networks with the deterministic strength 

of programmable computers. 

The multiple crossbreeding of models of algorithms and programs resulted in the creation of the classes 

of grammars with prohibition (with correction) and classes of selective machines (Burgin, 2005a; 2021; 

Carlucci, et al, 2009). At first, we consider grammar with prohibition (with correction). 

Definition 3.3. A grammar with prohibition (with correction) G is a formal grammar that consists of two 

parts: positive grammar and negative grammar.  

The difference between positive and negative grammar is their purpose of computation. Positive 

grammars generate or recognize tentative (or possible) elements of the language. However, it is not 

assumed that all of them are correct, that is, belong to the language under construction. The goal of 

negative grammar is to recognize those elements that do not belong to the language under 

construction, that is, are incorrect. This allows building a language by the procedure where at first, 

tentative (or possible) elements of the language are extracted, and then the incorrect words are 

eliminated. 

Definition 3.4. The positive language L+(G) of grammar with correction G is the language 

generated/recognized by the positive grammar of G. 

Definition 3.5. The negative language L-(G) of grammar with correction G is the language 

generated/recognized by the negative grammar of G. 

Definition 3.6. The language L(G) =  L+(G) \ L-(G) is the language of the negative  

Depending on the type of positive and negative grammar, we obtain a variety of grammars with 

corrections. 

• (regular, regular)-grammars have both positive and negative grammars are regular. 

• In (regular, context-free)-grammar, the positive processor is regular grammar and the 

negative processor is context-free grammar. 

• In (context-free, regular)-grammar, the positive processor is context-free grammar and the 

negative processor is regular grammar. 

 
‡ Arity is the number of arguments or operands taken by a function, operation or relation in logic, mathematics, 
and computer science. 
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• In (regular, unrestricted)-grammar, the positive processor is a regular grammar and the 

negative processor is an unrestricted grammar. 

• In (context-free, context-free)-grammars have both positive and negative grammars are 

context-free. 

• In (unrestricted, context-free)-grammar, the positive processor is unrestricted grammar and 

the negative processor is context-free grammar. 

• (unrestricted, unrestricted)-grammars have both positive and negative grammars are 

unrestricted. 
In a similar way, selective machines were obtained by computational crossbreeding. 

Definition 3.7. A selective machine M is a machine (automaton) that has positive and negative 

processors.  

All processors are autonomous. 

In what follows, we consider only selective machines with accepting, or what is the same, recognizing 

processors. Selective machines with other types of processors are studied elsewhere. 

Definition 3.8. Positive processors are (formal) automata, which accept/recognize words.  

Negative processors function in the same way but their results are utilized differently by the selective 

machine. 

Definition 3.9. Negative processors are also (formal) automata, which accept/recognize words. 

The difference between positive and negative processors is their purpose of computation. Positive 

processors accept or recognize tentative (or possible) elements of a language. However, it is not 

assumed that all of them are correct (belong to the language under construction). The goal of negative 

processors is to recognize those elements that do not belong to the language under construction, that 

is, are incorrect. This allows building a language by the procedure where at first, tentative (or possible) 

elements of the language are extracted, and then the incorrect words are eliminated. 

We remind that a language L is accepted or recognized by an automaton (machine) M if this automaton 

accepts all words from L and only these words. It is denoted by LM or L(M) and is also called the language 

of the machine M. 

Definition 3.10. The positive language L(MP) of M is the language accepted/recognized by positive 

processors of M. 

Definition 3.11. The negative language L(MN) is the language rejected/eliminated/prohibited by 

negative processors of M. 

Definition 3.12. The language L(M) =  L(MP) \ L(MN) is the language of the selective machine M. 

(m, n)-selective machines have m positive processors and n negative processors. Let us look at some (1, 

1)-selective machines, which are simply called selective machines 

• FA/FA is the class of all finite selective machines, or FF-selective machines, in which both 

positive and negative processors are finite automata. 
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• FA/PA is the class of all FP-selective machines, in which the positive processor is a finite 

automaton and the negative processor is a pushdown automaton. 

• FA/TM is the class of all FT-selective machines, in which the positive processor is a finite 

automaton and the negative processor is a Turing machine. 

• FA/SITM is the class of all FSI-selective machines, in which the positive processor is a finite 

automaton and the negative processor is a simple inductive Turing machine. 

• TM/TM is the class of all Turing selective machines, or TM-selective machines, in which both 

positive and negative processors are Turing machines.  

• TM/FAis the class of all PF-selective machines, in which a positive processor is a Turing 

machine and the negative processor is a finite automaton. 

• TM/PA is the class of all TP-selective machines, in which a positive processor is a Turing 

machine and the negative processor is a pushdown automaton. 

• TM/ITM is the class of all TI-selective machines, in which a positive processor is a Turing 

machine and the negative processor is an inductive Turing machine. 

• ITM/ITM is the class of all inductive selective machines, or SI-selective machines, in which 

both positive and negative processors are inductive Turing machines. 
 

The most comprehensive model of algorithms and programs is a structural machine (Burgin 2020). First, 

let us remind the definition of a structural machine. 

A structural machine M is an abstract automaton, which works with structures of various types. The 

machine has three major components: 

1. The control device CM regulates the state of the machine M 

2. The (entire) processor PM performs transformation of the processed structures  

3. The functional space SpM contains input, output, and processed structures 
The actions (operations) of the entire processor PM depend on the state of machine M and the state of 

the processed structures. The entire processor consists of one or several unit processors. When a 

structural machine is considered only as a theoretical model, it is possible that the entire processor 

contains infinitely many unit processors. 

In addition, unit processors can have nested processors that work as subroutines in software systems or 

natural neurons in the brain. For instance, some researchers suggest that there can be a deep network 

within a single neuron (cf., for example, (Cepelewicz, 2020)). 

Unit processors can move in the processing space performing operations with structures in their 

neighborhoods according to the rules of their structural machine. Unit processors can function in 

parallel mode with centralized control. When the structural machine has a distributed control device, 

which consists of several unit control devices, the unit processors of this machine can function in two 

modes: clusterized concurrency and total concurrency. Functioning in clusterized concurrency, all unit 

processors of the structural machine are divided into several groups (clusters) and each group works 

with its own control device. Functioning in total concurrency, each unit processor has its individual 

control device, which allows independent operation from other unit processors. As the result, the 
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architecture of a structural machine provides considerable flexibility, adaptivity, and computational 

power. 

Unit processors of one structural machine can be of different types and categories. For instance, it is 

possible that one unit processor is a Turing machine, another unit processor is a neural network, while 

the third one is a cellular automaton and one more unit processor is an inductive Turing machine. 

In addition, different unit processors of one structural machine can work in different algorithmic modes. 

Some of them can perform subrecursive computations, others can compute in the mode of recursive 

algorithms while the third group can algorithmically function in the super-recursive, e.g., inductive 

fashion. 

An important component of a structural machine - the functional space SpM consists of three 

components: 

1. The input space InM , which contains the input structure(s). 

2. The output space OutM , which contains the output structure(s).  

3. The processing space PSM , in which the input structure(s) is transformed into the output 

structure(s), which form the results of computation of a structural machine.  
It is often assumed that all structures – the input structures, the output structures and all processed 

structures – have the same type. 

Now we can show that all considered models of abstract automata are special cases of structural 

machines while descriptive algorithms, such as recursive functions, can be performed by an appropriate 

structural machine. The same is true for other models of abstract automata, algorithms and programs. 

A finite automaton is the simplest case of structural machines that have one processor working with 

symbols from some alphabet. 

A Turing machine with one head and one linear tape is a structural machine that has one processor, 

which works with linear structures by the rules defined in this Turing machine.    

A Turing machine with n heads and one linear tape is a structural machine that has n processors, which 

work with linear structures by the rules defined in this Turing machine.    

A Turing machine with n heads and n linear tapes is a structural machine that has n processors, which 

work with linear structures by the rules defined in this Turing machine.    

A Turing machine with one head and one n-dimensional tape is a structural machine that has one 

processor, which works with n-dimensional rectangular arrays by the rules defined in this Turing 

machine.    

A Turing machine with n heads and n m-dimensional tapes is a structural machine that has n processors, 

which work with n-dimensional rectangular arrays by the rules defined in this Turing machine.    

A neural network is a structural machine in which processors are artificial neurons, which work with 

numbers (Burgin, 2005).    
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It is possible to compute any partial recursive function because such a function can be computed by a 

Turing machine with one head and one linear tape (Rogers, 1987) while, as it is explained above, it is a 

particular case of structural machines.      

The functioning of a formal grammar can be simulated by a Turing machine with one head and one 

linear tape (Burgin, 2005) while, as it is explained above, it is a particular case of structural machines.      

A nondeterministic Turing machine is a structural machine in which its processor works as a 

nondeterministic Turing machine. 

A probabilistic Turing machine is a structural machine in which its processor works as a probabilistic 

Turing machine. 

An alternating Turing machine is a structural machine in which its processor works as a non-

deterministic Turing machine with alternation rules. 

A reflexive Turing machine can be simulated by a structural machine that has two processors each of 

which is working as a Turing machine.      

Turing machines with an oracle can be simulated by a structural machine that has two processors one of 

which is working as a conventional Turing machine while the other one performs the functions of the 

oracle.      

An inductive Turing machine is a structural machine in which its processor works as a Turing machine in 

the inductive mode (Burgin, 2005). 

A relational machine is a structural machine that has two processors one of which is working as a 

conventional Turing machine while the other one performs operations with set-theoretical relations.      

A Neural Turing machine is a structural machine that has two processors one of which is working as a 

conventional Turing machine while the other one works as a neural network.      

A selective machine is a structural machine in which processors have two types – positive and negative. 

The functioning of grammar with prohibition (correction) can be simulated by a selective machine, 

which is, as it is explained above, a structural machine.     

Operational Aspects of the General Theory of Information 

It is possible to delineate three operational aspects of the General Theory of Information 

• GTI as a source of operational information 

• Operational countenance of information 

• Operational models of information 

The GTI explains not only what information is but also how it functions and how to operate with 

information. 

First, the GTI tells (in the Ontological Principle O4) that to operate with information and use it in the 

material world, information must be represented by physical systems. In addition, information has a 
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material carrier (in the Ontological Principle O3), which also plays a significant role in the functioning of 

information in the material world. 

Second, the GTI tells (in the Ontological Principle O4) that to operate with information and use it in the 

mental world, information must be represented by mental systems. 

In addition, information has a mental carrier (in the Ontological Principle O3), which also plays a 

significant role in the functioning of information in the mental world. 

Third, the GTI asserts (in the Ontological Principle O5) that interaction is the necessary condition for 

operation of information and its utilization. 

As the result, the GTI presents information in the form, characteristics of which are distinctive for the 

concept of operator. Let us remind this concept in the most general form developed in (Burgin and 

Brenner, 2017). 

In physics, an operator is a function over a space of initial physical states to the space of final states. In 

classical mechanics, the movement of a particle (or a system of particles) is completely determined by 

the Lagrangian or equivalently the Hamiltonian operator of a system. 

Operators in classical mechanics are related to symmetries which reflect invariance of motion with 

respect to a coordinate (Noether’s theorem). So, translational, rotational, Galilean transformation, 

parity and T-symmetry, each is connected with a specific classical mechanic operator. Operators in 

quantum mechanics are integral part of the formulation of QM. Thus position, momentum, kinetic 

energy, angular momentum, spin, and Hamiltonian are expressed as operators in QM. 

An example from quantum physics is S-matrix (scattering matrix), which denotes an operator that 

describes the process of transfer of a quantum-mechanical system from the initial state to the final one 

as a result of a scattering. Taking the set of quantum numbers describing the initial and final states, the 

scattering amplitudes form a table, which is called the scattering matrix S.  

In quantum chemistry according to Levine, an operator is defined as ``a rule that transforms a given 

function into another function'' (Levine, 1991). The differentiation operator d/dx is an example of 

operator that transforms a differentiable function f(x) into another function f´(x). Other examples 

include integration, the square root, and so forth. Numbers can also be considered as operators (they 

multiply a function).   

Operators are widely used in computer programming as well. For example, the Boolean operators, AND, 

OR, NOT (or AND NOT), and NEAR, with variations such as XOR, are used in logic gates. Furthermore, 

assignment operators, which assign a specified value to another value and relational operators, which 

compare two values are widely used in computer programming. 

The ontological operator theory of Burgin and Brenner provides the most encompassing definitions of 

operators and related concepts. Here we use definitions from this theory (Burgin and Brenner, 2017). 

Definition O1: An operator is an object (system) that operates, i.e., performs operations on, some 

objects, systems or processes, which are called operands of this operator.  

It is possible to consider three form-oriented types of operators: 
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• A symbolic operator is an operator that has a symbolic form. 

• A material operator is an operator that has a material form. 

• A mental operator is an operator that is a part (element) of mentality. 

Mathematical operators in functional analysis and mathematical operator theory are symbolic 

operators. 

People and computers are material operators. 

Mental operational schemas and algorithms are mental operators (Piaget, 1952; Burgin, 2006; Burgin 

and Mikkilineni, 2021). 

There are also three form-oriented categories of operators: 

• A social operator is an operator that works (functions) in society. 

• A natural operator is an operator that works (functions) in nature.  

• A technological operator is an operator that works (functions) in an artificial world created 

by people, which includes technology and has been created by technology. 

Politicians and businessmen are social operators. 

Natural computing systems are natural operators (Dodig-Crnkovic, 2020; Dodig-Crnkovic and Giovagnoli, 

2012). 

Computers are technological operators. 

However, the definition of operators needs some additions. To be complete, Definition O1 demands the 

following definition. 

Definition O2: An operand is an object, system or process operated by an operator. 

This definition gives us three target-oriented categories of operators: 

• A socialized operator is an operator that works with/on social structures as operands. 

• A symbolized operator is an operator that works with/on symbols (symbolic structures) as 

operands. 

• A naturalized operator is an operator that works/on with natural objects (systems) as 

operands. 

Politicians are socialized operators. 

Computers are symbolized operators. 

Genes are naturalized operators. 

Definitions O1 and O2 show that being an operator or an operand is a role and a characteristic of a 

system/object. One and the same system/object can be an operator in some situations and an operand 
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in other situations. In a similar way, a system/object can be an operator with respect to some systems 

and not an operator with respect to other systems.  

Definitions O1 and O2 express the fundamental dyadic relation between operators and their operands, 

which is actualized in the form of the operator triad: 

Operation/function 

Operator                                      Operand 

 

This diagram presents an operation as a component of an operator triad.  

The operator triad is a special case of the basic fundamental triad (Burgin, 2011). In the symbolic 

representation, it has the form 

(Op, on, Od) 

where Op is an operator, on is an operation and Od is an operand. 

To construct a general mathematical operator theory in some domain, for example, in the realm of 

computations, it is necessary to organize the multiplicity of relevant operands in the form of an 

operating space, i.e., the space that is transformed by an operator.  

In this context, the key formal model of an operator Op also has the form of the basic fundamental triad  

Op = (D, on, C) 

where D = D(Op) is the domain of the operator Op, i.e., a space that contains all objects that are 

operands of this operator  

on is the operation that the operator Op performs  

C = D(Op) is the codomain of the operator Op, i.e., a space that contains all objects that are results of 

this operator  

Together the domain D and codomain C form the operating space of the operator Op. 

An arbitrary operator A is not necessarily defined for all elements from its domain D(A). The subspace 

(subset) of D(A) where A is defined is called the definability domain and denoted by DD(A). For instance, 

taking a Turing machine T that works with words in the alphabet {0, 1} but never halts independently of 

its input, we see the domain D(T) is the set of all words in the alphabet {0, 1} while the definability 

domain DD(T) is the empty set . 

In a similar way, the range R(A) of an operator A, i.e., the set of all elements that are values of A, can be 

only a part of its codomain C(A). For instance, the codomain C(T) is the set of all words in the alphabet 

{0, 1} while the range R(T) is the empty set . 

Having the general definition of operator, we can explain why information by its nature is inherently 

connected to operators. To do this, let us consider the definition of information, which is given in the 

second ontological principle of the GTI, which has several forms. Here the most general form is given. 
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Ontological Principle O2 (the General Transformation Principle).  In a broad sense, information for a 

system R is the potentiality/cause of formations and transformations (changes) in the system R or of 

their prevention in the system R. 

Thus, we may understand information in a broad sense as a capacity (ability or potency) of things, both 

material and abstract, to change other things. Information exists in the form of portions of information. 

Informally, a portion of information is such information that can be separated from other information. 

Information is, as a rule, about something. What information is about is called an object of this 

information. 

The Ontological Principle O2 has several consequences. First, it demonstrates that information is closely 

connected to transformation. Namely, it means that information and transformation are functionally 

similar because they both point to changes in a system (Burgin, 1998/1999). At the same time, they are 

different because information is potency for (or in some sense, cause of) change, while transformation is 

the change itself, or in other words, transformation is an operation, while information is what induces 

this operation. 

Second, the Ontological Principle O2 explains why information influences society and individuals all the 

time, as well as why this influence grows with the development of society. Namely, reception of 

information by individuals and social groups induces transformation. In this sense, information is similar 

to energy. Moreover, according to the Ontological Principle O2, energy is a kind of information in a 

broad sense. This well correlates with the Carl Friedrich von Weizsäcker's idea (Weizsäcker, 1974; 1985) 

that energy might in the end turn out to be information.  

Third, the Ontological Principle O2 makes it possible to separate different kinds of information. For 

instance, people, as well as any computer, have many kinds of memory. It is even supposed that each 

part of the brain has several types of memory agencies that work in somewhat different ways, to suit 

particular purposes (Minsky, 1986). It is possible to consider each of these memory agencies as a 

separate system and to study differences between information that changes each type of memory. This 

might help to understand the interplay between stability and flexibility of mind, in general, and memory, 

in particular. 

In essence, we can see that all kinds and types of information are encompassed by the Ontological 

Principle O2. 

However, the common usage of the word information does not imply such wide generalizations as the 

Ontological Principle O2 expresses. Thus, we need a more specific and consequently, more restricted 

theoretical meaning because an adequate theory, whether of the information or of anything else, must 

be in a significant accord with our common ways of thinking and talking about what the theory is about, 

else there is the danger that theory is not about what it purports to be about.  To achieve this goal, we 

use the concept of an infological system IF(R) of the system R for the information definition. It is done in 

two steps. At first, we make the concept of information relative and then we choose a specific class of 

infological systems to specify information in the strict sense. That is why it is impossible and, as well as, 

counterproductive to give an exact and thus, too rigid and restricted definition of an infological system. 

Indeed, information is a very rich and widespread phenomenon to be reflected by a restricted rigid 

definition (cf., for example, (Capurro, et al, 1999; Melik-Gaikazyan, 1997)). 
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The concept of infological system plays the role of a free parameter in the general theory of 

information, providing for representation of different kinds and types of information in this theory. That 

is why the concept of infological system, in general, should not be limited by boundaries of exact 

definitions. A free parameter must really be free. Identifying an infological system IF(R) of a system R, 

we can define information relative to this system. This idea is expressed in the following principle. 

Ontological Principle O2g (the Relativized Transformation Principle). Information for a system R relative 

to the infological system IF(R) is a capacity to cause changes in the system IF(R) or of their prevention in 

the system IF(R).  

As a model example of an infological system IF(R) of an intelligent system R, we take the system of 

knowledge of R. In cybernetics, it is called the thesaurus Th(R) of the system R. Another example of an 

infological system is the memory of a computer. Such a memory is a place in which data and programs 

are stored and is a complex system of diverse components and processes.  

Elements from IF(R) are called infological elements.  

There is no exact definition of infological elements although there are various entities that are naturally 

considered as infological elements as they allow one to build theories of information that inherit 

conventional meanings of the word information. For instance, knowledge, data, images, algorithms, 

procedures, scenarios, ideas, values, goals, ideals, fantasies, abstractions, beliefs, and similar objects are 

standard examples of infological elements.   

When we take a physical system D as the infological system and allow only for physical changes, we see 

that information with respect to D coincides with energy.  

Taking a mental system B as the infological system and considering only mental changes, information 

with respect to B coincides with mental energy.  

These ideas are crystallized in the following principle. 

Ontological Principle O2a (the Special Transformation Principle). Information in the strict sense or 

proper information or, simply, information for a system R, is a capacity to change or to prevent changes 

of the structural infological elements from an infological system IF(R) of the system R.   

As changes are performed by operators, this reflects the operational nature of information. So, it was 

organic that the mathematical models of information have been developed in the form of functors in 

the categorical setting forming information algebras, calculi and topological spaces as well as operators 

in functional spaces. These models create the base of the operational mathematical theory of the GTI. 

The first type of models is built in abstract categories, which allow the development of flexible tools for 

the studies of information and its flow, as well as of computers, networks and computation. There are 

two types of information dynamics representations in categories: the categorical representation and 

functorial representation (Burgin, 2010a; 2011a). Categorical representations of information dynamics 

preserve internal structures of information spaces associated with infological systems as their state or 

phase spaces. Functorial representations of information dynamics preserve external structures of 

information spaces associated with infological systems as their state or phase spaces. This provides a 

base for analyzing physical and information systems and processes by means of categorical structures 

and methods. 
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The categorical representation of information dynamics preserves internal structures of information 

spaces associated with infological systems as their state or phase spaces. In it, portions of information 

are modeled by categorical information operators (Burgin, 2010a). The functorial representation of 

information dynamics preserves external structures of information spaces associated with infological 

systems as their state or phase spaces. In it, portions of information are modeled by functorial 

information operators (Burgin, 2011a). 

The second type of models represent information that acts on knowledge, bringing new and updating 

existing knowledge, is of primary importance to people. It is called epistemic information, which is 

studied based on the general theory of information and further developing its mathematical stratum. 

Portions of epistemic information are modeled/represented by epistemic information operators acting 

in spaces of knowledge, which are represented by a formal construction called a Mizzaro space (Burgin, 

2011; 2014). These spaces consist of knowledge items often unified by structural relations. 

Conversion of Information into Operational Knowledge 

Although the information is operational by its nature, its realization demands the representation of 

information in such a way that it can be converted into operational knowledge. There are different types 

and forms of operational knowledge: operators, algorithms, programs, plans, procedures, methods, 

operational schemas, instructions, etc. The general definition of an operator allows the representation 

of all types and forms of operational knowledge by operators. Naturally, there are operators in 

mentality as well as physically presented operators. For instance, a software system is a physically 

presented operator. As we are mostly interested in software development, we analyze conversion 

information into physically presented operators. 

The process of construction of a physically presented operator consists of several stages.  

At first, based on different information, a decision is made on what the constructed operator, e.g., the 

planned software system, must do or in other words, what is the goal of the tentative operator 

functioning. This decision is based on different information. Those who make this decision already have 

some of the necessary information while other information must be obtained. 

The next stage is the evaluation if it is possible and practical to construct an operator that solves the 

necessary problem (achieves the necessary goal). 

One more stage includes the evaluation of the necessary resources such as the initial data, knowledge, 

and information, the sufficient means (tools) for construction, and the necessary time to do this. Note 

that time is a very important resource. Time restriction can make a potentially solvable problem 

practically unsolvable. 

It is possible that after finishing the third stage, it becomes necessary to go once more to the second 

stage or even to the first stage changing the problem and or goals. This can create a cycle, after finishing 

which the process goes to the fourth stage, where the description of the forthcoming operator, e.g., the 

specification of the software system, is elaborated. 

At the fifth stage, the plan of the operator construction is elaborated. Often this plan is further 

developed to get the procedure of the operator construction. It is possible to call such plans and 
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procedures by the name metaoperator. We remind that a metaoperator is an operator that acts on 

other operators, that is, an operator, operands of which are also operators. 

At the sixth stage, the necessary physically represented operator, for example, in the form of a software 

system, is constructed. 

However, this is not the end because it is necessary to show that the constructed operator has all the 

necessary properties, that is, it is correct. To demonstrate this, such methods as testing, logical 

verification, and inspection or auditing are utilized (Burgin and Debnath, 2012). 

It is necessary to understand that each stage, at first, is performed in mentality resulting in mental 

operational knowledge, and then using information from this mental knowledge, physical operational 

knowledge in the form of algorithms, programs, and software and hardware systems is elaborated. 

 The GTI explains that to perform all operations at each of these stages, it is necessary to choose or to 

create efficient mental and physical representations of the used and produced information. For 

instance, programming is the conversion of operational information in mentality into a physical 

representation of information as symbolic operators in the physical form of programs. Computer 

programs are particular cases of operational knowledge in the physical form. 

The GTI makes clear that the efficiency of the physical representation of operational knowledge and 

information in general, e.g., symbolic operators, and of software, in particular, is a vector characteristic, 

which consists of three components: 

• Construction efficiency is measured by complexity and other characteristics of the 

construction of the physical representation 

• Utilization efficiency is measured by complexity and other characteristics of the utilization of 

the physical representation 

• Management efficiency is measured by complexity and other characteristics of the 

management of the physical representation 

To work with computers, people constructed programming languages, which allow transmitting 

operational information to computers. Software of computers, networks, and cell phones consists of 

symbolic operators in the physical form of programs, which, as it was explained before, is operational 

knowledge. 

With respect to software development, construction efficiency means easiness, completeness and 

resourcefulness of the process of software development. In other words, construction efficiency is also a 

vector of three components. 

Utilization efficiency with respect to software development is also a vector with such components as 

functionality, reliability, usability, effectiveness, flexibility, portability, integrity, and usefulness of the 

constructed software system.  

Management efficiency with respect to software development is also a vector with such components as 

maintainability, security, and self-restoration. 
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Note that it is necessary not only to identify characteristics of the efficiency of the physical 

representation of operational knowledge and information but also to develop measures for the 

evaluation of efficiency and its components. General approaches to building such measures are 

described in the axiological principles of the GTI. 

The construction of the physical representation of operational knowledge and information in general, 

e.g., symbolic operators, and software systems in particular usually follows one of the following 

approaches: 

• In the model-based approach, a physical representation is constructed mirroring some 

operational model, requiring correct specification of operators and being open to potential 

modeling biases. 

• In the design-based approach, a physical representation is constructed imitating some 

model design process, requiring efficient operator design methods, and is open to potential 

design biases. 

• In the problem-based approach, a physical representation is constructed with orientation on 

the problem that is being solved, requiring an efficient description of input and clear 

formulation of goals and being open to potential problem solution biases. 

To apply these approaches to software development, it is necessary to specify them taking into account 

specialized characteristics of software systems. For instance, when the model-based approach is used 

for the development of software systems, we need to utilize models of software systems some of which 

are described in Section 3. 

New Approach to Building Self-Managing Software Systems 
All living organisms exhibit teleonomy, which is the quality of apparent purposefulness and of goal-

directedness of structures and functions brought about by natural processes like natural selection. The 

genome provides the specification of a model for software that encodes the life processes and executes 

them by building and using the information processing structures that utilize the transformation 

processes of matter and energy. 

The genes that make up the human genome are best viewed as a society (Yanai, I. Martin, L. 2016). The 

human genome contains about 20,000 genes, each of which specializes in one or more tasks. Genes 

need to cooperate to build and run a body capable of replicating them. These feats require an intricate 

organization and fine-tuned division of labor. As Mitchell Waldrop (Waldrop, 1992) pointed out, “DNA 

residing in a cell's nucleus was not just a blueprint for the cell a catalog of how to make this protein or 

that protein. DNA was actually the foreman in charge of construction. In effect, DNA was a kind of 

molecular-scale computer that directed how the cell was to build itself and repair itself and interact with 

the outside world. Life processes including autopoietic and cognitive behaviors are specified in the 

genome and are executed using the DNA.  Autopoietic behaviors implement the metabolism using the 

transformation of energy and matter.  Replication of cells and their specialization allows the functioning 

of autonomic components to build and operate a cognitive network that manages both the “self” and its 

interactions with the environment exchanging information. Life processes including learning from the 

information received from the five senses and its processing using the cognitive apparatuses in the form 

of genes and neurons are all encoded in the genome. Replication and metabolism are used to execute 
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the network of networks where each node executes a process and communicates with other nodes 

exchanging information. Shared knowledge between the communicating nodes enables the behavioral 

changes that evolve the system changes. It is not an exaggeration to say that without a genome 

specification of life processes, there is no natural intelligence. 

 

Figure 4: General Theory of Information and the models of autopoietic and cognitive structures in mental and 

digital worlds  

The general theory of Information provides a framework with structural machines, cognizing oracles, 

and knowledge structures to model autopoietic and cognitive behaviors. The schema and the operations 

on the schema provide a means to represent process knowledge and execute the processes in a multi-

layered network using the fundamental triads or named sets in the form of entities, relationships, and 

event-induced behaviors of the system. Figure 4 shows the relationship between ideal structures 

material structures in the physical universe and the mental structures in the mental world are enabled 

by cognitive and autopoietic behaviors. The picture also shows how to infuse autopoietic and cognitive 

process execution in the digital world using both symbolic, and sub-symbolic computing structures in a 

super-symbolic computing structure. Figure 5 shows the schema and operations representing a 

knowledge structure. The difference between Figures 2 and 4 is that the functional processor in figure 4 

operates on knowledge structures specifying a process in the form of various entities, relationships, and 

their state evolution behaviors in time depending on events that cause changes in any of the states of 

the entities or their relationships, while the functional processor in Figure 2 operates on the data 

structures. In addition, the structural machine defined in figure 4 contains three levels of processing 

structures as discussed in section 3. At the top level, the structural machine control processor manages 

various autopoietic and cognitive processes implemented as grid automata. 
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Figure 5: Knowledge Structure Schema and Operations 

Figure 6 shows the structural form of the physical Implementation of the operational knowledge 

network and the knowledge structure. Local, cluster-wide, and global autopoietic and cognitive 

behaviors are implemented in the three layers using a meta-Knowledge Structure. We define the meta-

Knowledge Structure as a computing structure that implements the functional requirements, and non-

functional requirements and has the knowledge to use policies and best practices to maintain stability, 

security, safety, and survival with optimal resource utilization. 

 

 

Figure 6: The structural form of the physical Implementation of the operational knowledge network and 

the knowledge structure 
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Figure 7 shows the implementation of a meta-Knowledge Structure using conventional infrastructure ( 

e.g., IaaS), middleware (e.g., PaaS), and application software components executing various functions 

required to execute the process defined as a knowledge structure. 

 

Figure 7: Meta-Knowledge Structure implementation using conventional IaaS, PaaS, and containers. 

There are many ways to implement the meta-Knowledge structure using existing symbolic and sub-

symbolic computing structures and a variety of communication mechanisms to share information 

among interacting nodes to create an intelligent knowledge network with autopoietic and cognitive 

behaviors. Autopoiesis in digital automata involves the knowledge of both how software is used to 

execute a process involving, various entities, relationships, and their evolution based on event-driven 

interactions (behaviors) and how to provide the metabolism required to execute myriad components in 

the system that interact with each other and their environment. Cognition in the digital automata 

involves the process knowledge to execute the goals of the system and the best practices that assure 

the successful execution of the goals in the face of fluctuations caused by internal or external events.  

Figure 8 shows an implementation based on the meta-knowledge structures presented in the 12th 

International Congress on Advanced Applied Informatics (Burgin, Mikkilineni 2022). The paper and 

presentation demonstrate the application of the concepts presented here to infuse autopoietic and 

cognitive behaviors into an open-source application to provide self-regulation without service disruption 

in the face of fluctuating demand for or the availability of computing resources.   
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Figure 8: Implementation of an open-source application PeerTube using meta-knowledge structures with infused 

cognitive and autopoietic behaviors. 

The paper and presentation demonstrate the application of the concepts presented here to infuse 

autopoietic and cognitive behaviors into an open-source application to provide self-regulation without 

service disruption in the face of fluctuating demand for or the availability of computing resources.   

Another implementation (Lee, and Venters, 2022) attempts to use meta-knowledge structures to 

address the healthcare disease diagnostic process where various entities such as patients, symptoms, 

diseases, primary care physicians, and specialists interact. When a patient experiences various 

symptoms, they often, point to multiple diseases as the cause for these symptoms.  Medical knowledge 

already exists about these symptoms and their relationships to various diseases.  Primary care 

physicians (PCP) and various specialists acquire this knowledge through their training in the study and 

practice of medicine. When patients experience these symptoms with various levels of severity, they go 

to a PCP who treats them using his knowledge, and when the patients need specialized care from a 

specialist, they are referred to and treated by the specialists. 
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Figure  9: Diagnostic Process 

This process has several shortcomings: 

1. As the Figure 9 shows, the PCP often misses certain rare diseases and often, it delays the discovery of 

the rare disease. 

2. Often AI is used to detect possible diseases from the symptoms based on big data analytics. 

However, this approach suffers from the ‘Black Box’ issue (unknown mechanisms churn out a result 

from a selected set of inputs). The center for disease control (CDC) suggests that For AI to gain wider 

interest from clinicians, the way the algorithms arrive at their conclusions needs to be 

understandable. 

3. Most Americans will experience a diagnostic error at least once in their lifetime. Patient deaths due 

to these errors are estimated at 40,000 to 80,000 per year.  Diagnostic errors and other inefficiencies 

cost the U.S. economy $750 billion each year. 

4. Average Time Spent with Patient: 15 minutes. As a result, misdiagnosis and delayed diagnosis are 

common. Communication issues based on incorrect or missing information cause burnout in 

healthcare professionals 

The solution is a digital genome specification of the diagnostic process based on the meta-knowledge 

structures capturing the relationships and event-triggered behaviors of the patients, symptoms, 

diseases, PCPs, and specialists. Figure10 shows the structural schema of an individual health care 

process. The knowledge about diseases and symptoms and the knowledge about diseases and 

specialists are obtained from medical ontologies. The meta-knowledge structure captures the behaviors 

of various patients and the history of events and triggered behaviors. It also provides explainable 

relationships between symptoms a patient experiences and possible diseases and the specialists that 

could assist in further diagnosis. In essence, a model-based AI augments current AI results by 

incorporating big data analytic results along with model-based meta-knowledge structures.  
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Figure 10: Schema depicting the entities, relationships and events triggering various behaviors 

Conclusion 
In this paper, we applied the General Theory of Information and various tools derived from it to lay the 

foundation for software system design, development, execution, and its lifecycle management while 

integrating current-generation software technologies and processes. As mentioned in this paper, this is 

very similar to how biological systems evolved their information processing structures to improve 

system resiliency, and efficiency at scale using a local, cluster, and global intelligence through 

autopoietic, and cognitive behaviors. In essence, the genome is the quintessential software system that 

uses replication, and metabolism to build, monitor, and manage 30+trillion cells. Biological intelligence 

stems from the cells executing various “life” processes specified in the genome using information 

processing structures (genes, and neurons) that use “replication” and “metabolism.” These processes 

include the knowledge to execute various tasks that use the laws of transformation of energy and 

matter to create a society of cells that exhibit autopoietic and cognitive behaviors. This knowledge 

includes how to manage cell behaviors to not only build, and maintain the system with an identity 

(“self”) but also how to interact with the environment to receive information and convert it into 

executable knowledge that allows the system to model the external world and interact with it with 

specific goals that are inherited genetically or acquired through the learning process. Replication makes 

autopoietic behaviors possible. Metabolism allows the transformation of energy and matter to fuel the 

“life” processes executed by the cells. The transformation of energy and matter allows the formation of 

cells that, act as a society. 

The general theory of information explains importance of having efficient tools for embedding 

operational information. An important class of such tools is formed by programming languages. As we 

know, now different stages of software development use languages with different structures 
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and organization. At the same time, unified tools for software development are provided by the 
block-schema programming metalanguage (BS-language) (Burgin, 1976; 1978; Burgin, Eggert, 2004). 

The general theory of information provides a model for genome specification, and its execution (Burgin 

2010; Mikkilineni, 2022). It provides a schema and operations to execute meta-knowledge structures 

that are analogous to cells using replication, and metabolism to execute autopoietic and cognitive 

behaviors.  While the role of replication and metabolism are discussed in the literature (Dyson 1977), 

This paper is the first attempt to clarify the role of a schema and operations (Burgin, Mikkilineni 2021) 

for the meta-knowledge structure that models autopoietic and cognitive behaviors using replication and 

metabolism.  The meta-knowledge structure is like a cell with the knowledge to find and use computing 

resources to execute the defined processes.  The digital genome specifies and executes the society of 

meta-knowledge structures in the form of a multi-layered knowledge network, where nodes wired 

together fire together to execute local, clustered, and global autopoietic and cognitive behaviors. 

The resulting super-symbolic structure integrates the current generation’s symbolic and sub-symbolic 

structures (Burgin, Mikkilineni 2022a) to enhance information processing capabilities. Hopefully, this will 

pave the path to enhance our information processing systems with self-regulating properties and build 

computing structures that are more intelligent than the current state-of-the-art. 
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