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Vectorisation methods, responsible for converting textual data into a nu-
merical form, may be classified as being either context-dependent or context-
independent. There is, however, a strong correlation between context-independent
methods and count-based techniques (commonly exemplified by bag-of-words
(BOW)-like approaches), and between context-dependent methods and embed-
ding-based techniques (which include various types of word embeddings).

Context-independent text vectorisation methods provide a simple approach
to converting textual data into a numerical form, largely ignoring the syntac-
tic and semantic relationships between words. In the BOW model, for example,
documents are represented as unordered sets of their words, stripped of any
grammatical considerations [52]. Similarly, the term frequency-inverse document
frequency (TF-IDF) which, while capturing the relative importance of a term
within a corpus, remains oblivious to the surrounding textual context [47]. Tech-
niques such as word hashing [36] and the hashing vectoriser [27] also fall within
this scope, prized for their computational efficiency, but critiqued for the loss of
semantic complexity [59].

Context-dependent methods represent a more advanced type of text vectori-
sation, designed to capture some of the complex relational dynamics between
words — typically by employing sophisticated machine learning architectures.
Although most context-dependent methods utilise embedding-based approaches,
variations to count/presence based methods may introduce some degree of con-
text by considering higher-order n-grams, rather than singular terms (unigrams),
as document features. These n-grams represent sequences of adjacent words in
their original order [51]. Typically, most context-dependent methods are, how-
ever, embedding-based. An embedding is a vectorisation technique for converting
individual tokens within a corpus into vectors of real numbers. In this transfor-
mation, each dimension of the embedding vector corresponds to a latent feature
inherent to the respective token [60]. GloVe [45] and Word2Vec [39] are well-
known embedding algorithms. The pinnacle of context-dependent embeddings,
however, is considered to lie in transformer-based models such as BERT and
generative pre-trained transformers (GPT). These models have intricate archi-
tectures, reminiscent of attention mechanisms, and are capable of producing
embeddings that are sensitive to both syntactic and semantic nuances [15, 46].
The BERT model, developed by Devlin et al. [15], has undeniably come to be
recognised as a monumental advancement in the NLP landscape, particularly
for text representation.

BERT employs a deep transformer architecture, originally conceived by Vaswani
et al. [57], for pre-training language representations. Unlike traditional word
embeddings, BERT captures contextual information from both left to right and
right to left, thus being truly bidirectional as the name suggests. BERT has been
pre-trained on large Wikipedia and Bookcorpus data sets invoking two primary
tasks, namely masked language modelling (MLM) and next sentence prediction
(NSP). BERT consists of multiple layers of transformer encoders stacked on top
of one another, with the MLM being a cornerstone of its pre-training process
— randomly masking a fraction of the input tokens and then predicting these
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masked tokens based on the surrounding context. This bidirectional training
allows for the training of a unified model for a wide range of NLP tasks.

The BERT for sequence classification model is a fine-tuned version of the
original BERT model, specifically tailored for tasks that involve classifying en-
tire sequences of text into predefined categories by adding a classification layer
on top of the transformer encoder. Unlike other fine-tuned models, the BERT
for sequence classification model is trained to understand not only individual to-
kens, but also the relationships and dependencies between these tokens in each
sequence — rendering it effective for tasks such as sentiment analysis, topic
categorisation, and document classification [55].

3 The CESD framework

The framework proposed in this section is intended to guide a user during the
process of classifying data records that exhibit both structured and unstruc-
tured free-text attributes into similarity classes. Although there are numerous
techniques available in the literature for the various classification tasks within
the realm of structured data or unstructured data separately, combining the two
is not common practice.

Figure 1 contains a high-level overview illustration of the CESD framework,
which comprises the following main components: A graphical user interface, a
central processing component, and a database. By interacting with the frame-
work through the graphical user interface, a user can provide input data, con-
figure framework settings, and make decisions about the system that is being
developed. The purpose of the database is to save pertinent data during the
system development and deployment processes when executing the framework.
The primary body of the framework is represented by its central processing unit,
depicted in Figure 1 by the shaded region. This unit is responsible for all of the
framework’s computing, modelling, deployment, and analysis tasks.

There is an arrow between the graphical user interface and the central pro-
cessing component, labelled raw data, which represents the user providing the
raw input data to which the classification system is to be applied. Although it is
assumed that the input data contain unstructured data (free-form text) as well
as structured data (representing potentially both continuous and categorical at-
tributes), no further assumptions are made in respect of the nature or domain of
the data. Along with the raw structured and unstructured input data, the user
is expected to provide the necessary labels as some of the components utilise
supervised learning algorithms.

Communication between the user and the various framework components
during the classification system development process is represented by the arrows
between the graphical user interface and the central processing unit, labelled
configurations & decisions. These arrows are drawn as solid lines, signifying that
user involvement is necessary rather than optional for the framework to function
properly during the system development process. The domain and type of the
input data, the model architecture, and the feature set utilised during model
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main specialists categorise errors into different classes of severity — an indication
of how time-sensitive the processes should be of resolving a particular error.

4.1 The data preprocessing component

The first step of the case study involved invoking the preprocessing component
of the CESD framework, tasked with the ingestion of the raw data and their sub-
sequent transformation into a usable data structure. The data subset utilised in
this case study contained 43 features and approximately 415 000 records. In this
data set, the feature of particular significance (the target feature) is error sever-
ity. This feature is categorical in nature, and may assume one of seven ordinal
values that serve as an indication of the severity levels associated with reported
errors. Moreover, the data set incorporates two unstructured text features, the
name and the description of each error, which are intended for utilisation in the
NLP classification component of the framework. As a result of many optional
data fields in the logging of each error, a considerable portion of the features
exhibited substantial quantities of missing values.

During the initial stage of preprocessing, the focus was directed towards the
target feature which, as mentioned, denotes severity across seven ordinal cate-
gories, namely 01-safety relevant, 02-breakdown occurs, 03-permanent unsatis-
factory, 04-deficient, 05-unsatisfactory, 06-customer irritated, and 07-customer
noticed. These seven classes were very unbalanced in terms of their occurrence
in the data subset.

The objective was to derive a binary feature from these categorical values,
serving as an indicator of severe or non-severe errors, with the former denot-
ing errors potentially carrying substantial cost implications during production.
The intent was to demonstrate the viability of automating the assignment of
this binary value to future errors, thereby flagging potentially severe issues for
closer scrutiny by a quality specialist. The need for such an approach arises from
the fact that the logging of new errors initially involves assigning severity lev-
els, oftentimes inaccurately. This leads to cases of severe errors initially going
undetected as these inaccuracies are only later rectified by specialists. As a re-
sult, a need was identified to partition the error severity values ordinally into
two distinct categories. Discussions with an expert in this domain corroborated
our approach of finding a splitting point among the seven error severity val-
ues. The eventual decision of where to establish this split was reinforced by the
skewed distribution of the classes, with a notable under-representation of more
severe errors. A method was devised to categorise errors in such a manner that
those in Categories 1–4 were deemed as severe, while those in Categories 5–7
were deemed as non-severe. This classification rationale aligns with the modified
class distribution illustrated graphically in Figure 2.

Given the ordinal nature of this categorisation, it was considered the most
balanced, meaningful binary representation attainable as a result of the inher-
ent class imbalances. In order to avoid model bias towards the majority class,
undersampling was applied to the majority class in pursuit of a balanced train-
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Fig. 2: The class distribution of the modified error severity feature in the data
subset, showcasing the composition of smaller classes.

ing subset. This was coupled with stratified sampling to ensure the inclusion of
representative proportions from the original classes.

The second phase of data processing pertained to the treatment of the un-
structured data. Table 5 in the appendix contains a summary of eleven vectori-
sation combinations employed in respect of the case study data within the NLP
classification component of the CESD framework. Due to the presence of two
distinct and identifiable text features in the data set — the name and descrip-
tion of each error — all model permutations were applied individually to both
cases. These combinations were undertaken with the aim of achieving optimal
classification outcomes. These algorithms are combined with word vectorisa-
tion techniques originating from both the rudimentary count-based domain, as
well as the more sophisticated BERT embedding approach. The last combina-
tion employs the transformer-based model BERT, accompanied by its distinctive
vectorisation technique.

As for data set integrity, it is noteworthy that no instances of absent name
or description features were observed. In accordance with the CESD framework,
the initial stage of preprocessing (before tokenisation) is aimed at achieving
translation. Approximately 30% of the ticket name and description features
were in languages other than English (also employing space delimiters). It was
therefore decided to translate all text to English due to extensive preprocessing
libraries existing for English [21, 35]. As for tokenisation, the NLTK Python
library was used to undertake word-level tokenisation on sentences for use by the
first five combinations in Table 5. For the manipulation of text in Combinations
6 through 11, Bert-base-uncased (BERT’s pre-trained base model trained on
lowercase text) was employed.
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involved 5-fold cross-validation, as mentioned. According to this approach, the
training data were partitioned into varying subsets aimed at enabling iterative
training in respect of varying selections of these subsets while validating in terms
of the remaining data. This methodology renders it unnecessary to have a sep-
arate validation set.

The need, however, arose in the BERT model for a training and validation
subset. During the validation process, the objective was to evaluate the model’s
performance on unseen data, rather than tuning its weights. It is important
to underscore the reason why it was still necessary to have a further separate
test set. This was due to the validation accuracy, although not affecting model
weights, ultimately being used to determine appropriate values for parameters
such as the optimal training epochs.

The BERT model, implemented in Python as BertForSequenceClassifi-
cation, was instantiated with parameters specifying the number of distinct
classes and a dropout probability. Additional parameters included the AdamW
optimiser and the establishment of a linear warmup scheduler. Ultimately, the
training and validation cycles transpired across a total span of ten epochs, af-
ter which the test data set could be utilised to compute an unbiased accuracy
metric.

4.3 The clustering component

The underlying objective of the clustering component is to extract meaningful
insight from the data set. The focus therefore shifted to performing clustering
on specific error severity classes in the data set. This allowed for discerning nu-
ances such as the optimal number of clusters inherent to a given class. Analytic
instruments, such as word clouds, were then be employed to glean insight into,
and elucidate, the intrinsic characteristics of these clusters. The decision was
made to perform clustering on the structured data in an isolated fashion, be-
fore performing clustering on a combination of the structured data and BERT
embeddings, thus making it possible to draw comparisons between the differ-
ent results obtained. The clustering was therefore partitioned into parts, with
respective clustering combinations for each part as denoted in Table 1.

Table 1: Different combinations of distance metrics and clustering methods ap-
plied to the structured portion and the BERT embeddings of the error data set.

# Distance metric processing Clustering

1 Dimension reduction (FAMD) k-Means
2 Recode numerical features k-Modes
3 Dimension reduction (FAMD & PCA) k-Means

In the context of clustering combinations applied to the structured data, the
sheer size of the data set presented unique challenges. Most clustering algorithms
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employ distance metrics of relatively high time complexity, thereby limiting the
number of viable options. Given the computational demands, coupled with data
sensitivity concerns rendering the use of cloud-based computing infeasible, only
two clustering combinations were implemented (the first two entries of Table 1).
Combination 1, which utilised FAMD for dimensionality reduction, rendered the
use of k-means computationally feasible. Moreover, Combination 2, the k-modes
approach (tailored for the clustering of categorical data) utilised a matching
dissimilarity metric of low time complexity. Both these combinations proved to
achieve large ARI scores in the work of Van de Velden et al. [58].

In order to avoid the so-called cluster masking problem for combination 1,
an outcome in which the process of dimension reduction conceals the inherent
structure of the clusters, it was imperative to select an appropriate degree of
dimensionality reduction. This was performed by utilising the elbow method
to evaluate component variance, which indicated that 70% of variance was de-
scribed by 693 components. As for Combination 2, the numerical features were
subjected to discretisation before embarking on the clustering process. This in-
volved binning numerical features into a set of N bins, with categorical labels
being assigned based on the bin in which a value lies. The k-means algorithm
was used to optimise the bin selection per feature, allowing up to five bins. The
elbow method was again utilised to determine the optimal number of k-modes
clusters for Combination 2.

In the context of clustering applied to the combination of BERT embeddings
and the structured data, the sheer size of both data sets again presented unique
challenges. In light of computational constraints, an alteration of Combination 1
was performed — utilising the 693 FAMD features and 50-PCA-reduced BERT
description embeddings (attained through elbow selection at which 87% of the
variance was described). This clustering method is denoted as Combination 3 in
Table 1.

Furthermore, due to the addition of fifty numerical features, the application
of Combination 2 was considered computationally infeasible as this would entail
the addition of fifty categorical features to the structured data set — notwith-
standing the fact that discretising the PCA-reduced BERT embeddings would
almost inevitably lead to a significant loss of information.

4.4 The deployment and analysis component

In order to carry out a fair evaluation of the NLP classification models, they were
exposed to the unseen test data set. Although the models were not explicitly
trained on the validation set, it was used to make decisions about the values
of hyperparameters or, in the case of the transformer model, to determine the
number of epochs over which the model should be trained. Given the imbalanced
nature of the testing set, the AUC score was deemed an appropriate evaluation
metric. The corresponding scores achieved by the various model combinations
in respect of the name and description features are summarised in Table 2.

Several observations can be made. First, it is evident that the BERT model
exhibited superior classification performance in respect of both the name and de-
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nent. It may be argued that tokens which appear prominently in both classes be
removed from the text corpus, as it might confuse NLP models. Alternatively,
the analyst might choose to use the clusters as some sort of filtering criteria for
model training, perhaps even determining stratified sampling weights within er-
ror severity classes (larger clusters might contain words that are proportionately
more important). This suggestion is illustrated in Figure 5, in which the training
undersampling process has been replaced with stratified sampling of the cluster
ratios (from Combination 3) for the larger non-severe error class. The large sil-
houette score of the non-severe clusters emanating from Combination 3, being
upward of 0.5, indicates that these clusters are very well separated, and may
perhaps improve upon model generalisation if incorporated into the training set
ratios.

(a) Non-severe clusters from Combination 3 (b) Stratified undersampling proposal

Fig. 5: Cluster-weighted stratified sampling proposal for training data.
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A Appendix

This appendix contains tabulated information pertaining to the case study, ref-
erenced in §4.

Table 5: Different combinations of vectorisation and classification methods em-
ployed.
# Vectorisation Classification

1 TF-IDF Extra trees
2 TF-IDF Adaptive boosting
3 TF-IDF Random forest
4 TF-IDF Multinomial Naive Bayes
5 TF-IDF Logistic regression
6 BERT-base-uncased Extra trees
7 BERT-base-uncased Adaptive boosting
8 BERT-base-uncased Random forest
9 BERT-base-uncased

(normalised)
Multinomial Naïve Bayes

10 BERT-base-uncased Logistic regression
11 BERT-base-uncased BERT
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Table 6: Error data set feature information, after the processing of structured
features.

Feature Mean Std Cardinality Missing % Data type

Feature 1 689 0.06% Categorical
Feature 2 3 1.56% Categorical
Feature 3 5 1.23% Categorical
Feature 4 11 0.04% Categorical
Feature 5 5 0.05% Categorical
Feature 6 604 0.00% Categorical
Feature 7 9 286 6.36% Categorical
Feature 8 23 0.03% Categorical
Feature 9 119 0.03% Categorical
Feature 10 4 0.71% Categorical
Feature 11 4 0.00% Categorical
Feature 12 11 0.00% Categorical
Feature 13 421 1.73% Categorical
Feature 14 74 198 0.38% Categorical
Feature 15 40 0.03% Categorical
Feature 16 7 4.33% Categorical
Feature 17 3 14.18% Categorical
Feature 18 2 0.00% Binary
Feature 19 2 0.00% Binary
Feature 20 2 7.10% Binary
Feature 21 2 0.00% Binary
Feature 22 2 1.01% Binary
Feature 23 2 0.00% Binary
Feature 24 2 7.09% Binary
Feature 25 2 0.00% Binary
Feature 26 2 20.98% Binary
Feature 27 2 0.00% Binary
Feature 28 2 0.22% Binary
Feature 29 1.274 19.322 6.06% Numeric
Feature 30 0.001 0.143 0.00% Numeric
Feature 31 628.474 250.981 2.26% Numeric
Feature 32 0.003 0.056 0.00% Numeric
Feature 33 0.105 1.058 0.00% Numeric
Feature 34 0.014 0.131 0.00% Numeric
Feature 35 441.847 72.133 31.58% Numeric
Feature 36 9.851 11.085 0.00% Numeric
Feature 37 364.488 266.027 0.00% Numeric
Name 0.00% Text
Description 0.00% Text
Error severity 2 0.00% Binary
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Table 7: The hyperparameter grid values considered for each model during the
classification tasks performed on the error data set.
Algorithm Hyperparameter Possible Values

Number of estimators 5, 10, 15
Extra trees Maximum depth None, 5, 10

Maximum features sqrt, log2, None

Maximum depth of base estimator 3, 5, 10
AdaBoost Number of estimators 5, 10, 15

Learning rate 0.1, 0.5, 1.0

Number of estimators 5, 10, 15
Random forest Maximum depth None, 5, 10

Maximum features sqrt, log2, None

Multinomial naïve bayes Alpha 0.1, 1.0, 10.0

C 0.1, 1.0, 10.0
Logistic regression Penalty l1, l2, elasticnet

Solver newton-cg, lbfgs,
saga


