
EasyChair Preprint
№ 2006

Application of Сloud Services for Processing of
Information Flows

Nataliya Boyko and Yurii Kryvenchuk

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 20, 2019

Application Of Сloud Services For Processing Of
Information Flows

Nataliya Boyko, Yurii Kryvenchuk
Lviv Polytechnic National University

Lviv, Ukraine
nataliya.i.boyko@lpnu.ua

yurii.p.kryvenchuk@lpnu.ua

Abstract—The paper describes the term of cloud storages. It
also describes one of the practical approaches to storing the
needed information in cloud storages. Theoretical research has
been held, advantages and disadvantages of different approaches
has been described. The most efficient way of solving the
problem was implemented. Problems that might come up in a
process of working with social networks were highlighted. The
way of problems solving were outlined.

Keywords— cloud storage, screenshot, cloud service, API
(Application Programming Interface), software.

I. INTRODUCTION

Cloud storages became popular and widely used starting
from year 2006 for a number of reasons, which a key factors
and describe this model of storing data:

Physical location of storage is not limited to a single server;
data can be accessed from any location in the world, the
read/write speed can be better, if the infrastructure has been
designed correctly. A cloud storages usage has a number of
advantages when comparing to the conventional way of storing
data. Users have the ability to purchase service of a certain
provider and choose the needed configuration. The important
aspect is that cloud storages are highly customizable, so in case
of a need, the configuration can be easily changed to suit the
needs of a client. Thereby, usage of cloud storages allows
clients to save money on their data storage.

There are a big number of different cloud storages
providers, however the ways to access them are differ.
Generally accepted is the approach of using API (Application
Programming Interface), which also might be different in every
provider, though, the documentation is almost always available
to general public.

It’s worth mentioning that the decentralization of storing
data might also have a negative aspect to it. Firstly, users
cannot be completely sure that their data is being kept private
when they give it to 3rd-party service providers. Secondly, the
overall reliability of the service fully depends of the service
provider, which in theory could cause some problems

Consequently, cloud storages are a good alternative to
traditional ways of storing data, for a number of reasons, such
as reliability, scalability, and ease in configuration.

This article describes an approach of creating screenshots
of certain publication and comments in a social network
“Instagram” and saving them in cloud storage. This process
could be beneficial in a case of a need of monitoring some
publication, for example, an online auction.

II. SETTING THE TASK

Formulation of the problem: automate process of creating
screenshots of a publication and its comments.

According to the task, there are 4 key problems:

1. Determine the quantity of comments and save this value
to a database.

2. Perform a check if a new comment has been created.

3. If so, make a screenshots of the publication and
comments.

4. Save the screenshot to cloud storages (where and how?)

III. PROBLEM #1 AND #2: CHECK IF NEW COMMENT WAS
CREATED, DETERMINE THE QUANTITY OF COMMENTS

Social network “Instagram” does not have any callback
features, so the check has to be performed manually. However,
it allows the access to a number of attributes of a certain
publication (ID of publication, author ID, quantity of comment,
etc.). Thereby, we can create a local database in which the
quantity of comments for certain publication will be stored,
and later we can compare the value from the database to an
actual number of comments. If those values differ from each
other, we will take a screenshot of the publication and its
comments. Acquiring the quantity of comments was performed
using a Python module called Instagram API
(https://github.com/LevPasha/Instagram-API-python).

Example of a query for receiving the quantity of comment
of a last publication:

From Instagram API import Instagram API

ifAPI.getUserFeed(AUCTION_PROFILE_ID):

API = InstagramAPI(settings.LOGIN, settings.PASS)

mailto:boyko@lpnu.ua
mailto:kryvenchuk@lpnu.ua

API.login()

item = API.LastJson["items"][0]

comment_count = item["comment_count"].

IV. PROBLEM #3: MAKING A SCREENSHOT

Several approaches to solve this problem have to be
outlined:

1. Using a local server.

2. Using some 3rd-party services.

Selenium Web Driver was chosen as a solution to the
problem. Selenium Web Driver is software, which allows
controlling the behavior of a web browser. This module has a
big variety of different features, however we are interested in
ability to make a request, execute some JavaScript code, and
making a screenshot.

Example of code to make a screenshot of google.com.ua:

From selenium import web driver

driver = webdriver.Chrome(CHROMIUM_DRIVER_PATH)

driver.get(“https://www.google.com.ua/”)

driver.save_screenshot(“screenshot1.png”)

Fig. 1. Screenshot of google.com.ua (.png extension)

Execution of JavaScript code is implemented using a
function driver.execute_script(), the argument of which is a
string with JavaScript code. This is used to hide useless
elements of web page.

V. PROBLEM #3: STORING SCREENSHOTS

There are several issues of solving this problem; some of
them are outlined below:

1. Storing screenshots on a local server, with the main
script file. The big advantage of such approach is that there is
no need to make additional requests to 3rd-party services.
Though, the disadvantage is that we need to limit the access to

the server while providing easy to use access to the
screenshots, which requires a lot of efforts and resources.

2. Using cloud storage provider “Dropbox”. This option is
easier from a perspective of configuration and usability.
However, as was discovered later, the configuration process is
still quite complicated and requires a number of iterations. In
additional, usage of personal account is not fully efficient.

3. Using cloud storage service “Google Drive”. This option
allows full control of files and folders using requests, however
is quite tiresome in implementation.

Despite that, 3rd option was chosen because of its benefits
in usage.

The documentation, examples of implementation and other
materials on how to use Google Drive is provided on this
website -
https://developers.google.com/drive/v3/web/quickstart/python

After the activation of Google Drive API, client_secret.json
will be created, which has to be moved in a project directory.
In order to simplify the process of working with Google Drive
API, Python module called pydrive
(https://github.com/gsuitedevs/PyDrive) was chosen. It
provides a simple interface for making requests, thereby, we
don’t have to create requests manually. Documentation of
pydrive is provided on this website -
https://pythonhosted.org/PyDrive/

The process of authentication is also simplified by pydrive
module and is performed automatically in the presence of
client_secret.json in working directory.

Example of clients_secret.json:
{

"web": {

"client_id": "123456789011-
ma5shc650k2ns0dmnu6876rud8orfonq.apps.googleusercontent.com",

"project_id": "cloudservices-199507",

"auth_uri": "https://accounts.google.com/o/oauth2/auth",

"token_uri":
"https://accounts.google.com/o/oauth2/token",

"auth_provider_x509_cert_url":
"https://www.googleapis.com/oauth2/v1/certs",

"client_secret": "5ATC9NETaYjgb7PwJkG4rqSU",

"redirect_uris": ["http://localhost:8080/"],

"javascript_origins": ["http://localhost:8080"]

}

}

Example of code which establishes connection and uploads
a test file:

frompydrive.authimportGoogleAuth

frompydrive.driveimportGoogleDrive

www.google.com.ua/
www.googleapis.com/oauth2/v1/certs
http://localhost:8080/
http://localhost:8080

creation of object of authentication

gauth = GoogleAuth()

creation of object required to work withGoogleDrive API

drive = GoogleDrive(gauth)

uploading the file

file_entity = drive.CreateFile()

file_entity.SetContentFile(file_path)

file_entity['title'] = file_name

file_entity.Upload()

VI. PRACTICAL SOLUTION OF THE PROBLEM

Schematic plan of the solution:

Fig. 2. Schematic plan

Fig. 3. UML diagram

First of all, we perform a comparison, in order to know if
we need to make a screenshot. In order to do that, we receive
the number of comments of certain publication and compare

that value with the value in database. If those values are
different, we call a function, which makes a screenshot. The
value in the database is updated soon.

Fig. 4. Structure of database

Fig. 5. Example content of database

Function which makes a screenshot and uploads it to
Google Driver:

defsave_page_screenshot(media_ids):

now = datetime.datetime.now()

withChromeDriverWrapper() asdriver:

withtempfile.TemporaryDirectory() astemp_dir:

formedia_idinmedia_ids:

url = settings.INSTAGRAM_URL % media_id_to_code(media_id)

driver.get(url)

driver.execute_script(JS_SCRIPT)

file_name = "{}.{}".format(now.strftime("%d %B %Y %H-%M-%S"),
settings.IMAGE_EXTENSION)

file_path = os.path.join(temp_dir, file_name)

logger.info("Savingscreenshot %s totempfolder", file_name)

driver.save_screenshot(file_path)

file_entity = drive.CreateFile()

file_entity.SetContentFile(file_path)

file_entity['title'] = file_name

file_entity.Upload()

The name of the file is presented in following format for
the ease of reading by a user -"%d %B %Y %H-%M-%S".

Another important aspect is usage of
tempfile.TemporaryDirectory(). This function creates a
temporary directory in which screenshots are saved for the time
of execution of the script. After execution has been completed,
the directory and its content will be deleted/

JavaScript code used for hiding useless elements of
website:

varpopup = document.getElementsByClassName('_2pnef');

try {

popup[0].style.visibility = 'hidden';

} catch (e) {

console.log(e);

}

varcomments = document.getElementsByTagName('ul')[0];

var i = comments.childNodes.length;

while (i--) {

comments.appendChild(comments.childNodes[i]);

}

VII. MULTIPROCESSING

Multiprocessing was used in order to perform
asynchronous creation of screenshots. It allows creation of
additional processes in order to optimize the execution and the
resources need, and also make script work faster. Technically,
multiprocessing is a module in Python which allow
parallelization of tasks and their execution.

Example of usage:
from multiprocessing import Pool

pool = Pool(initializer=init_worker)

pool.apply_async(save_page_screenshot,
args=(ids,)).get(timeout=999999)

VIII. RESULTS

Fig. 6. Execution of the script

Fig. 7. Content of the Google Drive folder after the execution

IX. CONCLUSIONS AND PERSPECTIVES OF FURTHER
SCIENTIFIC DEVELOPMENTS

As a result of this experiment, we were able to achieve a
system, which saves time, since there is no need to manually
track every publication and its comments. This process is
performed automatically and without interference of a human.
Because of multiprocessing, the script works in an optimal and
fast way and doesn’t require large resources. Current system is
reliable, easy to use and configure. Also, this system is easy to
modify and/or make some adjustments to it, since all key
configuration variables are stored in settings.py file, such as
extension of the screenshot, Instagram login and password of a
user, timeout between the checks, etc.

REFERENCES

[1] N. Sangeeta. Cloud Computing and Virtualization, Dhamdhere, 2013,
385 p.

[2] M. Monirul Islam. “Necessity of cloud computing for digital libraries:
Bangladesh perspective”, International Conference on Digital Libraries

(ICDL) 2013 : Vision 2020 : Looking Back 10 Years and Forging New
Frontiers, pp. 513–524.

[3] V. Estivill-Castro and I. Lee. “Amoeba: Hierarchical clustering based on
spatial proximity using Delaunay diagram” [9th Intern. Symp. on spatial
data handling, Beijing, China, 2000, pp. 26–41].

[4] H.-Y. Kang and B.-J. Lim and K.-J. Li. P2P Spatial query processing by
Delaunay triangulation. Lecture notes in computer science, vol.
3428,Springer/Heidelberg, 2005, pp. 136–150.

[5] C. Boehm and K. Kailing and H. Kriegel and P. Kroeger. “Density
connected clus-tering with local subspace preferences” IEEE Computer
Society [Proc. of the 4th IEEE Intern. conf. on data mining, Los
Alamitos, 2004, pp. 27–34].

[6] D. Harel and Y. Koren. “Clustering spatial data using random walks”.
Proc. of the 7th ACM SIGKDD Intern. conf. on knowledge discovery
and data mining, San Francisco, California, 200, pp. 281–286.

[7] A.K Tung and J. Hou and J. Han. “Spatial clustering in the presence of
obstacles”. The 17th Intern. conf. on data engineering (ICDE’01),
Heidelberg, 2001, pp. 359–367.

[8] O.I. Veres and N.B. Shakhovska. “Elements of the formal model big
date”. The 11th Intern. conf. Perspective Technologies and Methods in
MEMS Design (MEMSTEH), Polyana, 2015, pp. 81-83

[9] R. Agrawal and J. Gehrke and D. Gunopulos and P. Raghavan.
Automatic sub-space clustering of high dimensional data. vol. 11(1),
Data mining knowledge discovery, 2005, pp. 5–33.

[10] L. Guimei and L. Jinyan and K. Sim and W. Limsoon. “Distance based
subspace clustering with flexible dimension partitioning” [Proc. of the
IEEE 23rd Intern. conf. on digital object identifier, vol. 15. Iss. 20,
2007, pp. 1250–1254].

[11] C. Aggarwal and P. Yu. “Finding generalized projected clusters in high
dimensional spaces”. ACM SIGMOD Intern. conf. on management of
data, 2000, pp. 70–81.

[12] C.M. Procopiuc and M. Jones and P.K. Agarwal and T.M. Murali. “A
Monte Carlo algorithm for fast projective clustering”. ACM SIGMOD
Intern. conf. on management of data, Madison, Wisconsin, USA, 2002,
pp. 418–427.

[13] M. Ankerst and M. Ester and H.-P. Kriegel. “Towards an effective
cooperation of the user and the computer for classification” [Proc. of the
6th ACM SIGKDD Intern. conf. on knowledge discovery and data
mining, Boston, Massachusetts, USA, 2000, pp. 179–188].

[14] D.J. Peuquet. Representations of space and time. N. Y.: Guilford Press,
2002.

[15] D. Guo and D.J. Peuquet and M. Gahegan. ICEAGE: Interactive
clustering and exploration of large and high-dimensional geodata, vol.
3, N. 7, Geoinfor-matica, 2003, pp. 229–253.

[16] N.I. Boyko. “A look trough methods of intellectual data analysis and
their applying in informational systems”. [In Scientific and Technical
Conference “Computer Sciences and Information Technologies (CSIT),
IEEE, XIth International, 2016, pp. 183-185].

[17] N.I. Boyko and N.B. Shakhovska and T. Sviridova. “Use of machine
learning in the forecast of clinical consequences of cancer diseases” [In
7th Mediterranean Conference on Embedded Computing, IEEE
MECO'2018, pp. 531-536].

[18] N.I. Boyko. “Advanced technologies of big data research in distributed
information systems”, Radio Electronics, Computer Science, Control. №
4, Zaporizhzhya: Zaporizhzhya National Technical University, 2017, pp.
66-77.

[19] N.B. Shakhovska and O.B. Vovk and R.T. Hasko and Yu.P.
Kryvenchuk. “The Method of Big Data Processing for Distance
Educational System” [In Conference on Computer Science and
Information Technologies, pp. 461-473]

[20] N.B. Shakhovska and O.B. Vovk and Yu.P. Kryvenchuk. Uncertainty
reduction in Big data catalogue for information product quality
evaluation. Eastern-European Journal of Enterprise Technologies, vol 1,
No 2 (91), 2018, pp. 12-20.

