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Abstract—Collaborative filtering (CF) became a prevalent
technique to filter objects a user might like, based on other
users’ reactions. The neural network based solutions for CF
rely on hyper-parameters to control the learning process. This
paper documents a solution for hyper-parameter optimization
(HPO). We empirically prove that optimizing the hyper-
parameters leads to a significant performance gain. Moreover,
we show a method to streamline HPO while substantially
reducing computation time. Our solution relies on the separa-
tion of hyper-parameters into two groups, predetermined and
automatically optimizable parameters. By minimizing the later,
we can significantly reduce the overall time needed for HPO.
After an extensive experimental analysis, the method produced
significantly better results than manual HPO in the context of
a real-world dataset.

Keywords-artificial intelligence, machine learning, rec-
ommender, collaborative filtering, hyper-parameter, hyper-
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I. INTRODUCTION

Predicting what the users would like to buy is crucial for
e-commerce. To create those predictions, often unsupervised
machine learning is used. To be able to recommend objects
(items to buy) to users, the machine learning models often
rely on collaborative filtering (CF) [1].

CF algorithms filter objects a user might like based on
the reactions of users with similar tastes. To quantify the
user’s taste, we can leverage user ratings [2], [3], or we can
calculate their preferences based on the recorded events. For
example, we can record and quantify purchasing or viewing
an object in an e-commerce shop [4], [5].

Similar to other machine learning algorithms, neural
network-based CF algorithms need hyper-parameters to con-
trol the learning process. Unlike other parameters, such as
node weights, hyper-parameters are not obtained via train-
ing. Moreover, most hyper-parameters cannot be inferred
while the training takes place. Unfortunately, significant
performance variation can be attributed to hyper-parameters,
therefore optimizing those parameters is crucial to the im-
plementation of CF algorithms [6], [7].

Hyper-parameter optimization (HPO) is the ubiquitous
term for selecting and fine-tuning a tuple of hyper-

parameters, with the intent of finding the optimal model.
By optimal model we mean a model to minimize the loss
function [8], [9].

CF research papers usually don’t address the HPO issue,
probably because of the time-intensive nature of traditional
HPO. Dacreama, et al. [10] observed that, in 2019, com-
monly used CF datasets contain only a few hundred thousand
ratings. Even for those ‘tiny datasets’, as Dacrema et. al.
calls them, HPO ‘can take days or weeks’.

Other authors, for example, Ebesu et al. [11], provide the
optimal hyper-parameters for the proposed method without
any indication of how those parameters are obtained. In
contrast, others omit this part of the research from their
published papers. For instance, Zheng et al. [12], docu-
mented only one set of hyper-parameters, to be used for
all datasets. When a different group of researchers tried
to reproduce the results using those hyper-parameters for
HetRec and Amazon Instant Video datasets, the baseline
algorithms outperformed the proposed SpectralCF algorithm
[10].

To address the lack of hyper-parameter optimization in
the literature, we provide a speed-optimized HPO method
for CF, complete with a PyTorch-based implementation. The
hybrid HPO solution presented in this paper can be used
to find the best hyper-parameters for an Adam optimizer-
based recommender system or one of the other modern
stochastic gradient descent (SGD) optimizers. The solution
is innovative in the sense that it requires less computation
time, while producing significantly better hyper-parameters,
when compared to related techniques.

The method relies on selecting the minimal amount of
optimization candidate hyper-parameters and pruning trials
to achieve time-efficiency. A trial is a training run on the
train and validation dataset with a unique set of hyper-
parameters. By pruning, we mean automatically stopping
trials if the best batch result is worse than the median of
batch results of previous trials at the same step. Moreover,
during the experimental assessment, we empirically prove
that there is no significant correlation between the number
of factors and the dropout probability, two commonly used



CF hyper-parameters. Therefore, we suggest independent
sampling as a better approach than relational sampling for
tuning hyper-parameters.

The structure of this paper is the following: After an
overview of related works in Section II, we present our
hybrid approach in Section III, followed by an experimental
assessment on a real-world CF dataset in Section IV. We
conclude the paper with Section V.

II. RELATED WORKS

In 2019, we find several notable research papers that
address the topic of HPO, mostly related to automatic
HPO. Shin, et al. [8], proposed a stage-based execution
strategy, proving that it significantly outperforms the trial-
based method, using only 15% of the graphics processing
unit (GPU) hours. This leads to shortening the overall
training time to 23.86% of the trial-based training time. They
used the CIFAR-10 tiny image dataset in their experiments.
Although the image recognition problem requires different
solutions than CF, their work showcases the benefits of
automatic HPO, and the stage-based strategy, which served
as a starting point for our research.

With the widespread adoption of machine learning, the
budget constraint became apparent. Two different teams of
researchers approached HPO as a hard resource constraint
problem [13], [14]. Contrary to pruning the neural network
(NN) size, as suggested by Lemaire, et al. [15], new research
suggests that pruning trials seem more robust and more
promising. Instead of a budget constraint, our research
focuses on minimizing time given the available resources.
This way, we achieve a more generic solution, which is
also easier to improve and test. Instead of trying to find
the best performance score on the given hardware, we try
to minimize the time needed to reach a target performance
score. Any improvement over our current solution needs to
produce the same or better performance score under a shorter
time-span on the same hardware. For obvious reasons, this
kind of time reduction also leads to budget reduction. Our
approach is even closer to the traditional computational time
complexity-based evaluation of algorithms [16].

Akiba, et al. [17], introduced a new design-criteria for
next-generation hyper-parameter optimization software. We
note that the automatic component of the hybrid HPO
presented in this paper follows similar principles. The
three main principles are the define-by-run Application
Programming Interface (API), which allows dynamic hyper-
parameter space construction, the efficient searching and
pruning strategy, and the versatile architecture.

Contrary to the researchers mentioned above, we apply
HPO to collaborative filtering, instead of image recognition.
While we rely on the framework created by Akiba, et
al. [17], for the automatic search, we don’t apply the
procedure to all hyper-parameters. Instead, we suggest a
hybrid approach to reduce the hyper-parameter space before

running automatic hyper-parameter optimization, leading to
a significantly reduced search time.

III. DEVELOPED APPROACH

The goal of the developed approach is to find the ideal
hyper-parameters for the neural network (NN) trainer algo-
rithm in order to minimize the loss function on the validation
dataset. The steps of the developed approach are detailed in
the remainder of this section.

A. Establishing the Ground Truth

For large datasets holdout validation is recommended
[18]. While k-fold cross-validation can lead to minor ac-
curacy improvements over holdout validation (0.1 − 3%
better accuracy), the time trade-off for large datasets can be
significant. As we mentioned above, our goal is to develop
a time efficient approach, therefore we use a special case
of holdout validation, namely, the three-way data split. The
remainder of this section details the previously mentioned
steps.

The three-way data split separates the tests set from the
train and validation set. Only the final output of the HPO is
evaluated using the test set. The validation set is used during
hyper-parameter optimization. It’s worth noting that for
small datasets the three-way data split is not recommended,
because it produces a significant variance in parameter
estimations [19].

Let Y be our ground truth dataset, a sparse matrix. The
rows of the matrix contain the preference of the users,
and the columns the objects. As a result, Yu,o contains
the preference of user u for object o. This preference can
mean the likelihood of purchase, a given rating, or any
measurement of the relationship, as long as it is positive.
Zero value means that the dataset contains no information
about the relationship between user u and object o. Ytrain,
Yval, and Ytest are sparse matrices of the same shape
as Y , containing the train, validation and test data-points
respectively.

B. Defining the Neural Network Solver Function

To solve the problem of HPO, we define the objective
function to be minimized, known as the loss function. Due
to the nature of CF, there are no considerable outliers in CF
datasets.

Let Ŷ be the prediction of the algorithm about ground
truth Y , and q the number of data points being predicted
in the batch. The usual loss function for CF is the mean
squared error (MSE). We calculate it on q data points. This
is called the means squared prediction error (MSPE), defined
in (1). Mean absolute error could also be used as the loss
function is, but most CF data has some perturbation, and a
small perturbation may have a significant impact on MAE



compared to MSPE.

MSPE(Ŷ , Y ) =
1

q

n+q∑
a=n+1

(Ya − Ŷa)2 (1)

Next, let backpropagation() be the function respon-
sible for backward propagation of errors [20] and
let Adam(lr, β1, β2) be the Adam optimizer. We use
Adam(lr, β1, β2) by Kingma, et al. [21], to minimize the
loss function. This leads to the first three hyper-parameters in
our hyper-parameter tuple: lr ∈ (0, 1) denoting the learning
rate, and β1, β2 ∈ [0, 1) denoting the decay rates for moment
estimates. It’s worth noting that the Adam optimizer was
chosen, because it converges much faster than AdaGrad or
RMSProp algorithms, it can handle sparse gradients on noisy
problems, and, most importantly, the hyper-parameter tuple
to be optimized automatically will contain fewer parameters
[22]. This is owed to the default values of lr, β1 and β2,
which provide the desired results without tuning for most
datasets [21].

The model is trained for a variable number of epochs. Let
epochs ∈ N>0 denote the number of times the entire dataset
Ytrain is passed both forward and backward through the NN.
Let batch size ∈ N>0 denote the number of samples in
each batch. By batch we mean the subset of the data-points
which are evaluated before the model’s internal parameters
are updated. During each ‘pass’, |Ytrain|

batch size batches are taken
from Ytrain, where |Ytrain| is the size of set Ytrain.

Next, we need a regularization to prevent over-fitting
to the training data, which would lead to reduced valida-
tion accuracy. L2 regularization is not effective for Adam,
as demonstrated by Loshchilov, et al. [23]. Since 2017,
decoupled weight decay regularization was suggested for
this problem [23]. However, in 2020, Wei et al. [24],
demonstrated the benefits of dropout. Decoupled weight
decay forces all weights to be close to 0, but not equal
to 0. On the other hand, dropout, as the name suggests,
means eliminating units and their connections from the
neural network to prevent over-fitting [25]. Let D() be a
dropout regularization function, randomly zeroing some of
the elements of the input tensor with probability P0 ∈ [0, 1)
using samples from a Bernoulli distribution. Please note,
that each factor will be zeroed out independently on every
forward call. [24].

Moving forward, let Embedding(a, a′) be a lookup func-
tion, with the scope of retrieving the embeddings, where
a is the size of the dictionary of embeddings, and a′ is
the size of each embedding vector. Let nf ∈ N>0 be
the number of factors. Let userf contain the user fac-
tors, while users denotes the set of users in the batch
(userf ⇐ Embedding(users, nf )). Let userb be the
user bias (userb ⇐ Embedding(users, 1)). Similarly, let
objectf contain the object factors, and objects the objects
found in the batch (objectf ⇐ Embedding(objects, nf )).

Finally, let objectb be the object bias (objectb ⇐
Embedding(objects, 1)).

The NN solver function calculates the loss lossval using
MSPE(Ŷ , Yval), where Ŷ is the prediction defined by Ŷ =∑

(D(userf ) × D(objectf )) + userb + objectb. Ŷ is the
prediction of Algorithm 1, summarized below:.

Algorithm 1 The NN solver for CF
function CF(Ytrain, Yval, lr, β1, β2, batch size, nf , P0 )

for all batch ∈ Ytrain do
userf ⇐ Embedding(users, nf )
objectf ⇐ Embedding(objects, nf )
userb ⇐ Embedding(users, 1)
objectb ⇐ Embedding(objects, 1)
Ŷ ⇐

∑
(D(userf ) × D(objectf )) + userb +

objectb
loss⇐MSPE(Ŷ , Ytrain))
backpropagation(loss)
Adam(lr, β1, β2)

lossval ⇐MSPE(Ŷ , Yval))
return lossval

C. Identifying the Hyper-Parameters

Let PN = {P1, P2, . . . , Pη} be the set of all hyper-
parameters (the convention used by Wang, et al. [14]). In
this research we differentiate between two sets of hyper-
parameters. Let the automatic optimization candidate set
be PO, and let the manually set or predetermined hyper-
parameters be PM , so that PO ∪ PM = PN , and
PO ∩ PM = ∅. The PN set’s cardinality is |PN | = η,
where η is the total number of hyper-parameters in our
method.

In our hybrid HPO approach we aim to minimize |PO|,
because every additional hyper-parameter in PO leads to
a significant increase in time needed to find the optimal
parameters. Because |PO| + |PM | = η, minimizing PO
can be achieved by maximizing PM . To maximize PM ,
we select an optimizer. Currently the best optimizer known
to the researchers for this purpose is the Adam optimizer
as introduced by Kingma et al. [21] (i.e., the one we
described above). With this choice, we reach η = 6, and
PO = {lr, β1, β2, batch size, nf , P0}.

There is no default good value for batch size, but we still
consider it as a member of the PM set, because we can find
the ideal batch size based on the hardware used for training,
without the need for automatic HPO. When it comes to
determining the batch size for GPU-based training, the first
approach is to try larger batch sizes, because that allows
faster training due to the parallelism of GPU. However,
increasingly larger batch-sizes have a negative effect on the
generalization, resulting in worse validation error, if all other
hyper-parameters are kept the same. Moreover, an increasing



batch size leads to an increasing percentage of time spent
on getting training batches (‘get train batch’ step of the
implementation). In the next section we will determine this
value for the test GPU empirically.

We can conclude that PO = nf , P0, in other words,
we need to decide the number of factors and the dropout
probability automatically.

To determine dropout probability we first need to define
the search range. Very high dropout values would defeat
the purpose of the algorithm and would lead to very slow
learning times. On the other hand, setting this value to zero
would lead to over-fitting the train data, which is exactly
what was intended to be avoided in the first place. On the
other hand, we can’t be certain that a specific dataset needs
dropout to begin with. Therefore, we will trial zero dropout
as a possibility. Based on this we suggest the following:
P0 ∈ [0, 0.8].

To define the search range for the number of factors,
nf ∈ N>0. While we will consider nf = 1 for the sake
of the following experiments, this approach results in an
oversimplified linear model, where each user and each object
has a single scalar multiplier and a single scalar bias. This
model is the least computationally complex to apply, but as
a drawback, it leads to a very low recall. A recommender
engine based on this linear model would be reluctant to
recommend any object, unless there is a very good certainty
that it will be purchased, reducing both the number of true
positives and false positives. This is not the desired behavior
for most use cases. At the time of writing this paper, we
have found no scientific method on setting the number
of embedding dimensions. Google recommends setting the
embedding vector dimension to the fourth root of the number
of categories, as a ‘general rule of thumb’ [26]. We have
doubled that number as the upper boundary of the search
space, but lower numbers are suggested to save time in real-
world scenarios.

We call the training and validation of any given {P0, nf}
value pair with algorithm 1 “a trial”. Theoretically, a trial
of each possible value of P0 and nf (to a certain precision),
for many epochs, would result in finding the best PO′,
but that is obviously not optimal. We need a way to stop
trials as soon as we know that they will not produce better
results, compared to what we have achieved previously.
Therefore, we introduce a pruner, also known as automated
early stopping (Liaw et al. [27]). A pruner is a method
which stops the trial if the best batch result is worse than
the median of batch results of previous trials calculated at
the same step.

D. Establishing the Sampling Strategy

The last element of our HPO solution is the sampling
strategy. There are two valid sampling strategies: inde-
pendent sampling, and relational sampling. Independent
sampling assumes no correlation between hyper-parameters.

Conversely, relational sampling, assumes a relationship be-
tween the hyper-parameters [28]. We have found no statis-
tical evidence for any relationship between our two hyper-
parameters, so our sampler must be based on independent
sampling. The recommended Optuna sampler fits this crite-
ria, and it is based on Tree-structured Parzen Estimator by
Bergstra et al. [29], [30].

IV. EXPERIMENTAL ASSESSMENT

A. Implementation Details

We have used Python (version 3.7.7), the PyTorch open
source library (version 1.5) and the PyTorch Lightning
lightweight wrapper [31] (version 0.7.6) to implement the
solution described in the previous section. The Jupyter
Notebooks can be found on the project’s repository on
GitHub: https://github.com/WSzP/uxml-ecommerce

The test machine used in experimental assessment has
the following configuration: Intel Core i9-9900K CPU @
3.60GHz; 64 GiB RAM; NVIDIA GeForce RTX 2080 Ti
GPU with 11GiB VRAM.

B. The Dataset

To validate the developed approach documented in this
paper, a CF dataset of considerable size was needed,
which has no established set of hyper-parameters to influ-
ence the search. We created the dataset from real world
eCommerce data, published by Kechinov in December 2019.
The ‘eCommerce Events History in Cosmetics Shop’ dataset
[32] found on Kaggle contains 8738120 rows and 9 columns.
It is worth noting that the method described in this paper
is effective regardless of the size of the dataset, but the
accuracy will increase with the size.

To convert event data to a sparse matrix we used the data
reduction method described by Szabo and Genge [33]. Then,
we have applied the three-way data split on the sparse matrix
of user-object pairs. Each data-point had a 0.7 chance to be
in the train set, a 0.15 chance to be in the validation set,
and a 0.15 chance to be in the test set.

C. Evaluation Metrics

The goal of the evaluation metrics for CF is to evaluate
how accurately the recommender engine predicts unknown
data-points, in other words, how close is the output of the
machine learning model to reality. It is worth noting that
we have used multiple methods to calculate most metrics
to ensure that no calculation method returns significantly
different results.

To ease comparison with other related techniques, root
means squared error is also given for test results in this
paper, but that is simply the square root of the MSPE. For
testing purposes, the mean absolute error was calculated us-
ing Eq. (2) for q data points. Please note that for comparing
MSPE, RMSE, and MAE results, the smaller value is better.

https://github.com/WSzP/uxml-ecommerce
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Figure 1. Baseline matrix factorization validation loss.

MAE(Ŷ ) =
1

q

n+q∑
i=n+1

|Yi − Ŷ | (2)

The full test dataset precision is calculated by dividing
the number of true positives by the number of all positive
results. The full test dataset recall is calculated by dividing
the number of true positives with the total of true positives
and false negatives. Finally, F1 is the harmonic mean of
precision and recall (Eq. (3)). Precision, recall, and F1 values
are considered better if the results are closer to 1.

F1(Ŷ , Y ) = 2
Precision(Ŷ , Y )×Recall(Ŷ , Y )

Precision(Ŷ , Y ) +Recall(Ŷ , Y )
(3)

D. The Baseline Matrix Factorization Training

Dacrema, et al. [10], warned the research community in
2019, about a worrying trend in CF research: Among the
18 deep learning CF algorithms ‘that were presented at top-
level research conferences in the last years’, only 7 methods
could be reproduced with reasonable effort. 6 of 7 can
be outperformed with simple heuristic methods. While the
remaining 1 outperformed the baselines, did not outperform
a non-neural linear method, at least not consistently.

To serve as a baseline we have built a baseline matrix
factorization model, based on established related techniques
[34]–[38]. The model uses SGD similar to Bottou’s solution
[39]. It is an unbiased implementation with no regulariza-
tion; the simplest form of SGD for the CF problem at hand.
As shown in Fig. 1, the validation error improves with the
increase of the learning rate, regardless of how many epochs
are used to train the model. The difference between the
validation loss for 0.9, 0.99, 0.999 and 0.99999 learning
rates gradually decreases, but it is still present after 100
epochs, as demonstrated in Fig. 2. The fact that close to
1 learning rate produces the best validation and train loss,
suggests that momentum is needed [40]. Overall, the best
validation error was produced by learning rate 0.99999, but
it had nearly identical results after 100 epochs (i.e., 0.999).

E. Manual Hyper-parameter Optimization

We conducted a manual hyper-parameter optimization
experiment and a grid search prior to the hybrid method
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Figure 2. Baseline matrix factorization validation loss (zoomed to the last
steps).

5000 10000 15000 20000 25000
2

4

6

8

10

12

14

16 Adam
Sparse Adam

M
S

P
E

 lo
ss

Batch number

Figure 3. Validation loss (MSPE) differences between SparseAdam and
Adam in the first 10 epochs, using the same hyper-parameters.

suggested in this paper.
At the time of writing, only two PyTorch optimizers sup-

ported sparse gradients on CUDA: SGD and SparseAdam.
SGD was used in the baseline model. SparseAdam is a lazy
implementation of Adam because only moments that are
present in the gradient are updated, and only those specific
parts of the gradient are applied to the parameters.

On the same train and validation matrix, using the same
hyper-parameters (batch size: 1024, lr: 0.001, β1: 0.9,
β2:0.999, nf : 20, P0: 0.02), using Adam provided much
better results than SparseAdam. This is also shown on the 10
epoch validation error graph in Fig. 3. The only difference
between the two implementation variants was that for the
SparseAdam variant, we used Sparse Embeddings, instead
of dense ones that were used in the case of Adam. This
resulted in a much worse final MSPE value (6.6071 for
Sparse Adam, 2.1477 for Adam), but also slower training
time (247s for Sparse Adam, 154s for Adam). It is worth
noting that while back-propagation is faster for Sparse Adam
(22.3s vs. 60.3s), the optimizer step is much slower (152.6s
vs. 20.5s), while all other steps take roughly the same time.
For this reason, we have chosen dense embeddings and
the dense Adam implementation. Elsewhere in this paper,
when Adam is referred, we mean the dense implementation,
instead of the sparse one.

We found that, for Adam, increasing β1 or β2 (for
example β1 = 0.99 and β2 = 0.99999) doesn’t improve
prediction accuracy, and also leads to a slower convergence.

On the other hand, the number of factors (nf ) has a
more significant impact on MSPE, but also on full dataset
precision and recall. This is summarized in Table 4. To
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Figure 4. The impact of nf values on different metrics after training for
100 epochs.

ease the comparison, instead of MSPE, 1-MSPE was used.
Therefore, the best possible value for all four metrics listed
becomes 1. At nf = 28 the precision becomes equal to the
recall, while at higher values, we get higher recall and lower
precision. The 1 −MSPE and F1 metrics show a strong
positive correlation, with a Pearson coefficient of 0.9521.
Please note that using Google’s ‘general rule of thumb’ [26]
results in nf = 20 (rounded down to the nearest integer).

While using the same set of other hyper-parameters, the
best results are achieved with nf = 1. However, this ap-
proach results in an oversimplified linear model, as discussed
in the previous section, so the model will calculate how
likely a user is to buy anything and how likely it is for an
item to be bought.

When training the model for 2030.3 s with a batch size
of 128k (131072), the time spent on ‘get train batch’ was
of 1998.7 s, while forward and backward steps took a
total of 8.6 s and 18.1 s, respectively. Therefore, until a
much faster data loading mechanism is found, we do not
recommend large batch sizes. For the test GPU, any batch
size above 1024 led to a sub-optimal GPU utilization due to
the increasing amount of time needed for getting the train
batches, but unless the batch size is much higher the effect
is minimal. For example, training for 13 minutes leads to
near-identical validation errors (0.6476 and 0.6504) for batch
sizes of 4096 and 1024. On the other hand, smaller batch-
sizes, such as 256, 512, or even 768, lead to worse validation
results when trained for the same amount of time. Overall,
the majority of the test results given in this paper were made
with 1024 batch size, and that is the recommendation of the
authors. Please note, that this batch-size is only indicative
for GPU training on similar devices to the test device.

To test the relationship between P0 and nf the null
hypothesis was that nf and P0 will have significant positive
correlation to each other and significant negative correlation
to MSPE. Some of the meaningful results of tuning P0

are summarised as Fig. 5. For the observed dataset F1

values kept increasing until P0 = 0.1, and only a slight
decrease can be seen at 0.2. Contrary to the case with nf , the
correlation of 1−MSPE and P0 is not as strong (0.6896).
For this reason, we assumed P0 = 0.2, which has a F1

value nearly equal to the maximum (0.385292, the maximum
being 0.385763), while also benefiting from excellent MSPE
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Figure 5. The impact of P0 values after training for 100 epochs
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value.

F. Hybrid Hyper-parameter Optimization

The hybrid solution described in this paper produces better
hyper-parameters than our manual approach above in 100
trials. After 100 finished trials, the best trial had the MSPE
value of 0.3430, and it used the following parameters: nf =
5 and P0 = 0.08822302993566566. The elapsed time was
under 2 hours (6685.85 seconds).

To illustrate pruning, we have created a slice plot showing
the number of trials with different hyper-parameter values,
and the resulting MSPE loss as Fig. 6. To illustrate the
effects of the hyper-parameters on the loss function, a
contour plot was also created as Fig. 7.

G. Accuracy Assessment

We have trained the same model using the hyper-
parameters found by manual optimization and the hybrid
method described in this paper, and we have found that the
hybrid method’s parameters result in a faster convergence
and better MSPE values during the same epoch, as shown
in Fig. 8. The final results are summarized in Table I.

V. CONCLUSION

The hybrid HPO solution presented in this paper can be
used to find the best hyper-parameters for CF using Adam
optimizer or one of the other modern SGD optimizers. One
of the main contributions of this paper is the time-efficient
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HPO method, which can find usable hyper-parameters in a
relatively short time on a real-world CF dataset. As future
work, we intend to find a faster data loading mechanism.
Recently a new variant of Adam, AMSGrad, was devel-
oped [41]–[43]. The preliminary evaluations suggest slightly
worse results for real-world CF datasets. Still, we will
analyze other Adam variants tailored to CF, ideally resulting
in even better RMSE and F1 scores.
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