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Abstract— This work is devoted to the modification of 

neural network method for classifying the helicopters 

turboshaft engines ratings at flight modes using neural 

network technologies, which, through the use of a new hybrid 

network of ART-1 and BAM, made it possible to improve the 

quality of recognition of operating modes to almost 100 %. The 

hybrid network ART-1 and BAM training process was 

modified, which made it possible to adapt the network without 

adding a new class and train it to recognize existing classes 

when the incoming data only slightly differs from those 

recorded in long-term memory. This makes it possible to 

associate non-identical data with one identifier vector, which 

makes it possible, when using the classifier in helicopters 

turboshaft engines automatic control system, to correctly 

respond to the presented data. 
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I. INTRODUCTION 

Aircraft turbine engines (TE), including helicopter TE 
(turboshaft engine), as recoverable objects during their 
service life, require continuous monitoring of its current state 
in real time (aircraft flight), the complexity of which depends 
on the level of receiving processes automation, processing, 
storing, documenting information and intellectualization of 
information processing processes about the current state, the 
sequence and methods of implementation determine the 
information technology of monitoring [1, 2]. At present, the 
main directions that determine the improvement of the quality 
of information technologies for monitoring of helicopters TE 
technical state should be considered the intellectualization of 
information processing processes using methods of intelligent 
data analysis, including, neural networks, that can improve 
the quality of recognition of helicopters TE operating modes 
during operation, the above uncertain factors, as well as the 
integration of distributed local databases and knowledge into 
the global database and knowledge [3, 4]. Thus, the 
classification and recognition of the classes of states of 
helicopters TE are necessary to coordinate the optimal control 
strategy of the helicopter in the flight mode. 

II. ANALYSIS OF EXISTING METHODS OF 

CLASSIFICATION AND RECOGNITION OF AIRCRAFT TE 

TECHNICAL STATE AND WORK GOAL FORMATION  

It is assumed that the behavior of TE as a complex dynamic 
object can be represented in the form of equations [5, 6]: 

( ) ( ) ( ) ( ) ( )( ), , , ;X t F X t U t V t A t=         (1) 

( ) ( ) ( ) ( )( ), , ;Y t G X t U t V t=         (2) 

where X(t) – vector of state variables of TE; U(t) – control 
actions vector; V(t) – external disturbing influences vector; 
Y(t) – observed (output) coordinates vector; F, G – nonlinear 
vector functions. Then the main reasons for the change in the 
states of the TE can be considered the change in the vectors 
U(t) and V(t), the parameters of TE A(t), as well as the 
change in the operators F and G during its operation. Fig. 1 
are shows an oriented graph describing the process of 
changing the operating modes (classes of states) of TE [5, 6]. 
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Fig. 1. Model of the process of changing the classes of GTE states: H1 – 

steady-state modes class, for which U(t) = const, A(t) = const, F(t) = const; H2 

– class of modes accompanied by a linear trend of parameters, for which U(t) 

= const, A(t) = var, F(t) = var; H3 – class of transient modes of operation 

(states), for which U(t) = var, A(t) = const, F(t) = const; H4 – class of transient 

operating modes for which U(t) = var, A(t) = var, F(t) = var. 

In addition to the listed (serviceable) states, a class of faulty 
(failure) states is distinguished, characterized by a change in the 
class of operators F and G in (1), (2). In this case, the 
classification of TE states is theoretically possible in the state 
space if state variables are used as classification parameters. 
However, components of the vector Y(t), including additive 
random measurement noises, are available for observation. 
Consequently, there is a problem of determining a working set 
of features for constructing decision rules that are invariant to 
random noise of observations. Another problem of improving 
the quality of recognition is increasing the accuracy of 
determining the boundaries of classes of states of an aircraft 
engine. This problem is due to the fact that they significantly 
depend on the relationships between the dynamic parameters of 
the gas turbine engine (and the spectral characteristics of all 
types of impacts and disturbances that are random in nature 
and, therefore, are conditional). The main method on the basis 
of which the process of classifying the ratings of TE is 
carried out is the Bayesian approach [7]. In this case, the 
conditional probability is estimated 
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where ( )jP r k  – probability of the j-th diagnosis, that is, the 

considered dynamic regime belongs to the subset mrj. Value 

( )jP r k  is the posterior probability, that is, it is determined 

after receiving information on the complex of features k = (k1, k2, 

…, kn). Element ( )jP k r  determines the probability of 

occurrence of the realized complex of features y of the subset mrj. 

The shortcoming of this method include: the need to take 
into account large volumes of a priori and a posteriori 
information about the power and spectral density of impacts, 
measurement errors in all ratings of TE operation; the 
classification is carried out only in the steady-state ratings of 
the TE operation; low quality of classification due to errors 
in the estimates of the distribution scale, caused by both 
unreliable a priori information about the probabilistic 
characteristics of classes, and errors in calculations and the 
proximity of the centers of recognized classes. 

 In [8], the quality of the classification of the operating 
ratings of aircraft TE is improved by increasing the 
compactness of the analyzed signals of each class relative to 
the grouping centers by choosing the type of nonlinear 
transformation of the space of the classified parameters. In 
this case, the distance between the classes changes such that 
the measures of the proximity of the classes in the chosen 
metric increase. Currently, the process of classifying the 
operating ratings of TE, as a rule, is carried out manually, 
with the participation of a highly qualified specialist, whose 
long and monotonous work, on the one hand, can lead to 
classification errors, and on the other hand, to significant 
time costs. To eliminate the above disadvantages, an 
algorithm is proposed for solving the problem of classifying 
the operating ratings of TE based on neural networks. It 
should be noted that the neural network classifier of the 
operation ratings of TE was developed in [5, 6], based on the 
reconstructed oscillogram of thermogasdynamic indicators. 
However, this method is limited in applicability to helicopter 
TE (TE with a free turbine) due to the design features of 
these engines. Therefore, the modernization of the method of 
neural network classification of operating modes of aviation 
TE [5, 6] is an urgent scientific and practical task. 

III. PROBLEM STATEMENT 

According to [5, 6], there is a time series formed by data 
sets of engines thermogasdynamic parameters y1(t), y2(t), …, 

yN(t), at some monitoring interval  1 2,t t t . It is required to 

select the characteristic areas of the time series corresponding 
to certain classes S1, S2, …, Sk states of helicopters aircraft 

GTE: 
0

1

k

S S

 =

= , where S0 – class of possible modes 

(serviceable states) of aircraft TE (fig. 2).  

The procedure for solving this problem using a neural 
network is shown in fig. 2 [5, 6], where 

( ) ( ) ( ) ( ) 1 2, ,..., MF t F t F t F t=  – vector of the desired output 

reactions of the neural network; ξ1, …, ξM – neural network 
outputs; ε1(t), …, εM(t) – values of the error vector at the output 
of the neural network. Neural network training is as follows. 

The "segments" of the time series are fed to the inputs of the 

neural network y1(t), …, yN(t),  1,i it t t + , belonging to known 

classes (operating modes) of the engine Sα, (α = 1, 2, …, k). 
The desired reactions of the neural network in each case will be 
the binary representation of the number of the recognized class 
α. For example, the code (0, 0) at the output of the neural 
network corresponds to the class of steady-state TE ratings, the 
code (0, 1) to the class of transient modes, the code (1, 0), to the 
class of transient modes, etc. 
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Fig. 2. Diagram of aircraft TE operating modes neural network classifier [5, 6]. 

The neural network training error is determined according 
to expression: 
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The trained network, which solves the problem of 
recognition (classification) of the TE operating ratings, 
corresponds to the minimum error (4). 

IV. DEVELOPMENT OF A NEURAL NETWORK CLASSIFIER 

OF OPERATING MODES FOR HELICOPTERS TE  

The main thermogasdynamic parameters of aircraft TE 
recorded on helicopter board are the gas generator r.p.m. nTC 
and the temperature of the gases in front of compressor 
turbine TG. According to [5, 6], the neural network classifier 
has the form shown in fig. 3, where ∆ – time delay, ∆t = 1 s. 
According to fig. 3, the neural network must have 2×L inputs 
of L for each of the parameters: nTC and TG. The L parameters 
indicated are the measured nTC and TG parameters as well as 
the delayed values. The signals ξ1 and ξ2 are the outputs of 
the neural network. For the trained network, the outputs 
should take values F1 and F2 (table 1). 

TABLE I.  DESIRED VALUES OF THE OUTPUTS OF THE NEURAL 

NETWORK CLASSIFIER 

Recognized Modes 
Neural Network Output Signals 

F1 F2 

Constant 0 0 

Racing 1 0 

Throttling 0 1 

...

nTC(t)

nTC(t – Δt)

nTC(t – LΔt + Δt)

...

( )*

GT t

( )*

GT t t−

( )*

GT t L t t−  +

ξ1

ξ2

Neural

Network

 

Fig. 3. Neural network classifier architecture. 



To create a high-speed neural network classifier, a hybrid 
network has been developed, which is based on the 
architecture of the ART-1 neural network (adaptive 
resonance neural network) [9]. A distinctive feature of the 
new neural network classifier is that the layers of comparison 
and recognition, inherent in neural networks of adaptive 
resonance, are replaced by a two-layer network of 
bidirectional associative memory (BAM).  

To preserve the characteristic features of the selected 
neural networks, the proposed hybrid network was initially 
limited by the following requirements: 

1. For the implementation of stable-plastic memory based 
on the ART-1 network, it is necessary to preserve the order 
of the phases of search, comparison and output of the result. 

2. The last phase consists either in deciding whether to 
belong to one of the existing classes, or in creating a new one. 

3. To implement associative memory and use the 
advantages of the BAM network, it is necessary: presence of 
two layers of neural elements; interaction by means of a 
matrix of weights of neurons of one layer with all neurons of 
the second layer; limiting the duration of the process of 
restoring associations upon reaching either the relaxation 
point of the network, or a predetermined number of iterations. 

From fig. 4 that the hybrid neural network classifier 
contains proposed architecture the characteristic features of 
the ART-1 and BAM networks. It consists of F1 comparison 
layers and F2 recognition layers, identical neural elements, 
therefore, the performance of the recognition or comparison 
functions is determined not by their internal structure, but 
only by their structural purpose. 
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Fig. 4. Diagram of the proposed hybrid network. 

It should be noted that the neurons in the layers function 
F1 and F2, as in other neural network paradigms, first finding 
the sum of the weighted inputs, and then calculating the 
value of the activation function: 
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where а(m) – vector of input neurons of the F1 layer; b(n) – 
vector of output neurons of layer F2; Wm×n – matrix of 

weights of connections between layers F1 and F2; 
T

m nW   – 

transposed weight matrix; f(х) – neuron activation function. 

The coefficients of the total weight matrix Wm×n, which 
are the synaptic weights of both layers of neurons F1 and F2, 
contain long-term memory. However, at the outputs of the 
neurons of the F1 layer in the values of the vector а(m), short-
term memory is realized, which is the associated images of 

the input vector x(m), where m is the dimension of the input 
vector. Therefore, the F1 layer is an input layer and performs 
a recognition function. 

The second, the output layer of neurons F2 performs the 
function of comparison. After a short-term supply of the 
values of the investigated vector x(m) to the input of the first 
layer F1, at the outputs of the neurons of the second layer F2 
in the vector b(n), the values of the classifier vector are 
generated, on the basis of which a conclusion is made about 
the belonging of the input vector x(m) to one or another class, 
where n – dimension of the output vector. 

The process of restoring associations contained in memory 
is as follows. Long-term memory (or associations) are 

implemented in the weight matrices Wm×n and 
T

m nW  , and each 

image consists of two vectors: the vector а(m), which is the 
output of the F1 layer, and the vector b(n), the associated image, 
which is the output of the F2 layer. To restore the associated 
image, the vector а(m) or a part of it are briefly set at the outputs 
of the F1 layer. Then the vector а(m) is removed and the network 
is brought to a stable state, generating the associated vector b(n) 
at the output of layer F2. Further, the resulting vector acts on 

the transposed matrix 
T

m nW  , as a result of which the original 

input vector а(m) is reproduced at the output of the F1 layer. 

The implementation of the BAM network makes it 
possible to associate a large number of input 
multidimensional vectors with a finite number of small-sized 
identifier vectors. Consequently, the proposed hybrid 
network compares not the (most often noisy) images 
themselves, but their associated identifier vectors. 

If the previous and actual values of the comparison layer 
F2 are the same, then the block G1 from the block G2 receives 
a positive single signal P2, otherwise it is equal to zero. If a 
similar situation, when the image reproduces itself, also 
arises with the values of the recognition layer F1, or the limit 
of a predetermined number of iterations is reached, then a 
positive signal S1 will be sent to the recognition layer, and a 
positive signal P1 to the block G2. Thus, with the help of 
positive stop signals P1 and P2, the pattern recognition 
process will be stopped and the values at the outputs of the 
F1 and F2 layers will be fixed. 

Each cycle described above causes refinement of the 
output vectors of layers F1 and F2 until a point of stability in 
the state space of the network is reached. Therefore, in the 
phase space of states of the input vector, after the fifth 
iteration, the wandering point will become stationary. After a 
positive signal P1 arrives at block G2, the number of ones in 
the output vector b(n) is counted. To simplify and automate 
the modes of operation and training of the hybrid network, 
the following encoding of the identifier vectors was used. If 
we make the assumption that the number of images stored in 
long-term memory does not exceed the number of neurons in 
the comparison layer F2, then the ordinal number of the 
image recorded in memory will be equal to the number of the 
only nonzero element of the corresponding identifier vector. 

If at the end of the iteration there is only one unit in the 
values of the vector b(n), and all other values of the elements 
are equal to zero, then we will assume that the network has 
classified this image correctly. Otherwise, with the help of 

synaptic feedback 
T

m nW  , the values of the obtained vector will 

be fed to the inputs of the recognition layer F1, at the outputs 
of which changes in short-term memory will be observed. 



In turn, the resulting image through direct connections 
Wm×n will affect the inputs of the comparison layer F2. After 
defining a new vector-identifier in block G1, control will be 
made again for the presence and position of units in the vector. 
If the number of iterations exceeds the predetermined number, 
then a positive signal S2 will be sent to the comparison layer 
F2, which will allow the addition of new data. 

In the course of the experiments carried out aimed at 
improving the performance of the BAM network, a number 
of proposals were put forward and implemented, concerning 
both the presentation of the output values of neurons and the 
modification of the training process. 

1. In the expression for the activation function of BAM 

neurons ( ) ( )
1

1 1
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 [9], which proved 

itself well in the course of experiments, the static activation 
threshold, equal to zero, was replaced by the dynamic Tt, 
which is calculated for each iteration separately: 

( ) ( )
1

max min
;

2

t t

t

x x
T +

+
=         (6) 

where max(xt) и min(xt) – maximum and minimum values 

of the short-term memory stored in the values of the 

elements of the vectors а(m) and b(n) after the t-th iteration. 
2. Also in the process of work, good results were 

obtained by using bipolar encoding of vectors а(m) and b(n) 
not only for training, but also for pattern recognition, that is, 
vectors take values only "+1" or "–1" ... Taking into account 
the previous point, the above expression of the activation 
function of BAM neurons [9] takes the following form: 
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3. After calculating the output signal of layer F1 in (5), 
two-dimensional filtering was added in the plane of the input 
data. The filtering consisted in averaging the values of the 
outputs of neurons among their four neighbors (except for the 
outermost neurons). This avoids an abnormal increase in the 
values of the activity of individual neurons. Fig. 5 shows a 
graphical interpretation of the influence of connections of 
neighboring neurons on each other. If we convolve the vector 
а(m) into a two-dimensional matrix Aa×b with dimensions a and 
b corresponding to the input images, then the value of an 
individual neuron Аi,j will be determined by the expression: 

1

, , 1, , 1 1, , 1.
t t t t t t

i j i j i j i j i j i jA A A A A A+

+ + − −= + + + +        (8) 

 

Fig. 5. Diagram of directions of influence of neighboring neurons on each other. 

As a result, if among neurons with negative values there 
is a neuron with an abnormal positive value, its value, i.e., its 
own influence on neighboring neurons, decreases. 

4. An attempt was also made in this work to give the 
BAM network adaptive properties. The adaptive network 
must change its weights in the course of its operation in order 
to more flexible recognition. This means that feeding a 
training set of input vectors to the input of the network 
makes it change the energy state until a resonance is 
obtained. Gradually, short-term memory in the process of 
network functioning by adjusting the coefficients of the 
weight matrix should turn into long-term memory. 

5. In computational experiments, to correct the weight 
matrix, Hubb's rule was used [10], in which the change in 
weight is proportional to the level of activation of its source 
neuron and the level of activation of the receiver neuron: 

;ij i ja b  =         (9) 

where Δωij – changing the connection of the i-th neuron of the 

vector а(m) with the j-th neuron of the vector b(n) in matrices Wm×n 

and 
T

m nW  ; η – positive normalizing learning factor less than one. 

This method allows adapting the network without adding 
a new class and training (fig. 6) it to recognize already 
existing classes, when the incoming data only slightly differs 
from those recorded in the long-term memory. Thanks to the 
new architecture and the listed modifications, the recognition 
process of the neural network classifier has become more 
adaptive. By adaptability we mean not only resistance to 
noise and the choice of a similarity criterion for determining 
characteristic features, but also the presence of supervised 
training. The latter allows non-identical data to be associated 
with one identifier vector, which makes it possible, when 
using the classifier in the control system of helicopters TE, to 
correctly respond to the presented data. 

 
                               a                                                              b 

Fig. 6. Neural network classifier training results (1 – test; 2 – train): a – 

Accuracy indicator; b – Loss indicator 

Obviously, the small size of the "window" width will not 
allow to correctly recognize the ratings of helicopters TE, 
and the large size of the "window" width L will cover 
neighboring classes, which will reduce the probability of 
recognition of modes. The dependence of neural network 
training error at the output on the size of the time window is 
shown in fig. 7, a. In this case, function (7) was used as the 
activation function, and the number of neurons in the 
comparison layer F1 was taken equal to 35. Similar studies 
were carried out in order to select the optimal number of 
neurons in the hidden layer. At the same time, it was taken 
into account that a small number of them leads to poor-
quality training of the neural network, and a large number 
leads to the effect of retraining of the neural network [11]. In 
fig. 7, b shows the dependence of the training error of the 
hybrid neural network on the number of neurons in the 
comparison layer F1. 



 
                               a                                                                  b 

Fig. 7. Dependence of the neural network training error: a – on the width of 

the time window; b – on the complexity of the neural network. 

When hybrid neural network training, the value of the 
"window" width L = 10 was taken, which corresponds to 2 × 
L = 20 inputs of the neural network. Analysis of fig. 7 shows 
that when solving the problem of classifying (recognizing) 
the ratings of helicopters TE, it is sufficient to take the width 
of the time window equal to 8...12, and the number of 
neurons in the hidden layer 35...45. 

V. RESULTS AND DISCUSSION 

Let us consider an algorithm for solving this problem 
using the example of data recorded on board a Mi-8MTV 
helicopter for the TV3-117 TE. A fragment of the 
reconstructed oscillogram of the thermogasdynamic 
processes of the gas turbine engine is shown in fig. 8, where 
a six-minute flight interval of a helicopter with a twin-engine 
power plant is highlighted. It is assumed that the following 
are the recognized operating modes of the engine: I – 
constant mode; II – acceleration mode; III – throttling mode. 

 

Fig. 8. Fragment of the digitized oscillogram of the thermogasdynamic 

indicators of TV3-117 aircraft TE, recorded on board the Mi-8MTV helicopter. 

The main feature by which the selection of "reference" 
sections of the time series is made when constructing a 
training sample of a neural network is the position of the 
engine separate throttle control lever (ESPL). In what follows, 
from the general group of thermogasdynamic parameters 
shown on the oscillogram, we will consider those of them that 

relate to the first TE (N = 1): gas generator r.p.m. ( )1
TCn  and 

temperature of the gases in front of the compressor turbine 
( )1

GT . These data, together with the time coordinate t, form the 

input vector ( ) ( ) ( ) 1 1
,TC Gny t T= , where  7.268; 13.374t . 

In the process of working with the oscillogram (fig. 8), a 

training interval  7.268min;13.374mintrainT   corresponding to 

two minutes was allocated, within which there are the 
following modes: overclocking mode: t1 = 7.268 min; t2 = 7.318 
min; constant (0.8 nominal) mode: t2 = 7.318 min; t3 = 8.268 
min; throttling mode: t3 = 8.268 min; t4 = 8.308 min. The data 
was taken every second, so the training sample contained 
120 time samples. At the same time, the acceleration and 
throttling modes accounted for only five readings. The total 
observation interval was six minutes (360 time counts). 

When solving the problem of classifying TE rating using 
a neural network, the classification process is carried out in a 
time window. For a qualitative classification, the width of the 
time window must be at least five counts in order to 
recognize the classes of TE technical states. 

According to [5, 6], the preliminary processing of the 
input data includes the normalization of each of the above 
engine parameters yi(t) according to the expression: 

min

max min

;i i

i

i i

y y
y

y y

−
=

−
       (10) 

where iy  – dimensionless quantity, which is in the range 

[0; 1]; yi min and yi max – minimum and maximum value yi. 

To recognize of TE ratings (classes of states) of the 
neural network, it is necessary to select from the values of 
the time series of observations the readings that, within the 

time window ( )iy t , correspond to the steady-state rating 

of TE. This is done by subtracting the average value (moving 
average), within the time window, over the entire interval 

 1 2;t t t , since ( )iy t  in the constant operating mode it is 

identically equal to zero, and in other ratings of TE operation 
it is different from zero: 

( )

1

0 ;

L

i

i

i i

y

y t y
L

−

= = −
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       (11) 

where L – width of the "window", while the optimal size of 
the time window is in the process of experimental research. 

After the neural network training process on the training 
interval (33 % of the sample), it is necessary to check the 
efficiency of its work on the test sample, which is 67 % of 
the entire sample size. From fig. 9 can be seen, the reference 
values of the outputs of the neural network take on the values 
0 or 1, and the actual signals at the output of the neural 
network (due to the inertia of the process of moving the time 
("window") can take continuous values in the interval [0; 1]. 
Therefore, it is necessary to round off the calculated values 
ξ1 and ξ2 to the nearest integer: 

0, if 0.5;

1, if 0.5.

i

i

i







= 
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       (12) 

In this case, errors of the I and II kind may occur, that is, 
the assignment of the state Si to the class Sj. To determine the 
reliability of the classification, you can use the following 
expressions: 

0

100%;error

error

T
K

T
=         (13) 
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1 100%;error

quality

T
K

T

 
= −  
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      (14) 

where Kerror, Kquality – misclassification and quality factors; 
Terror – cumulative time of areas corresponding to 
misclassification; T0 – duration of the test sample (in this 
case T0 = 4.0 min). 

 
a 

 
b 

 
c 

Fig. 9. Classification diagram of the operating ratings of TV3-117 aircraft TE 

(1 – etalon; 2 – proposed hybrid network): a – 1st exit (nTC); b – 2nd exit (TG); c – 

1st exit (nTC) taking into account errors 

Tables 2 and 3 show the results of a comparative analysis of 
classification errors and the quality of classification of TE ratings for 
different classes of neural network architectures. 

TABLE II.  MODE CLASSIFICATION ERRORS FOR DIFFERENT NEURAL 

NETWORK ARCHITECTURES, %  

Neural Network Architecture 

Output 1 

classification 

error nTC (ε1) 

Output 2 

classification 

error TG (ε2) 

Proposed hybrid network 0.1812 0.0733 

Multilayer perceptron 0.4131 0.1322 

Elman network 0.3611 0.1681 

Hamming network 0.4133 0.2988 

Radial-Basic Functions network 0.4772 0.7891 

Hopfield network 0.4258 0.2654 

Kohonen self-organized map 0.4683 0.2913 

Adaptive resonance network 0.5117 0.8409 

Vector signal quantization networks 0.5532 0.9176 

TABLE III.  QUALITY COEFFICIENT OF CLASSIFICATION OF MODES 

FOR DIFFERENT ARCHITECTURES OF NEURAL NETWORKS, %  

Neural Network Architecture 
Output 1  

nTC (ε1) 

Output 2  

TG (ε2) 

Proposed hybrid network 99.99 99.99 

Multilayer perceptron 99.96 99.99 

Elman network 99.96 99.98 

Hamming network 99.95 99.97 

Radial-Basic Functions network 99.95 99.92 

Hopfield network 99.95 99.94 

Kohonen self-organized map 99.96 99.92 

Adaptive resonance network 99.94 99.87 

Vector signal quantization networks 99.95 99.96 

CONCLUSIONS 

Solving the problem of classifying the helicopters 
turboshaft engines ratings at flight modes in the neural 
network basis allows to solve this problem more efficiently 
and operatively with less time and computing resources. To 
solve this problem, it is proposed to use a hybrid neural 
network based on the ART-1 and BAM networks, which 
makes it possible to add new data classes to long-term 
memory without deleting those already stored. Analysis of 
the quality of classifying the helicopters turboshaft engines 
ratings using a neural network based on data obtained in 
flight modes shows that the quality of recognition of their 
operating modes is almost 100 %, and the recognition error 
in this example did not exceed 0.18 % in the test sample. 
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