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Multi-session lake-shore monitoring in
visually challenging conditions

Cédric Pradalier, Stéphanie Aravecchia and Francois Pomerleau

Abstract Long-term monitoring of natural environments raises significant chal-
lenges due to the strong perceptual aliasing in trees, bushes and shrubs. This paper
reports on the multi-session localization and mapping of a small lake shore using
an autonomous surface vessel equipped with a 2D lidar and a camera. Our pub-
licly available dataset includes 130 autonomous surveys of the 1 km shoreline while
recording lidar, GPS and image data. We build our globally consistent multi-session
map using ICP at multiple scale. The end result is evaluated qualitatively by super-
imposing all the lidar maps, and quantitatively by comparing images taken from the
same pose at different times. The localization and mapping results, as well as the
dataset of image pairs, are made available within our public dataset.

1 Introduction

This paper presents the results of a large-scale experiment on multi-session moni-
toring of a natural environment using a 2D laser scanner on-board an autonomous
surface vessel. Our dataset (Symphony Lake Dataset [8]) was recorded over four
years by autonomously circumnavigating a small reservoir, named Lake Symphony,
in Metz France (see Fig. 1). A total of 130 surveys were realized between January
1st 2014 and November 1st, 2017, corresponding to approximately 130 km of au-
tonomous operations. During these surveys, the vessel recorded 2D laser scans, side
looking images, GPS and compass. From these data, our purpose is to build a con-
sistent map of the lake shore over time.
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Fig. 1: Overhead imagery of the envi-
ronment considered in this paper. Insert:
Kingfisher robot. Bottom: Resulting lidar
map (in meters).

At a time where most mapping
work are focused on 3D data (point
clouds acquired from RGB-D sen-
sors or multi-beam lidars) or visual(-
inertial) SLAM, the originality of our
2D-mapping stems from the type of
environment we are considering for
multi-session mapping. The lake-shore
we are considering consists mostly of
trees, reeds, shrubs and lawn, with min-
imal structure and no corner or straight
lines. Also, because we are observ-
ing trees and shrubs from a distance
of 10 m, the laser beams stochastically
penetrate the environment making it
semi-transparent from the laser point of
view. Regarding lawn, the low ground
gradient makes for grazing laser beams,
which means that small variations in
height or attitude of the sensor lead to large measurement variations. This is am-
plified by the fact that this lake is a flood buffer so the water level can vary by up
to two meters in a short amount of time. These conditions, combined with the large
time span covered by our dataset, makes for a specific set of challenges that will be
discussed in this paper.

Because we deal with a 2D laser in a natural environment, we do not enjoy the
luxury of reliable feature detectors and descriptors. As a result, this work relies on
matching and aligning 2D point clouds, from raw sensor measurements to local ac-
cumulated maps (keyframes) or global maps. This is the domain of Iterative Closest
Point (ICP)[14]. In its principle, the ICP algorithm takes as an input a pair of point
clouds and iteratively estimates the geometric transformation that project the first
point cloud to the second one. The basic assumption is that the two point clouds
have a reasonable overlap, the environment is not changing too much between the
two scans and a reasonable estimate of the transformation is available to start from.
The latter is particularly important if the two former assumptions cannot be guaran-
teed. In the right conditions, ICP can be a very fast algorithm, suitable for real-time.
This paper relies on the implementation available as libpointmatcher [15].

The contribution presented in this paper are three-fold. First, we present a method
for large scale multi-survey lake-shore mapping using 2D laser and we evaluate
it on the publicly available Lake Symphony Dataset [8]. Second, the localization
and 2D environment maps are added to the public dataset as a globally consistent
baseline localization. Third, combining the localization result with the visual part of
the dataset, we propose a 16k-image pair dataset for place recognition and change
detection in a natural environment under significant seasonal changes.
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2 Related Work

Our team initial work on the Symphony Lake Dataset has been presented in [9]. So
far, our objective has been to focus on the visual data to find similar views of the lake
shore between different surveys and use image deformations to align them. First, a
3D model was constructed using visual-SLAM assisted with GPS for scale consis-
tency. Second, images were aligned using first SiftFlow [12] and finally our own
Reprojection Flow [9]. Initial results have been promising, but getting consistently
good alignments beyond four to six months has proven to be a very significant chal-
lenges. It has not yet been possible to bring the full 130 surveys into alignment with
these methods. A review of lake shore monitoring can be found in [9]. [17] also
addresses this problem but focuses on real-time short-term visual odometry from
lake-shore images.

More recently, a review of the performance of off-the-shelf visual-SLAM so-
lutions on this dataset was conducted in [3]. This showed that dense approaches
relying on the minimization of photogrammetric errors are providing the best re-
sults on the very specific images of this dataset. In particular, DSO [6] proved to
be able to build good quality maps on some sub-sequences of some of the surveys,
mostly in summer where the semi-transparency is not so marked. An extension of
DSO has been presented in [18] to use multiple baseline and make it more robust
to the conditions observed in natural environment datasets. All these works have
shown that single-survey visual mapping on this dataset is a very significant chal-
lenge and that we are still far from the large scale multi-survey mapping we are
aspiring to. In comparison, this work use a 2D lidar, which is in general a much
less challenging sensor, but focuses on building the necessary robustness to work
on 130 surveys, from summer to winter, flood to drought, including interaction with
local wild-life, fishermen and low-level mechanical issues. For surveying purposes,
images will then be compared based on the pose computed from the laser data.

Laser-based solutions for multi-session mapping was investigated before using
libpointmatcher, but in urban environments [16]. Only three sessions during
a year were used to investigate the impact of dynamic elements on the representation
of the surrounding. Application of the same algorithm was demonstrated for shore
mapping [10], but only with few surveys. This paper extend on the same idea, but
push the extent of the evaluation using two order of magnitude more surveys than
prior work.

Finally, our approach relies on factor-graphs [4] and specific approaches for
multi-session SLAM have been explored extensively (e.g. [13]). Similarly to those,
we build an extensive network of relations between the surveys and include them in
the factor-graph optimization. However, our evaluation is the only one that focuses
on a mostly natural environment dominated with vegetation.
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3 Method

At a high level, our method is a three-stage process as showed in fig. 2. Initially,
every survey is processed to build an accumulated shore map as a trajectory and
point cloud split into local keyframes (Section 3.1 and 3.2). In a second stage (Sec-
tion 3.3), these survey maps are put in a common reference frame and at the third
stage (Section 3.4 and 3.5), a fine-grained alignment is used to deform the individual
maps into alignment. The following sections will provide details on every stages of
this process as well as our evaluation method.
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Fig. 2: Overview of our method.

3.1 Intra-survey keyframe creation

The first step of our long-term mapping solution is the acquisition of local maps
using a 2D lidar. This has been demonstrated many time in the past using lidar and
ICP. In this case, ICP is applied between one laser scan and the next to estimate
the 2D displacement between the laser scans. Contrary to approaches such as [2],
our framework [15] is implementing simultaneous localization and mapping, hence
accumulating lidar points into a local map. One of the challenges of boat-mounted
lidar mapping is that it is extremely hard to measure odometry (i.e., local displace-
ment with respect to the water surface) on a slow-moving vessel. When there are
enough features in the laser scans, odometry is not really needed and laser odome-
try works precisely. However, in our natural settings and given the large variation in
conditions we are considering, laser odometry fails occasionally and another odom-
etry source can be used to bridge the gap until the lidar sees enough of the envi-
ronment to recover. We resort to the simple expedient of using GPS information
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as an estimate of position. At our speed (lower than 0.5 m/s), GPS-based velocity
and heading estimation are rather unreliable. As a result, when it is available, we
complement the GPS information with heading estimated from a low-cost compass.

Regarding the mapping process, we use the dynamic mapper presented in [16].
Its main advantage, beyond being a mapping framework and not an odometry as [2],
is that it is able to estimate the dynamicity of laser points, hence focusing the align-
ment and localization on the most reliable and stable points in the environment.
However, a lake is a specific environment because of its size with respect to the li-
dar perception. Lidar returns tend to come from only a small section of the shore on
the side of the surveying vessel, and similarly to the “infinite” corridors from [1],
the trajectory and in particular the vessel heading estimate tend to drift if no glob-
ally consistent correction is applied. This correction will be presented in the next
section. However, to make sure the effect of this drift does not impact the quality
of the final map, we resorted to the common solution of separating the map into
keyframes. This keyframes correspond to the accumulation of a local map over a
number of laser scan or a given distance. These cut-off point are chosen to make
sure that the orientation drift within this window is minimal, guaranteeing that the
map is locally structurally consistent within a keyframes. This is important from a
computational perspective because all the laser scans that have been involved in the
creation of a keyframes can be forgotten. All their information is considered sum-
marized in the keyframe map and the latter can be considered immune to the local
trajectory adjustments in the various step of optimization that will be presented in
the following sections.

The output of this intra-survey mapping is, for each survey, a vessel trajectory,
a list of keyframe coordinates and for each keyframe an associated point cloud.
Combining the point clouds from all the keyframe leads to an environment map as
shown in Fig. 3.

Fig. 3: ICP maps from the survey on February 2nd, 2016, axes in meters. Left: map
without using GPS correction, which is locally accurate but accumulates drift over
the 1 km path. Right: map with GPS correction showing global consistency because
of the use of ICP and factor-graph optimization. The colored line is the trajectory,
colored as a function of time.
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3.2 Drift control from GPS and Factor-Graphs

Despite its local precision, lidar-based odometry tends to slowly drift when not pro-
vided with absolute measurements acting as anchors. This is illustrated in Fig. 3.
Two types of measurements can play this role: either absolute information such
as GPS or compass, or loop-closure detection. Our solution is built on a factor-
graph [4] implementation using G2O [11]. The optimized variables are the poses of
the keyframes (SE(2)). The absolute observations are the GPS measurement (IR2),
complemented with the compass observation to make it a full pose in SE(2). The
inter-keyframe transformations from lidar odometry (SE(2)) are used to link the es-
timated poses. These are estimated a first time when a new keyframe is created by
recording the position of the boat in its original keyframe at the time of the transi-
tion. The transformation is then refined when a keyframe is completed by using ICP
between the keyframe point cloud and the point cloud from the previous keyframe.

An example of the resulting map is shown in Fig. 3 Right, while Fig. 4 gives an
impression of all the maps generated at this stage.

In practice a new keyframe starts every 20 m and this optimization is fast enough
to be run in real-time in the background every time a new keyframe is inserted.
Because it is running continuously, most of the graph is already stabilized and G2O
only requires 3-5 iterations to converge after each keyframe.

The output of this stage is the same as before but the keyframe poses have now
been adjusted to account for the absolute measurement. Note that we make the as-
sumption that the keyframes are adjusted by small increments which are not visible
at the scale of the point cloud inside a keyframe. Hence, the adjustment result is not
used to refine the local point cloud and the recorded trajectory inside the keyframe.

3.3 Global map alignment

From the previous sections, we have now constructed a set of 130 lake-shore maps
(Fig. 4), all of them internally consistent up to the trade-off between the GPS and
lidar-ICP precisions. It can be noted that some maps are incomplete. This is the re-
sults of the survey ending before a full circumnavigation, typically due to hardware
errors. Our ultimate goal is to align all of these to a level where we can constitute
pairs of images viewing the lake shore from the same pose. To this end, we intend
to build a massive factor-graph optimization problem where the keyframes in all of
the 130 surveys are linked with their counterparts in other surveys with estimate of
the transform between the keyframes estimated by ICP between the keyframe point
clouds. The detail of this process will be presented in Section 3.4. However, because
the keyframe point clouds have been acquired at different time of the year, some-
times with more than three years of interval, and because the keyframes may have
a minimal overlap, ICP does not converge reliably unless it has a reasonable initial
estimate. This section presents how this estimate is obtained.
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Fig. 4: All maps and trajectories after intra-survey ICP and GPS-based map stabi-
lization

The map obtained from intra-survey mapping (Section 3.2) are optimized to be
close to the GPS measurements, assuming a 10 m uncertainty on GPS. Hence, to
build an initial estimate of keyframe pose, we need to estimate the precise offset
between the maps from two surveys. Note that, because of the GPS constraint and
the size of the environment we are considering, the optimization gives very little
freedom in rotation and the map offset is mostly a translation. To obtain this offset,
we again use a two-stage process: first we use ICP to align the boat trajectories con-
sidered as point clouds and starting from this offset estimate, we try to align the map
point clouds. It is important to remember that the global maps are obtained by ag-
glomerating the point clouds from all the keyframes so they may be large and noisy
because of the natural environment. Running ICP directly on these maps, without
the trajectory alignment, works sometimes but lacks robustness and precision. Nev-
ertheless, the boat is running an approximate model-predictive control system to
follow the lake shore at a fixed distance despite its significant dynamic. This means
that trajectories tend to be very similar between surveys and very smooth. We take
advantage of this by running a first alignment between the trajectories using ICP.
We can then use the resulting transformation between trajectories as initial estimate
for running ICP between the global point clouds.

After this level of alignment of the surveys, the map point clouds are globally
aligned but they may have a section where the map orientation drifted and was not
corrected by the GPS measurements. Fig. 5 shows aligned keyframe trajectory and
point clouds, but despite the global alignment local drift is still visible.
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Fig. 5: Left: visualization of the keyframe trajectory and point clouds for two sur-
veys (i.e., map 160418 and 160426) after global alignment. Right: Visualization of
map 140106 (in cyan) compared with 171030 (in purple) after inter-survey map
alignment. The lines on the top part of 140106 are shore lines visible because of the
high water level on this day.

At this end of this stage, we have obtained all our keyframes in a common refer-
ence frame where they can be compared. The trajectory and the point clouds have
not been modified.

3.4 Iterative Multi-Session SLAM

At this stage, all the keyframes from all the surveys are now in a common refer-
ence frame. In order to align all the surveys and build a common map combining
information from all the surveys, we will resort once again to a large factor-graph
structure. The variables to be optimized will be the keyframe poses in the common
frame. The intra-survey information will provide estimate of the transform between
successive keyframes within a survey, as well as GPS estimates. What remains to
be estimated are transforms between pairs of keyframes in different surveys. Non-
consecutive pairs from a given survey are also considered here. They correspond to
situations where the boat revisit the same place at two different times in the survey.

To estimate the transform between a pair of keyframes, we will take advantage
of our ICP framework and try to align the keyframe point clouds. To achieve a
satisfactory robustness, we need to be very strict and require at least 70 % of overlap
between the aligned point clouds. In our setup, we have 130 surveys, each containing
of the order of 80 keyframes, resulting in approximately 104 poses to optimize, and
naively 108 ICP pairs to consider.

In order to make the estimation of ICP links tractable, we take advantage of the
common reference frame and for each keyframe we use a nearest neighbor search
to find keyframes on which point clouds we can apply ICP. Note that all these ICP
instance are run using the estimated keyframe pose in the common reference frame
as initial guess of the transformation.

Once all the keyframe links have been added to the factor-graph problem, the
optimization can be driven to its minimum. This optimization locally deforms the
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map from every survey to match all the constraints from intra- and inter-survey ICP
matches while accounting for the GPS measurements. The tuning of the relative
weights is tricky here but we consider that the intra-survey transformation from
consecutive frames are the most reliable, inter-survey transformations are a bit less
reliable but still much better than GPS.

However, because the survey map are locally modified, these deformations can
lead to a new set of neighbors to every keyframe. Among these new neighbors may
be some for which the transformation can be estimated by ICP. To account for this
new information, the neighbor search and optimization are run iteratively: using the
new pose estimates, a new KD-tree[5] is built, out of which new set of neighbors
are extracted. ICP is then applied to those that have not been considered yet and a
new factor-graph problem is built and optimized. The iterations stop when no new
neighbors can be found. In our setup, every iteration adds approximately 10 % of
the number of neighbors found by the previous iteration, leading to a bit more than
107 ICP evaluation among which 1.4× 106 are found to have more than 70 % of
overlap and are used in the final factor-graph problem.

Fig. 5 shows an example of pairs of aligned maps reconstructed from the op-
timized keyframes. Fig. 8 shows the consistency of the reconstruction in a map
containing all the point clouds from the 130 surveys.

The output of this stage is the optimized poses of all the keyframes in a common
reference frame, as well as the point cloud map resulting from every surveys.

3.5 Local trajectory optimization

As mentioned earlier, the optimization stages from the previous sections only affect
the keyframe poses but do not adjust the boat trajectory within the keyframes. In
this section, we detail how the trajectory can be adjusted to make sure it smoothly
goes from the origin of a keyframe to the origin of the next one.

The ICP-based odometry from Section 3.1 provides a set of poses originating at
the origin of a keyframe and reaching the next keyframe. These are the variables we
intend to optimize in this section. In addition to making sure that the end of the local
trajectory reach the next keyframe, we also take the opportunity of smoothing the
trajectory during this stage. The lidar poses are acquired at 40 Hz on a vessel moving
at most at 0.3 m/s, so there is less than 1 cm of displacement between lidar scans.
The boat has very little control authority in rotation due to the water resistance and
propeller arrangement so the rotation between lidar scans is rarely larger than 0.01
rad. Despite these mechanical constraints, lidar measurement noise and in particular
the semi-transparency of the environment, make the ICP somewhat noisy at the 5-
10 cm scale.

To smooth the ICP trajectory, we took inspiration from [7] and decided to first
approximate the local trajectory by a cubic B-spline with regularly sampled control
points every 1 s (i.e., consistent with the low dynamic of our system). The B-Spline
approximation can be conducted on every SE2 pose parameters independently and
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then a linear correction can be added to make sure the end pose reach the next
keyframe. Fig. 6 illustrates this process. Note that because these are the trajectories
of a boat instead of a wheeled vehicle, the boat heading is not necessarily exactly
aligned with the local tangent to the trajectory. At the end of this stage, we now have
all the keyframes, point cloud maps and boat poses in a globally consistent frame
with smooth trajectories.

Fig. 6: Example of local trajectory optimization between two keyframes identified
by the red dot and arrows. The purple sequence of pose is characteristic of unfiltered
ICP result while mapping.

3.6 Image pair selection

One use of the trajectories from the multi-session localization and mapping frame-
work described above is to select images looking at the same shore point at different
times. From a computer vision point of view, it also helps if the images are taken
from the same viewpoint or at least from the same optical axis in order to reduce
the effect of parallax. Given two optimized and smooth trajectories, it is straight-
forward to select pair of nearest positions. Intersecting the optical axis of a camera
with the trajectory in the second survey gives us neighboring poses with near iden-
tical optical axes. It is then possible to use a homography to virtually rotate the two
viewpoints so as to make the image planes parallel.

An example of the resulting images can be seen in Fig. 7. The perspective trans-
formation of the selected image is made visible by the black pixels which were
outside of the camera field of view in the untransformed images.
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Fig. 7: Matching images from different days. Left: image of reference taken in Jan-
uary 6th, 2014. Middle and Right: matched and rotated images taken respectively on
June 13th and June 25th, 2014.

4 Results and experiments

4.1 Global map alignment

The main challenge of multi-session mapping over a large time span is to maintain
a consistent map. We illustrate the performance of our approach by superimposing
the point clouds of a map pair in Fig. 5 and of all the 130 maps in Fig. 8. As can be
observed, the local details are clearly represented and aligned precisely in the pair-
wise figure. With that many maps, the level of noise increase significantly. A lot of
dynamic features in open water can be attributed to wild-life interacting with the
boat. On the shore, the noise level is due to uncertainty in the ICP output combined
with change of appearance resulting from variation in the water level.

Our ICP library (libpointmatcher) also estimates if a point is dynamic or
static based on how often a laser beam goes “through” it (see [16] for details). In
our particular environment, most points belongs to reeds, bushes or shrubs which are
semi-transparent from the laser point of view. As a result of this complexity (often
resulting in “ghost” points), most points are considered dynamic using the method
cited above. When plotting the histogram of the log likelihood of a point being dy-
namic, we observe a distribution between −4 and −14. Selecting only the point with
a dynamic likelihood below 10−9 results in a qualitative map improvement depicted
in Fig. 8. The thinness of the shore lines across seasons highlight the precision of
the performance of the iterative global alignment proposed in this paper.

4.2 Image pairs dataset

As mentioned earlier, the Symphony Lake Dataset was not acquired with a high
precision localization system, so there is no direct ground truth to compare our
multi-session SLAM results to. In order to provide a quantitative metric anyway,
we elected to work on the lake shore images. To this end, we built a dataset of
image pairs by selecting randomly a pair of surveys, a reference view in the first
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Fig. 8: Final survey combining all maps. Top: unfiltered point clouds. Bottom: fil-
tered maps keeping only points with a low likelihood of dynamicity. The consistency
and level of details is particularly visible on the island where the visible shoreline is
mostly vegetation.

survey and then using the approach presented in Section 3.6 to find the correspond-
ing rotation-compensated image in the second survey. The two resulting images are
then presented to a user who needs to click on a point in each image representing
the same physical location in the world. Because the work presented here is only
concerned with 2D, we can get an estimate of the alignment error by comparing
the horizontal coordinates of the clicked points. With a perfectly consistent pose
across surveys, and neglecting translation inaccuracies, the horizontal coordinates
of physical objects should not change after compensating for the boat rotation with
the homography. Note that the pixel coordinate error can be converted to angular
error using the camera intrinsics. For reference, our camera has 704 pixels to cover
a 42◦ field of view.

The histogram of the distribution of the alignment error is depicted in Fig. 9.
This was computed by hand-labeling 265 image pairs, out of which four were con-
sidered too uncertain to be included. These are images with very heavy seasonal
changes, lighting changes or sun glares, for which the authors were not able to iden-
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Fig. 9: Left: Image alignment error distribution in degree for 265 random image
pairs across multiple seasons. Right: Example of a perfect alignment with an auto-
matically generated winter insert on a rotation-compensated summer image.

tify precisely a matching physical place. This does not necessarily means that the
alignment is incorrect so these four images were removed from the statistics. Out
of the remaining 261 images, the median error is 0.00◦, the mean -0.25◦ with a
standard deviation of 4.7◦. Overall, 90 % of the pairs exhibit an absolute alignment
error lower than 8◦. The composite picture in Fig. 9 shows how a high quality of
localization can be used to highlight seasonal changes in this natural environment
dataset.

Because of the significant challenges observed when hand-labeling these image
pairs, a dataset of 16k image pairs generated using the above approach has been
added to the Symphony Lake Dataset[8] web page1. This dataset covers a very wide
range of appearance change of this natural environment over a span of four years and
it could be particularly useful to evaluate place recognition algorithms. Additionally,
after considering the image alignment precision evaluated in this section, the maps
and boat trajectories have also been added to the Symphony Lake Dataset web page
and can be used as a reference localization system by others interested in working
with this challenging dataset.

5 Conclusion

In this paper, we presented our approach to large scale multi-session SLAM us-
ing a 2D laser and ICP in a natural environment. The end-to-end approach uses
ICP at multiple scales from local keyframe construction from individual laser scans
to inter-survey keyframe alignment. The end results produces a set of globally
consistent 2D maps and trajectories which are precise enough to select rotation-
compensated images of the lake shore over multiple seasons. These results have
been used to add reference maps and localization to the publicly available Lake

1 http://dream.georgiatech-metz.fr/?q=node/76

http://dream.georgiatech-metz.fr/?q=node/76
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Symphony Dataset as well as to create a new dataset of pairs of images of the lake
shore that may be used for the evaluation and training of natural place recognition
algorithms. From the stepping stone presented in this paper, we intend to keep ex-
ploring Visual-SLAM algorithms that can work with our images. Automated image
alignment (without laser), change detection and change segmentation are also top-
ics that may be investigated with the help of this visually challenging environment
monitoring dataset.
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