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Abstract. Image super resolution (ISR) is one of the popular techniques of image 

processing to boost the resolution of images. Reconstructing high-resolution 

(HR) image from low resolution (LR) degraded images results in Single image 

super resolution (RSISR) reconstruction. In the domain of image processing, it is 

the lively research topic. This paper covers datasets which are available and as-

sessment metrics for RSISR and method of RSISR based on Self-Learning 

RSISR [1]. In terms of both reconstruction quality and computational efficiency 

comparisons are done among representative RSISR methods on datasets. We will 

discuss challenges on RSISR. 
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1 Introduction 

Image super resolution (ISR) is having limitations such as unknown degradation, 

LR-HR images missing paired. Real world images do have problem of degradation like 

blurring, additive noise and compression artefacts. Compression artefacts are nothing 

but distortion of media due to lossy compression application. Models trained manually 

in real-world image datasets often performs poorly. To overcome these limitations 

some work [2], [3], [4], [5] has been proposed. Still there are some drawbacks in these 

studies, which will result in difficulty in training and over-perfect assumptions. In fact, 

it is propitious decision for specific domains, like intelligent surveillance, remote sens-

ing, object tracking, scene rendering and medical imaging to apply SR. 



2 

 

Fig. 1. Existing Super-Resolution Techniques. 

 

Images with higher resolution need upgraded hardware. With recent development in 

imaging devices and techniques we can achieve required high resolution images but 

with limitations. (i) Cost is very high because the demand in applications is not stable. 

(ii) We can get new images with high resolution but not existing images with low res-

olution with High resolution. This is why super resolution is more flexible and inex-

pensive. 

To train SR models LR images are generated by downsampling RGB images manu-

ally with the help of various methods such as bicubic downsampling. 

Cameras can capture 12-bit or 14-bit RAW images in reality but due to image signal 

processors of cameras produces 8-bit RGB images which losses lot of original signals 

and they have different features as compared to original images taken by the camera 

like demosaicing, denoising and compression. This is the main reason to use manually 

downscaled RGB images for SR. Some researcher’s doing research to solve this prob-

lem. Chen et al. [6] observed relation between field of view in imaging systems and 

image resolution (R), to conduct real world dataset City100 proposed data acquisition 

strategies and achieved superior results in his proposed model of image synthesis. 

Zhang et al. [7] has developed real world image dataset SR_RAW which consist of 

paired RAW images and LR RGB images with the help of optical zoom of cameras to 

solve the misalignment problem proposed contextual bilateral loss. On the contrary Xu 

et al. [8] is generating a realistic training data by image processing simulation and to 

exploit originally captured radiance information in RAW images dual CNN is devel-

oped. 
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2 Background 

 

 

Fig. 2. (a) Generating LR images from HR (b) Basic premise for super-resolution 

In the process of generation of LR images from HR images reverse engineering super 

resolution to obtain reconstructed HR images from multiple LR images. Original HR 

imae is warped(wk), blurred(bk), downsampled (dk) and noise dded (nk) to generate 

LR images. A basic super-resolution approach will up-sample, de-blur, align, then com-

bine the LR images to reconstruct the HR image. 

Degradation of LR image (Y) from corresponding HR image (X) is represented as 

follows, 

 Y = DP (X, 𝜃DP)                     (1) 

Where, process of degradation is denoted by DP () defined by parameter set 𝜃DP.  

We only have Y i.e., LR image and the degradation parameter 𝜃DP is not known,  

SISR recovers desired HR image by inversing the degradation process done in Eq. 

(1), to get super resolved image from Y which is represented by �̂� which is an estimated 

real HR image X as follows, 

     �̂�= SR (Y, 𝜃R)                       (2) 

Where, SR () is the SR function defined by the parameter set 𝜃R, 

Degradation process DP () and SR process SR () were inverses of each other’s. SR 

(Y, 𝜃R) must be transformed to the degradation DP(X, 𝜃DP) in order to achieve superior 

reconstruction performance. 

Simulated degradation process mathematically obtained by following equation, 

 Y = SBX + n                       (3) 

Where, B is blurring operation and S is downsampling operation. In general, With 

the combination of the HR image and a Gaussian kernel blurring is realized. n is as-

sumed to be white Gaussian noise [1].  
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To generate an LR image, some researchers follow the simple degradation model 

using the “bicubic” kernel directly to downscale an HR image. By considering learning-

based SISR approaches such as RCAN [9], SAN [10], and RFANet [11] the SR recon-

struction performance on synthetic LR images is reasonably good. Actually, degrada-

tion process is more complex and varying because it is influenced by various factors as 

compared to commonly used degradation model in simulations. Synthetic LR images 

and realistic LR observations have large gap between these domains, which causes sig-

nificant drop in reconstruction performance of most existing SISR algorithms on real 

world images. To overcome this major drawback, researchers were working on RSISR 

since several years in various directions including building realistic datasets, SR per-

formance assessment and SR model development. 

 

3 DATASETS 

In this section we briefly discuss publicly available datasets. Very few datasets con-

sists of HR image along with LR images almost all datasets consists of only HR image 

to train and test models. To overcome these challenges more datasets for RSISR have 

been developed and they are listed below. 

Sr. 
No 

Datasets Published Synthetic / 
Realistic 

Scale 
fac-
tors 

Keywords 

1 DIV2KRK NeurIPS-
2019 [12] 

Synthetic *2, *4 DIV2K, Random 
kernels, Uniform 
multiplicative 
noise 

2 Real SR ECCV-
2020[14] 

Realistic *2, *3, 
*4 

Focal length ad-
justing 

3 DReal SR ECCV-
2020[14] 

Realistic *2, *3, 
*4 

Focal length ad-
justing 

4 City100 CVPR-
2019[15] 

Realistic *2.9, 
*2.4 

Focal length ad-
justing, shooting 
distance chang-
ing 

5 SR-RAW CVPR-
2019[16] 

Realistic *4, *8 Focal length ad-
justing, RAW data 

6 TextZoom ECCV-
2020[17] 

Realistic *2 Text, Recognition 

7 SupER TPAMI-
2020 [13] 

Realistic *2, *3, 
*4 

Hardware bin-
ning, image se-
quences 
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8 Image-
Pairs 

CVPRW-
2020[18] 

Realistic *2 Beam splitter 
cube, RAW data 

Table 1. DATASETS FOR RSISR 

3.1 DIV2KRK [12]:  

Bell-Kligler et al. [12] built this synthetic testing dataset for blind SR derived from 

DIV2K [61]. It consists of diverse images of 2K resolution. From the validation set of 

DIV2K [61] 100 HR images were blurred; with random kernel they are downsampled 

to get corresponding LR images. Degradation model of DIV2KRK is more complex 

and random. 

3.2 RealSR [14]:  

Cai et al. [14] build this real-world dataset for training and testing RSISR models. It 

has 595 image pairs of HR & LR which is generated through 2 DSLR cameras. Pro-

gressive image registration framework is proposed in order to achieve pixel wise reg-

istration of images captured at 28mm, 35mm, 50mm and 105mm by Cai et al. [14]. 

Lens distortion and interested regions of corrected images were cropped using pho-

toshop firstly, real-world HR-LR image pairs can be obtained after this conversion.  

3.3 DRealSR [15]:  

Wei et al. [81] built real world dataset DrealSR [15] which is having larger scale 

than RealSR [14]. To capture indoor and outdoor images 5 DSLR cameras were used 

with different resolutions; for alignment these images SIFT [28] algorithm is used. 

DRealSR [15] consists of 884(*2), 783(*3), 840(*4) image pairs of LR & HR. 

3.4 City100 [16]:  

To characterize resolution of field of view FoV with the use of DSLR and 

smartphones Chen et al. [27] proposed City100 dataset which includes City100, Ni-

konD5500 and iPhoneX. There is a counterbalance between the FoV and resolution for 

imaging system. If we zoom out the lens, we will get larger FoV but it is with low 

resolution. But if we zoom in the lens, we can increase the resolution of an image. This 

is the reason behind adjusting focal length or shooting distance by Chen et al. [27]. And 

this focal length is 55mm and 18mm kept for taking HR-LR images. Again, for align-

ment of images SIFT [28] RANSAC [41] algorithms were used. To increase accuracy 

intensity and rectification of colour is done. 
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3.5 SR-RAW [17]:  

Zhang et al. [17] proposed SR-RAW dataset which consists of different levels of 

optical zoom RAW images captured for the same scene with different resolutions by 

adjusting focal length. By using 24-240mm zoom lens seven images of each scene were 

taken. These seven image sequences were captured in outdoor and indoor scenes with 

500 sequences. 

3.6 TextZoom [18]:  

Wang et al. [18] constructed the TextZoom dataset from RealSR[14] and SR-RAW 

[16] is the first real scene text SR dataset. Text images in this dataset were cropped 

from the images of RealSR[14] and SR-RAW[16] including shops, vehicles, gardens, 

interiors of buildings. TextZoom[18] is developed according to difficulty levels easy, 

medium and hard. To study text image SR as well as text recognition TextZoom [84] 

can be utilized. 

3.7 SupER [13] :  

K¨ohler et al. [24] developed the SupER[13] dataset by hardware binning. Using 

Basler acA2000-50gm CMOS camera with a f/1.8, 16mm fixed focus lenses more than 

80000 images captured from 14 lab scenes with 4 imaging resolutions and 5 levels of 

compression. To get exact alignment between HR- LR images imaging resolution is 

adjusted by changing the binning factor, 3 different levels of resolution and binning 

factors were used to generate LR images corresponding to HR image. 

3.8 ImagePairs [18]:  

Joze etal. [18] proposed ImagePairs [18] which includes 11421 LR-HR image pairs 

(LRHRIP) of diverse scenes captured by 5 mega pixel camera (LR) and 20.1 mega pixel 

HR camera. 

 

To capture same scene images simultaneously with two different cameras a beam 

splitter cube is used. But due to differences in focal length Joze et al. [30] proposed 

pixel based aligned LRHRIP with following 4 steps 

i. ISP Process: In this process first images captured by LR-HR cameras 

were converted to colour images. 

ii. Distortion: Using camera calibrations tangential and radial distortions 

were reduced. 

iii. Alignment of LR-HR images are done globally and locally.  

iv. To improve matching accuracy of image pairs 10% of border is removed. 

As ImagePairs [18] includes raw images it should be used for ISP and 

other tasks. 
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4 Image Quality Assessment 

4.1 Peak Signal-to-Noise Ratio (PSNR):   

It is one the popular metrics used for quality assessment for image restoration (e.g., 

SR, denoising, deblocking, and deblurring). 

 PSNR = 10. log10 ∗
𝐿2

𝑀𝑆𝐸
                       (4) 

Where mean squared error MSE is defined as follows, 

                    MSE = 
1

𝐻𝑊𝐶
 ‖Y − Ŷ‖

2

2
 

L equals to 255 in general cases using 8-bit representations. 

For pixel level MSE PSNR is the most widely used evaluation metrics. It focuses only 

on differences between corresponding pixels instead of visual perceptions. 

4.2 Information Fidelity Criterion (IFC) [20]:  

Based on natural scene statistics the quality of images may be assessed by the infor-

mation fidelity criterion (IFC) [20]. Characterization of natural images formed by sta-

tistics of the space can be done using models like Gaussian Scale Mixture is shown by  

researchers. Statistics of natural images will be disturbed by distortion and it will make 

unnatural images. To quantify the mutual information between test image and reference 

by using natural scenes and distortion models to measure images visual quality. Over-

all, the IFC [20] performs well for the quality assessment of super-resolved images 

[23]. 

4.3 LPIPS [21]:  

For referenced based image quality assessment metric is learned metric - Learned 

Perceptual image patch similarity (LPIPS). By taking difference between reference and 

test image in a deep feature space LPIPS is achieved, which is good outcome as per 

human judgements. To fit the Quality-Aware features extracted from images Multivar-

iate Gaussian (MVG) Model is used. To characterize the behaviour of image patches 

features are included with parameters of Generalized Gaussian Distribution (GGD) and 

Asymmetric Generalized Gaussian Distribution (AGGD). The distance between two 

MVG models fitting natural images and evaluated images is used to measure the quality 

of an image. 
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4.4 PIQE [22]:  

The perception-based quality evaluator (PIQE) is a no-reference image quality as-

sessment metric [22]. To identify distortion and grade quality block level analysis is 

conducted by dividing test image into non-overlapping blocks. By pooling block level 

quality scores, a quality of an evaluated images is obtained.  

4.5 NRQM [19]:   

This is a learned no-reference quality metric (NRQM) for assessing super-resolved 

images [19]. In this feature extraction is done to predict the perceptual scores of super-

resolved image which includes local, global frequency features, and spatial features. 

 

5 METHODS AND TECHNOLOGIES 

 

Fig. 3. RSISR Methods 

 

More focus is given to RSISR as the SR performance on synthetic data is giving 

better results. Fig 2. Shows existing RSISR techniques grouped into four categories 

based on their principles and characteristics as degradation modelling- based methods 

[33]-[43], image pairs-based methods [44]-[55], and self-learning-based methods [39], 

[56]-[60]. 

 

5.1 Self-Learning-based Methods 
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Fig. 4. Self-learning-based SR method 

For training SR models existing RSISR methods use paired or unpaired training data 

which is external dataset. Consistency between testing and training data results in 

tightly bound SR performance. Characteristics of training data of real-world images are 

not always consistent.  To reduce the impact of inconsistency of training testing on SR 

performance, information of LR input is exploited to learn image specific SR model as 

shown in above fig. 3. Shocher et al. [56] developed the Zero-Shot SR (ZSSR) follows 

self-supervised approach is based on the common property of natural images i.e., cross 

scale internal recurrence of information. In the testing phase, example pairs extracted 

from LR test image and its degraded images to train image-specific LR_HR relations 

by using 8-layer CNN. Data augmentation is adopted while extracting image specific 

LRHR pairs as there is insufficient training data because of only test image. In order to 

achieve excellent SR performance on real-world images, ZSSR [56] adapts itself with 

different testing images with unknown and unideal degradation process. Bell-Kligler et 

al. [39] proposed to train an image-specific GAN (Kernel GAN) based on the cross-

scale recurrency property to model the degradation process (blur kernel) of the input. 

So, in order to achieve fully self-supervised image-specific RSISR framework by 

plugin the blur kernel estimation model KernelGAN [39] into reconstruction model 

ZSSR [56].  Kim et al. [57] developed a unified internal learning-based SR framework 

DBPI, consisting of an SR network and a downscaling network to jointly train the im-

age-specific degradation and SR networks. To reconstruct LR image from its 

downscaled version produced by downscaling network, SR network is optimized in the 

self-supervised training phase of DBPI. Meanwhile to recover the LR input image from 

its super-resolved version produced by SR network the downscaling network is trained. 

Similarly, DualSR [58] was proposed by Emad et al. [58] which jointly optimizes im-

age-specific downsampler and relative upsampler. By using the patches from the test 

image, the DualSR [58] is trained with three losses cycle-consistency, masked interpo-

lation and the adversarial loss which results in [57], [58] complementary training of the 

image specific degradation and SR network is beneficial to the reconstruction frame-

work.  

 

Due to self-supervised training strategy, self-learning based RSISR approaches such 

as ZSSR [56], KernelGAN [39], and DBPI [57] has two main limitations. I) Even 

though larger scale external information was available it is neglected as optimized SR 

models only uses the internal information. II) Because of online training these methods 

were very time consuming. Meta-learning is introduced into self-learning-based SR 

methods to overcome these limitations. Soh et al. [59] proposed the meta-transfer learn-

ing for zero-shot SR (MZSR) based on ZSSR [56] which consists of 3 steps large-scale 

training, meta-transfer learning and meta test.  

1) On the large-scale dataset DIV2K [61], large scale training step one trains an 

8-layer SR network with pixel wise l1 loss in order to make it easy training the 

SR network and the meta-learning.  
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2) The aim of meta-learning is to find a generic initial point for internal learning 

by following the Model-Agnostic Meat-Learning [62], model can be adapted 

quickly to new image conditions within few gradient updates. 

3) To generate example pairs for model parameter update, the input image is de-

graded, and then it is given to updated model to generate SR result, in the met-

test phase.  

Meta- transfer learning strategy (MZSR) [59] achieves competitive performance in 

terms of both the quality of the super-resolved image and running time. Reconstruction 

quality, generalization capability, and processing efficiency was achieved using meta-

learning-based SR approaches. 

 

6 CURRENT CHALLENGES AND FUTURE DIRECTIONS 

As we seen in section III and IV research on RSISR is positively done still there are 

some problems need further exploration. In this section we discuss some of the chal-

lenges and future work.  

 

6.1 Image Datasets 

Dataset is essential when it comes to self-learning equally as SR techniques for any 

research. In this field of research several datasets were designed but still it is required 

to develop more datasets focused on realistic image with more accuracy, images cap-

tured with different resolutions on same scene. 

 

6.2 SR Algorithms 

Still, it is not possible to apply RSISR algorithms to practical applications even 

though performance was increasing. As there are two major limitations of real-world 

images suffers from degradation problem therefore it is necessary to adapt RSISR mod-

els with ever changing real-world images. Other major limitation is with resources re-

quired are very highly configured for large model which is time consuming and also 

requires more storage space. Hence it is necessary to adapt lightweight design and im-

plementation of SR models.  

 

6.3 Evaluation Criteria 

PSNR and SSIM are the two mostly used evaluation metrics for SR with inability of 

measuring visual quality of super-resolved images accurately. Due to this these metrics 

were unfit for implementing in practical applications. Hence, more suitable evaluation 

criteria should be developed for RSISR is crucial and immediate research problem. 
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Evaluation should consider smoothness preserving for flat areas, details enhancing for 

textures, sharpening of edges etc. To measure visual quality more accurately and con-

veniently with automatic model remains a challenge. 

 

7 CONCLUSION 

Super resolution of real-world images is getting more attention in recent years. In 

this paper we have discussed recent super resolution method (self-learning- based al-

gorithms) for realistic images, datasets and assessment metrics for RSISR models train-

ing and evaluation. Some challenges should be addressed immediately as discussed in 

previous section. I am sure that this survey can give better understanding of existing 

studies for researchers, hope challenges were addressed by researchers in future. 
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