
EasyChair Preprint
№ 8422

Network Traffic Analysis in Map Reduce for
Bigdata Applications

K Lakshmikanth, K N Prajwalsidhu, H N Rakshitha and
A V Krishnamohan

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 10, 2022

1

Network traffic analysis in Map Reduce for

bigdata applications

Lakshmikanth K 1, Prajwalsidhu K N 2, Rakshitha H N 3 and A V Krishnamohan 4

4 Assistant Professor

1 – 4 Department of computer science and engineering, Siddaganga Institute of

Technology, Tumkur – 572102

1si18cs050@sit.ac.in 1, 1si18cs073@sit.ac.in 2, 1si18cs143@sit.ac.in 3 and

krishnamohan_av@sit.ac.in 4

Abstract. Through the use of parallel map and reduce activities, the map-reduce

programming methodology makes it easier to handle massive amounts of data in

groups of items. While significant work has been done to boost the efficiency of

map reduce tasks, this work ignores the network traffic created during the shuffle

phase, which is vital to boosting efficiency in general. Historically, a hash function

is used to partition intermediate data between reduction activities, which, however,

are not traffic efficient due to the fact that the network topology and the size of the

data associated with each is not considered key code. In this paper, we will examine

how to reduce network traffic costs for a map reduction process by designing a new

intermediate data partitioning scheme. Plus, together let's not forget the hassle of

aggregator location, where each aggregator can reduce the combined traffic of

multiple map activities. A set of assigned algorithms based primarily on

decomposition is proposed to address the problem of large-scale optimization for

large data programs, and a web set of rules is also designed to dynamically modify

the partitioning and aggregation of data. In the end, the simulation results

demonstrate that our suggestions can still significantly lower network traffic, both

online and offline.

Keywords: Bigdata, network traffic, Map Reduce, web application

1. Introduction

Map-reduce programming model has become the best unstructured bigdata

processing. due to its easy-to-use programming paradigm and automated handling

2

of parallel execute. Leading companies like Yahoo!, Google, and Facebook have

adopted the open Hadoop Map Reduce framework for a number of big data

applications, including machine learning, bioinformatics, and cyber security.

Map reduce divides an activity into two phases: map and reduce, each of which is

carried out by a different map and reduce method. To convert the initial input splits

into intermediate data in the form of key/value pairs, map activities are carried out

concurrently throughout the map phase. These key/value pairs are kept locally and

broken up into multiple data divisions, one for each reduce task.

Each reduce job receives a portion of the data partitions from each map task during

the reduce phase in order to produce the final output. There is a shuffle step in

between the map and reduce stages. This stage involves processing, partitioning,

and sending the map phase's generated data to the proper computers for the reduce

phase. The effectiveness of data analytics systems may be severely hindered by the

pattern of network traffic that results from all map tasks to all reduce tasks.

In this paper, we discussed network traffic analysis on the Map-Reduce

programming paradigm using distributed algorithms and hash-based partitioning,

as well as investigating and modelling the same in the cloud.

2. Literature survey

2.1. System

A system is a well-organized collection of interdependent components that are

linked together in line with a plan to achieve a certain objective. Its primary

characteristics include organizing, interaction, reliance, integration, and a main

objective.

2.2. Analysis

A detailed investigation of a system's various processes and their interrelationships

both within and outside the system is referred to as analysis. The definition of the

system's boundaries and establishing whether or not a future system should consider

other connected systems are two components of analysis. Data about the accessible

files, decision-making processes, and transactions handled by the present system

3

are collected during the research. This comprises collecting data by analysing it

using organized methodologies.

2.3. System Analysis

The use of the system method to problem solving with computers is known as

system analysis and design. A system's outputs and inputs, processors, controls,

feedback, and surroundings must all be considered while reconstructing it.

2.4. Existing System

However, this is inefficient since network topology and the data amount associated

with each key are not taken into account. Traditionally, a hash function has been

employed to divide intermediate data between reduce tasks.

Problems with the current system

• No intermediate data retrieval.

• Less security.

2.5. Proposed System

In this study, we investigate data partitioning and aggregation for a Map Reduce

operation, with the aim of minimizing total network traffic. For big data

applications in particular, we describe a distributed technique that divides the

original large-scale problem into several parallelisable subproblems. A dynamic

mechanism for handling data split and aggregation has also been created online.

Lastly, thorough simulation results demonstrate that our methods may significantly

reduce network traffic costs in both offline and online settings.

Benefits of the suggested system

• Lowers the cost of network traffic in both offline and online scenarios.

• Faults tolerance is increased.

4

3. Architecture

Fig. 1. Architecture diagram

Map Reduce programming model works on clusters of commodity hardware;

different clients (N clients) can work on different servers. For our use case we

considered 2 servers and a main server, few clients work on server 1 and file details

and the logical base address of server 1 are stored in SQLYog. Similarly, for

server2, file details (list of files uploaded and downloaded on server 2) and LBA

details are stored in SQLYog. When some other client requests to download a file

then it will directly interact with the main server, all the server 1 and server 2 file

details are fetched from the main server. It will act as metadata for all file details.

3.1. Use case diagram

Fig. 2. User’s use case

User can perform the following activities such as show profile, upload file,

download file, transaction details and sign out. Show profile menu will display the

edit profile and change password options from this user can change his profile

details. The upload file menu will display the options such as upload and delete to

5

upload a new file or delete an existing file detail which correspondingly add the file

contents to SQLYog and remove the existing file contents from SQLYog. Similarly,

download menu will display download option to choose to request file to download

contents from cloud/local storage.

Fig. 3. Admin’s use case

Admin can perform the following activities such as show profile, user details, cloud

details, hash details, transaction details and sign out.

Show profile menu will display the edit profile and change password options from

this admin can change his profile details. The user details menu will display all the

user details that are stored in m_user table. The cloud details menu will display the

all-server details such as region and IP details. Similarly, the hash details menu will

display the hashtag for each file block stored m_HASH table.

3.2. Data flow diagram

Fig. 4. Context analysis

6

Admin can check the user details and cloud details based on his/her activity system

will confirm the results to an admin. User can upload file or download file from

Server 1 or Server 2 all the file details are uploaded or downloaded from top cloud

(Main Server) system will confirm the results to the user.

Fig. 5. Admin session workflow diagram

Admin can login through his/her credentials, Admin entered credential details are

verified with stored credentials in table m_admin if that matches admin will login

to the home page. Admin can view the user details these are stored in a table called

m_user and he/her can view the hash value generated for each block in a file through

m_HASH table. He/Her can also view the transaction details of each user through

m_file table in SQLYog.

Fig. 6. User session workflow diagram

User can login through his/her credentials, User entered credentials are verified

with stored credentials in table m_user if that matches user will login to home page.

Screen will appear with list of activities that user can perform file upload process,

file download process and transaction details. When the user uploaded the file, file

7

details are stored in m_file and corresponding hash details of file stored in

m_HASH. When user downloaded the file corresponding file details and hash

details are matched in local and cloud finally file downloaded. Also, user can check

his/her transaction details stored in table user.

Fig. 7. File Download Process

File download process splits in to several sub tasks, User has to select a file which

needs to be download then server receives request with IP based on look-up table it

will find IP region whether it will belong to Server1 or Server 2. Based on LBA it

will select the blocks for a requested file then it will search each block in selected

region if it is available then fetch the block data, if not available then it will

download all the missing blocks from top cloud that is main server and merge the

block data and gives the final file content.

Fig. 8. File Upload Process

File upload process includes several sub activities in upload a file activity, User has

to select a file that needs to be upload then it will split file into several blocks based

on a packet size (500 bytes) and it will generate hash tag for each block. It will

8

check if the generated hash tag for a block already exists if it is then it will increment

the instance of a block. If not, it will create a new block and store this content in

SQLYog.

4. Results

4.1. Figures and Tables

File storage table

Table 1. m_file_one stores the all-uploaded file as block wise in detail.

Table file_no which gives number of files in table, file_name column gives file

name for each file, file_size this will gives size of each file in bytes, no_blocks this

will gives total number of blocks for each file based on packet size of 500 bytes,

hash_blk_nos this will gives block numbers based on hash value generated on each

block. The remaining columns such as time, date and day will gives the file

uploaded time, day and date by user.

Hash code table

Table 2. m_hash stores the generated hash code of each uploaded file block.

Table hash_unique_code which gives the number of hash codes in the table,

hash_code which gives unique hash tag generated from MD5 algorithm for each

block of max size 500 bytes, unique block name for each block and no_instances

which tells the no of times block content repeated by different files.

9

Result Analysis

Fig. 9. File Upload-Download Process

Initially we are uploading 3 files of sizes 1058,1056,1058 bytes with total size of

3172 bytes. when we are uploading each file, it will divide file content into blocks

based on packet size of 500bytes. As per this logic first file first.txt will divided

into 3 blocks block 31,33 of 500 bytes size and 34 block of 58 bytes. Similarly file

2 second.txt divided into 3 blocks where one block content already exists it’s named

as block 31 with other two different content blocks 42 and 43. The main.txt file

divided into 3 blocks where all the blocks contents are already exists hence blocks

are named as 31,42 and 43. All the blocks are stored in local space and cloud, what

we need to analyse is when we are uploading file total file size is 3172 bytes where

as we are storing only 1614 bytes that means we are saving ~1550 bytes of space

in memory. Whereas while downloading corresponding block instances are fetched

from m_HASH table and downloaded files total size is 1372 bytes.

Simulation Analysis

Fig. 10. General Memory System

10

File size parameter in the X axis and memory space on the Y axis, as per the general

method of storing files and downloading files it will store all file contents of each

file which means the file files list increases i.e., file size increases memory space

also increases since we are storing all the file contents so memory space also

increases. So, the graph results in Linearly.

Fig. 11. Memory Occupied System

File size parameter in X axis and memory space in Y axis, consider 3 files for our

use case first file of size 1058bytes when we uploaded it all the blocks are new

blocks so the graph results in linearly till 1058bytes, after when we upload 2nd file

one of the block out of 3 blocks of the second file is duplicate so only file size

increases to 1558 and memory size remains constant to 1058 only for remaining 2

blocks of the second file it becomes linearly increase since both blocks are of

different contents. X axis and Y axis is 2114 and 1614 respectively. When we

upload third file since all 3 blocks of 3rd file are same so only X axis increases and

Y axis remains constant. X axis results in 3172 bytes and Y axis results in 1614

bytes.

The graph increases linearly when the block contents are new and not exists and it

becomes constant when block contents are already exists.

5. Conclusion and future scope

In order to lower the costs of network traffic for big data applications, we

investigate in this study the combined optimization of intermediate data partition

and aggregation. We provide a three-layer approach to solving this issue and

express it as a mixed-integer nonlinear problem that may be converted into a linear

11

form and addressed using mathematical tools. We design a distributed approach to

address the issue on several machines in order to handle the large-scale system

caused by the vast amount of data. Additionally, we strengthen our method to

handle the map-reduce task in an online manner when some system parameters

aren't provided.

6. References

1. H. Ke, P. Li, S. Guo and M. Guo, "On Traffic-Aware Partition and Aggregation in

MapReduce for Big Data Applications," in IEEE Transactions on Parallel and Distributed

Systems, vol. 27, no. 3, pp. 818-828, 1 March 2016, doi: 10.1109/TPDS.2015.2419671. J.

Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford:

Clarendon, 1892, pp.68–73.

2. Y. Dong, B. Tang, B. Ye, Z. Qu and S. Lu, "Intermediate Value Size Aware Coded

MapReduce," 2020 IEEE 26th International Conference on Parallel and Distributed

Systems (ICPADS), 2020, pp. 348-355, doi: 10.1109/ICPADS51040.2020.00054.

3. M. Supriya, 2017, Traffic-Aware Partition and Aggregation in Map Reduce for Big Data

Applications, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH &

TECHNOLOGY (IJERT) RTICCT – 2017 (Volume 5 – Issue 17).

