
EasyChair Preprint

� 741

GP-SUM. Gaussian Process Filtering of

non-Gaussian Beliefs

Maria Bauza and Alberto Rodriguez

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 6, 2019

2

Fig. 1: Multimodality during the push-grasp of a coffee cup. A small change in the initial contact between the
hand and the cup, or a small change in the hand’s motion can produce a very distinct—multimodal—outcome
either exposing (left) or hiding (right) the cup’s handle from the hand’s palm.

distributions. Multimodality and complex belief distributions have been exper-
imentally observed in a variety of manipulation actions such as planar push-
ing [2,3], ground impacts [4], and bin-picking [5].

The main contribution of this paper is a new algorithm GP-SUM to track
complex state beliefs. GP-SUM is specifically tailored to:

– Dynamic systems expressed as a GP (Gaussian Process).
– States represented as a weighted Sum of Gaussians.

We will show that the algorithm is capable of performing Bayes updates with-
out the need to either linearize the dynamic or observation models, or relying
on unimodal Gaussian approximations of the belief. This will be key to enable
efficient tracking of complex state beliefs.

In Section 4 we describe how GP-SUM operates by sampling the state dis-
tribution, given by a sum of Guassians, so it can be viewed as a sampling-based
filter. GP-SUM also maintains the basic structure of a Bayes filter by exploiting
the GP form of the dynamic and observation models, which allows a probabilis-
tic sound interpretation of each sample, so it can also be viewed as a GP-Bayes
filter.

In Section 5.1, we compare GP-SUM’s performance to other existing GP-
filtering algorithms such as GP-UKF, GP-ADF and GP-PF in a standard syn-
thetic benchmark [6,7]. GP-SUM yields better filtering results both after a single
and multiple filtering steps with a variety of metrics, and requires significantly
less samples than standard particle filtering techniques.

Finally, we also demonstrate that GP-SUM can predict the expected distri-
bution of outcomes when pushing an object. Prior experimental work [3] shows
that planar pushing produces heteroscedastic and non-Gaussian distribution
after pushes of a few centimeters, i.e., some actions are more deterministic
than others and state distributions can break down into components or become
ring-shaped. GP-SUM successfully recovers both when applied to a GP learned
model of planar pushing. We compare the results to the distributions from real
trajectories estimated by performing the same pushes 100 times.

3

Both actions and sensed information determine the shape of a belief dis-
tribution and non-linearities in either when integrated over a finite time can
easily lead to non-Gaussian beliefs. This paper provides an efficient algorithm
for tracking complex distributions tailored to the case where the observation
and transition models are expressed as GPs, and the state is represented as a
weighted sum of Gaussians.

2 Related Work

Gaussian Processes (GPs) are a powerful tool to model the dynamics of com-
plex systems [5,8,9], and have been applied to different aspects of robotics in-
cluding planning and control [10,11,12], system identification [8,13,14], or fil-
tering [6,7,15]. In this work we study the problem of accurate propagation and
filtering of the state of a stochastic dynamic system. In particular, we address fil-
tering in systems whose dynamics and measurement models are learned through
GP regression, which we commonly refer to as GP-Bayes filters. Among these,
the most frequently considered are GP-EKF [15], GP-UKF [15] and GP-ADF [6].

Most GP-filters rely on the assumption that at all instants, the state distri-
bution is well captured by a single Gaussian and exploit a variety of approx-
imations to maintain that Gaussianity. For example, GP-EKF is based on the
extended Kalman filter (EKF) and linearizes the GP models to guarantee that
the final distributions are indeed Gaussian. GP-UKF is based on the unscented
Kalman filter (UKF) and predicts a Gaussian distribution for the state using an
appropriate set of samples that captures the moments of the state. Finally, GP-
ADF computes the first two moments of the state distribution by exploiting the
structure of GPs and thus returns a Gaussian distribution for the state.

GP-SUM instead is based on sampling from the state distributions and using
Gaussian mixtures to represent these probabilities. This links our algorithm to
the classical problem of particle filtering where each element of the mixture
can be seen as a sample with an associated weight and a Gaussian. As a result,
GP-SUM can be understood as a type of sampling algorithm that is tailored
to exploit the synergies between a GP-based dynamic model and a Gaussian
mixture state to enable efficient and probabilistically-sound Bayes updates. Ko
and Fox [15] provide another GP-based sampling filter, GP-PF, based on the
classical particle filter. However, when compared to GP-UKF or GP-EKF, GP-
PF is less reliable and more prone to inconsistent results [15].

In the broader context of Bayes filtering with non-linear algebraic dynamic
and observation models, multiple algorithms have been proposed to recover
non-Gaussian state distributions. For instance, there is some resemblance be-
tween GP-SUM and the algorithms Gaussian Mixture Filter (GMF) [16], Gaus-
sian Sum Filter (GSF) [17], and Gaussian Sum Particle Filtering (GSPM) [18]; all
using different techniques to propagate the state distributions as a sum of Gaus-
sians. GMF considers a Gaussian mixture model to represent the state distribu-
tion, but the covariance of all Gaussians are equal and come from sampling the
previous state distribution and computing the covariance of the resulting sam-

5

Prediction update. Given a model of the system dynamics, p(xt|xt−1; ut−1), the
prediction update computes the prediction belief, p(xt|u1:t−1; z1:t−1), as:

p(xt|u1:t−1; z1:t−1) =

Z
p(xt|xt−1; ut−1)p(xt−1|u1:t−2; z1:t−1)dxt−1 (1)

where p(xt−1|u1:t−2; z1:t−1) is the belief of the system before action ut−1. Thus
the prediction belief can be understood as the pre-observation distribution of the
state, while the belief is the post-observation distribution. In general, the inte-
gral (1) cannot be solved analytically and different approximations are used to
simplify its computation. The most common simplifications are to linearize the
dynamics of the system, as classically done in the Extended Kalman Filter, or to
directly assume that the prediction belief, i.e., the result of the integral in (1), is
Gaussian distributed [21].

Measurement update. Given a new measurement of the state, zt, the belief at
time t comes from filtering the prediction belief. The belief is recovered by using
Bayes’ rule and the observation model of the system p(zt|xt):

p(xt|u1:t−1; z1:t) =
p(zt|xt)p(xt|u1:t−1; z1:t−1)

p(zt|u1:t−1; z1:t−1)
(2)

Again, this expression cannot usually be computed in a closed-form and we
rely on approximations to estimate the new belief. Linearizing the observation
model or assuming Gaussianity of the belief are again common approaches [21].

Combining equations (1) and (2), we can express the belief in a recursive
manner as a function of the previous belief, the dynamic model, and the obser-
vation model:

p(xt|u1:t−1; z1:t) ∝ p(zt|xt)
Z
p(xt|xt−1; ut−1)p(xt−1|u1:t−2; z1:t−1)dxt−1 (3)

We will show in Section 4 an equivalent recursion equation for the prediction
belief, which is key to GP-SUM.

For known systems, we might have algebraic expressions for their dynamic
and observation models. In real systems, however, these models are often un-
known or inaccurate, and Gaussian Processes are a powerful framework to
learn them. The following subsection provides a basic introduction.

3.2 Gaussian Processes

Gaussian Processes (GPs) are a flexible non-parametric framework for func-
tion approximation [22]. In this paper we use GPs to model the dynamics and
observation models of a stochastic system. There are several advantages from
using GPs over traditional parametric models. First, GPs can learn high fidelity
models from noisy data while estimate the intrinsic noise of the system. Second,
GPs estimate the uncertainty of their predictions given the available data, hence

6

measuring the quality of the regression. GPs provide the value of the expected
output together with its variance.

In classical GPs [22], the noise in the output is assumed to be Gaussian and
constant over the input: y(x) = f(x) + ", where f(x) is the latent or unobserved
function to regress, y(x) is a noisy observation of this function, and " ∼ N(0; �2)
represents zero-mean Gaussian noise with constant variance �2.

The assumption of constant Gaussian noise together with a GP prior on the
latent function f(x) makes analytical inference possible for GPs. In practice,
to learn a GP model over f(x) you only need a set of training points, D =
{(xi; yi)}ni=1, and a kernel function, k(x; x′). Given a new input x∗, a GP assigns
a Gaussian distribution to the output y∗ = y(x∗) expressed as:

p(y∗|x∗; D; �) = N(y∗|a∗; c2
∗ + �2)

a∗ = kT∗ (K + �2I)−1y (4)

c2
∗ = k∗∗ − kT∗ (K + �2I)−1k∗

where K is a matrix that evaluates the kernel at the training points, [K]ij =
k(xi; xj), k∗ is a vector with [k∗]i = k(xi; x∗) and k∗∗ is the value of the kernel
at x∗, k∗∗ = k(x∗; x∗). Finally, y represents the vector of observations from the
training set, and � is the set of hyperparameters, that includes �2 together with
the kernel parameters. These are optimized during the training process.

In this work we consider the ARD-SE kernel [22] which provides smooth
representations of f(x) during GP regression and is the most common kernel
employed in the GP-literature. However, it is possible to extend our algorithm
to other kernel functions as it is done in [7].

4 GP-SUM Bayes filter

In this section we present GP-SUM, discuss its main assumptions, and describe
its computational complexity. Given that GP-SUM is a GP-Bayes filter, our main
assumption is that both the dynamics and the measurement models are repre-
sented by GPs. This implies that for any state xt−1 and action ut−1 the proba-
bilities p(xt|xt−1; ut−1) and p(zt|xt) are modeled as Gaussian.

To keep track of complex beliefs GP-SUM does not approximate them by
single Gaussians, but considers the weaker assumption that they are well ap-
proximated by sum of Gaussians. Given this assumption, in Section 4.1 we ex-
ploit that the transition and observation models are GPs to correctly propagate
the prediction belief, i.e. the pre-observation state distribution. In Section 4.2
we obtain a close-form solution for the belief expressed as a Gaussian mixture.

4.1 Updating the prediction belief

The main idea behind GP-SUM is described in Algorithm 1. Consider (1)
and (3), then the belief at time t in terms of the prediction belief is:

p(xt|u1:t−1; z1:t) ∝ p(zt|xt) · p(xt|u1:t−1; z1:t−1) (5)

7

If the prediction belief at time t− 1 is approximated by a sum of Gaussians:

p(xt−1|u1:t−2; z1:t−2) =

Mt�1X
i=1

!t−1;i · N (xt−1|�t−1;i; �t−1;i) (6)

where Mt−1 is the number of components of the Gaussian mixture and !t−1;i is
the weight associated with the i-th Gaussian of the mixtureN (xt−1|�t−1;i; �t−1;i).

Then we compute the prediction belief at time t combining (1) and (5) as:

p(xt|u1:t−1; z1:t−1) =

Z
p(xt|xt−1; ut−1)p(xt−1|u1:t−2; z1:t−1)dxt−1 ∝Z

p(xt|xt−1; ut−1)p(zt−1|xt−1)p(xt−1|u1:t−2; z1:t−2)dxt−1

(7)

Given the previous observation zt−1 and the action ut−1, the prediction be-
lief at time t can be recursively computed using the prediction belief at time t−1
together with the transition and observation models. If p(xt−1|u1:t−2; z1:t−2)
has the form of a sum of Gaussians, then we can take Mt samples from it,
{xt−1;j}Mt

j=1, and approximate (7) by:

p(xt|u1:t−1; z1:t−1) ∝
MtX
j=1

p(xt|xt−1;j ; ut−1)p(zt−1|xt−1;j) (8)

Because the dynamics model is a GP, p(xt|xt−1;j ; ut−1) is the GaussianN (xt|�t;j ; �t;j),
and p(zt−1|xt−1;j) is a constant value. As a result, we can take:

!t;j =
p(zt−1|xt−1;j)PMt

k=1 p(zt−1|xt−1;k)
(9)

and express the updated prediction belief again as a Gaussian mixture:

p(xt|u1:t−1; z1:t−1) =

MtX
j=1

!t;j · N (xt|�t;j ; �t;j) (10)

Algorithm 1 Prediction belief recursion

GP-SUM({�t−1;i; �t−1;i; !t−1;i}Mt�1

i=1 , ut−1, zt−1, Mt):
{xt−1;j}Mt

j=1 = sample({�t−1;i; �t−1;i; !t−1;i}Mt�1

i=1 , Mt)
for j ∈ {1; : : : ;Mt} do
�t;j = GP�(xt−1;j ; ut−1)

�t;j = GP�(xt−1;j ; ut−1)

!t;j = p(zt−1|xt−1;j)

{!t;j}Mt
j=1 = normalize_weights({!t;j}Mt

j=1)
return {�t;j ; �t;j ; !t;j}Mt

j=1

8

In the ideal case where Mt tends to infinity, the sum of Gaussians approxi-
mation of the prediction belief converges to the real distribution and the prop-
agation over time of the prediction belief remains correct. This property of GP-
SUM contrasts with most other GP-Bayes filters where the prediction belief is
approximated as a single Gaussian. In those cases, errors from previous approx-
imations inevitably accumulate over time.

Note that the weights in (9) are directly related to the likelihood of the obser-
vations. As in most sample-based algorithms, if the weights are too small before
normalization, it becomes a good strategy to re-sample or modify the number
of samples considered. In Section 5 we address this issue by re-sampling again
from the distributions while keeping the number of samples constant.

4.2 Recovering the belief from the prediction belief

After computing the prediction belief, we take the observation zt and compute
the belief as another sum of Gaussians using (5):

p(xt|u1:t−1; z1:t) ∝ p(zt|xt)
MtX
j=1

!t;j · N (xt|�t;j ; �t;j)

=

MtX
j=1

!t;j · p(zt|xt)N (xt|�t;j ; �t;j)

(11)

Note that if p(zt|xt)N (xt|�t;j ; �t;j) could be normalized and expressed as a
Gaussian distribution, then the belief at time t would directly be a Gaussian
mixture. In most cases, however, p(zt|xt)N (xt|�t;j ; �t;j) is not proportional to
a Gaussian. For those cases, we use standard approximations in the literature
(Algorithm 2). For instance, the algorithm GP-EKF [15] linearizes the observa-
tion model to express the previous distribution as a Gaussian.

In this work, we exploit the technique proposed by Deisenroth et al. [6] as
it preserves the first two moments of p(zt|xt)N (xt|�t;j ; �t;j) and has proven to
outperform GP-EKF [6]. This approximation assumes that p(xt; zt|u1:t−1; z1:t−1)
= p(zt|xt)p(xt|u1:t−1; z1:t−1) and p(zt|u1:t−1; z1:t−1) =

R
p(xt; zt|u1:t−1; z1:t−1)dxt

are both Gaussians. Note that this is an approximation, and that is only true
when xt and zt are linearly related. Using this assumption and that p(zt|xt) is a
GP, p(zt|xt)N (xt|�t;j ; �t;j) can be approximated as a Gaussian by analytically
computing its first two moments [6]. As a result, we recover the belief as a sum
of Gaussians.
Algorithm 2 Belief recovery

belief_computation({�t;j ; �t;j ; !t;j}Mt
j=1, zt, Mt):

for j ∈ {1; : : : ;Mt} do
�̂t;j ; �̂t;j = Gaussian_approx(p(zt|xt)N (xt|�t;j ; �t;j))
{!̂t;j}Mt

j=1 = {!t;j}Mt
j=1

return {�̂t;j ; �̂t;j ; !̂t;j}Mt
j=1

https://github.com/ICL-SML/gp-adf

10

Fig. 2: Synthetic benchmark task. Dynamic model and observation model of the synthetic task in equations (12)
and (13). Notice that the dynamics are specially sensitive and non-linear around zero. Just like in the example of
the push-grasp in Fig. 1, this will lead to unstable behavior and multi-modal state distributions.

and measurement model:

zt+1 = 5 sin 2xt + v v ∼ N (0; 0:012) (13)

The system was previously used to benchmark the performance of GP-ADF [6].
Fig. 2 illustrates the models and Fig. 3 illustrates the filtering process.

The GP models for prediction and measurement are trained using 1000 sam-
ples uniformly distributed around the interval [−20; 20]. GP-SUM uses the same
number of Gaussian components M = Mt = 1000 during the entire filtering
process. The initial prior distribution of x0 is Gaussian with variance �2

0 = 0:52

and mean �0 ∈ [−10; 10]. We randomly pick �0 200 times in the interval to
assess the filters in multiple scenarios. Their behavior becomes specially inter-
esting around x = 0 where the dynamics are highly nonlinear. For each value of
�0, the filters take 10 time-steps. This procedure is repeated 300 times to average
the performance of GP-SUM, GP-ADF, GP-UKF, and GP-PF, described in Sec-
tion 2. For GP-PF, the number of particles is the same as GP-SUM components,
M = 1000.

We evaluate the error in the final state distribution of the system using 3
metrics. The most relevant is the negative log-likelihood, NLL, which measures

Fig. 3: Belief propagation on benchmark synthetic task. The figure illustrates how GP-SUM, GP-ADF and Gauss
GP-SUM propagate the state belief three steps of dynamic-observation-dynamic updates. All three algorithms
start from a prior belief centered at zero, precisely where the benchmark dynamic system is most sensitive to
initial conditions, as illustrated in Fig. 2. As a result, the belief and prediction belief quickly become multimodal.
GP-SUM handles properly these complex distributions and its predictions are more accurate. After only one
dynamic step, the belief at t = 1 predicted by GP-SUM shows three possible modes for the state of the system,
while the other algorithms output a single Gaussian that encloses them all.

13

Repeated real
pushes

Particle simulation
of GP model

Distribution from
GP-SUM

90mm

350mm

Fig. 6: Outcome of an unstable long push. We execute repeatedly a long push at the center of the side of a
square-shaped object. Similar to the push-grasp in Fig. 1, the real (green) trajectories show that the block can
rotate to either side of the pushing trajectory—it is naturally unstable and undecidable [24]. The stochastic GP
model from [3] can capture that uncertainty in the form of a probabilistic distribution. The (orange) dots show the
outcome of 1000 Monte Carlo simulations of the learned GP dynamic model. GP-SUM predicts accurately the
ring-shaped distribution in a way that is not possible with standard GP-filters that assume a uni-modal Gaussian
form for the state belief.

its direction [3]. The outputs of the dynamics model are the displacement—
position and orientation—of the object relative to the pusher’s motion. Each
real push for validation is repeated 100 times at a velocity of 20mm/s. The
intrinsic noise of the system, combining the positional accuracy of the robot and
the positional accuracy of the object tracking system, has a standard deviation
lower than 1mm over the object location and lower than 0:01rad for the object
orientation.

Since the distribution of the object position easily becomes non-Gaussian,
GP-SUM obtains more accurate results than other algorithms. Fig. 6 shows an
example of a 350mm long push at the center of one of the sides of a squared ob-
ject. We compare the real pushing trajectories (green) with the outcome of run-
ning a montecarlo particle simulation on the learned GP-model and GP-SUM’s
prediction. The distribution becomes ring-shaped and multi-modal, which GP-
SUM has no trouble in recovering. This property cannot be captured by stan-
dard GP-Bayes filters that assume single Gaussian state distributions.

Being able to propagate the uncertainty of the object position over time ex-
poses interesting properties of the planar pushing system. For instance in Fig. 7
we observe different pushes repeated many times and how GP-SUM can ob-
tain a reasonable approximation of the true distribution and recover the differ-
ent amounts of noise produced by each type of push, i.e., the heteroscedasticity
of the system. Fig. 7 also shows how GP-SUM can take into account different
initial noise distributions and propagate properly the uncertainty in the object’s
position. Being able to recover these behaviors is specially useful when our goal
is to push an object to a specific region of the space as it allows to distinguish
between pushes that lead to narrower (low-variance) distributions and those
that involve multimodal or wider (high-variance) distributions.

	GP-SUM. Gaussian Process Filtering of non-Gaussian Beliefs
	Introduction
	Related Work
	Background on Gaussian process filtering
	Bayes filters
	Gaussian Processes

	GP-SUM Bayes filter
	Updating the prediction belief
	Recovering the belief from the prediction belief
	Computational complexity

	Results
	Synthetic task: algorithm evaluation and comparison
	Real task: propagating uncertainty in pushing

	Discussion and Future work
	References

