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Abstract. This paper is concerned with the modeling and optimization for berth
allocation, quay crane assignment and scheduling problem (BACASP). A serial in-
tegrated linear programming model is first established, which includes berth alloca-
tion and quay crane assignment problem (BACAP) as Sub-model 1 and quay crane
scheduling problem (CSP) as Sub-model 2. Compared with most of the existing re-
search, a more comprehensive summary for BACASP is provided by the proposed
integrated model. Considering that the BACAP is a large-scale integer optimization
with multiple local minimums, an enhanced quantum annealing algorithm (EQA)
with strong global searching ability is then developed, in which a threshold compen-
sation mechanism is designed to improve the global exploration ability, and a stop
criteria is given to avoid over-repeated iteration. Moreover, the annealing scheduling
is updated and a storage place is built in EQA. At last, an example of port dispatch-
ing is taken, and the effectiveness of the integrated model and superiority of the EQA
are verified.
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1 Introduction

Due to the rapid development of containerization and globalization, maritime transportation
has become an important part of global supply chains. According to the statistics, maritime
transport occupies 80% of global trade. With the request of higher work efficiency and less
labor costs, many countries and areas are constructing automated container terminals, and
the promotion on work efficiency has been a crucial issue over the past decades.

A seaport can be divided into two parts: the water-side part and the land-side part.
Considering the water-side part of automated container terminals, there are various problems
that can be discussed: berth allocation problem (BAP), quay crane assignment problem
(CAP), quay crane scheduling problem (CSP), and the combination of them such as berth
allocation and quay crane assignment problem (BACAP). Considering the land-side part,
we can discuss VRP and CVRP problem, yard crane (YC) scheduling problem, and other
relevant problems.

Diabat and Theodorou in [1] used genetic algorithm (GA) to solve CAP and CSP. Xiang
et al. in [2] proposed a bi-objective robust model for berth allocation scheduling problem
under uncertainty. Hu in [3] designed a multi-objective genetic algorithm (MOGA) to solve
BAP considering daytime preference. Correcher and Ramon in [4] put forward a biased
random-key genetic algorithm for BACAP and BACASP problem. Sun et al. in [5] dis-
cussed the CSP with vessel stability constraints. Malekahmadi et al. in [6] presented an
integer programming model for integrated continuous BACAP in container terminals, and
then put forward a random topology particle swarm optimization algorithm (RTPSO) to
solve a large-size instance. Correcher et al. in [7] proposed a new mixed integer linear model
to solve BACAP and extended it to solve BACASP. Tasoglu and Yildiz in [8] proposed a
simulation optimization based solution approach for the integrated BAP and CSP consid-
ering simultaneously multi-quay hybrid berth layout, dynamic arrival of vessels, stochastic
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handling time and non-crossing constraints of quay cranes. Liang et al. in [9] developed
a coordination scheduling model which is composed of a storage subsystem model, a YC
scheduling subsystem and a coordinate controller model, and then developed a coupling al-
gorithm based on a genetic mechanism to solve it. He et al. in [10] developed a YC scheduling
problem considering risk caused by uncertainty, and proposed a GA-based framework com-
bined with three-stage algorithm to solve the problem.

Compared with the above existing research, the main contributions of this paper include
the following three aspects:

(i) A description of an integrated two-stage model of berth allocation, quay crane assign-
ment and scheduling problem (BACASP) is given.

(ii) An enhanced quantum algorithm (EQA) is put forward to improve traditional quantum
annealing algorithm (QA).

(iii) Experiment simulations, including the comparison with EQA and other algorithms, and
real-life experiment of BACASP are taken.

The rest of this paper is organized as follows: in section 2,we put forward a two-stage
model of BACASP including BACAP and CSP, and the solution of the former sub-model is
the initial solution of the latter one. In Section 3, we propose the EQA to further improve
the global searching ability on the basis of the traditional QA algorithm. In Section 4, the
relevant simulations are completed.

2 Model formulation

To solve berth allocation, quay crane assignment and scheduling problem (BACASP), we
put forward a two-stage model which is a combination of two subproblems: berth allocation
and quay crane assignment problem (BACAP), and quay crane scheduling problem (CSP),
where the optimal solution of the former is reasonably considered as the input of the latter.
The final scheme of BACASP can be obtained according to the integrated solution of these
two sub-models.

2.1 Assumptions and nomenclatures

Before establishing BACASP mathematical model, several common assumptions (see [11] )
are proposed first:

(1) The berth area is divided into berth segments in equal size.

(2) The passing channel time of vessels is negligible so that when a vessel finishes its service,
it will depart immediately and the next vessel can berth immediately if it satisfies the
berth condition.

(3) A quay crane can serve at most one vessel at any moment.

(4) A berth section can berth at most one vessel at any moment.

(5) Each vessel has a minimum and maximum number of quay cranes that can be assigned
to.

(6) The start and relocation time of quay cranes is negligible, which means cranes can start
working immediately after a vessel’s berthing.

(7) Quay cranes cannot cross over each other, which means that cranes in the yard have a
specific order.

(8) The berth position of each vessel is fixed before its departure.

(9) The number of cranes available in the quay is fixed and all cranes have the same work
capacity.

Parameters involved in the mathematical model are expressed in Table 1, and decision
variables are listed in Table 2.
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Table 1. Parameter nomenclatures of the model

Parameter Description

i index of vessels
j index of berth sections
q index of quay cranes
t index of time periods

N number of vessels
B number of berth segments
K number of quay cranes
T maximum time
ei expected arrival time of vessel i
di departure time of vessel i
li length of vessel i

kimin lower bound on the number of cranes that can be assigned to vessel i
kimax upper bound on the number of cranes that can be assigned to vessel i

pki processing time of vessel i if k cranes are assigned to it
wi workload of vessel i

Table 2. Decision variables of the model

Decision variable Description

xk
ijt one if vessel i start berthing at section j in period t are assigned

to k cranes, zero otherwise
yg
it one if crane group g is assigned to vessel i in period t,

zero otherwise
zqt position of crane q in period t

2.2 Stage 1: BACAP

BACAP is the combination of two subproblems: berth allocation problem (BAP) and quay
crane assignment problem (CAP). The BAP aims to find the optimal berth time and berth
segments of each vessel, and the purpose of the CAP is to find the optimal number of cranes
assigned to each vessel to minimize the total time.

The objective function and constraints of BACAP are shown as follows:

n∑
i=1

(di − ei + 1) . (1)

Objective function (1) minimizes the total time of vessels in berth section.

B−li+1∑
j=1

kimax∑
k=kimin

di∑
t=ei

xkijt = 1 for i = 1, ..., V . (2)

N∑
i=1

min(B−li+1, ĵ)∑
j=max(1, ĵ−li+1)

kimax∑
k= kimin

di∑
t=si

xkijt ≤ 1 for ĵ = 1, ..., B . (3)

Constraints (2) and (3) represent the constraints of BAP. Constraint (2) guarantees that
each vessel is served once. Constraints (3) ensures that there is at most one vessel in a berth
section at any moment (assumption 4).

wi ≤
ei+pi−1∑
t=ei

ki∑
q=0

qygit for ĵ = 1, ..., B . (4)
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N∑
i=1

kimax∑
k= kimin

B−li+1∑
j=1

max(T−pki +1, t̂)∑
t=max(ei, t̂−pki +1)

kxkijt ≤ K for t̂ = 1, ..., T . (5)

Constraints (4) and (5) are the constraints of CAP. Constraint (4) means that the service
must satisfy the vessel’s workload. Constraints (5) shows that the number of working cranes
is no more than the number of available cranes. The above is the BACAP mathematical
model, which is the first-stage model of BACASP as well.

2.3 Stage 2: CSP

Since BACAP model cannot determine the specific crane assigned to a vessel, the second
stage problem named quay crane scheduling problem (CSP) is proposed. The constraints of
CSP are shown as follows:

zqt ≤ z(q+1)t for q = 1, ...,K − 1 and t = 1, ..., T . (6)

zit ≥ 1 for t = 1, ..., T . (7)

zit ≤ B for t = 1, ..., T . (8)

Constraint (6) determines the order of cranes. Constraints (7) and (8) ensure that all
cranes are located in the berth area.

To sum up, the mathematical model of BACASP consists of the objective function (1)
and constraints (2)-(8).

3 Enhanced quantum annealing algorithm (EQA)

3.1 Traditional quantum annealing algorithm (QA)

Recently, different kinds of quantum heuristic algorithms have received increasing attention
as important realization means of quantum computing in the optimization field (see [12] , [13]
and [14] ). Among these quantum heuristic algorithms, QA is an efficient algorithm special-
izing in solving integer optimization problems. It is an updated heuristic technique based on
simulated annealing (SA), which refers to the quantum tunneling effect that particles with
low energy can jump out of energy barriers without giving them external energy. Crispin
and Syrichas in [15] used QA to solve TSP problem. Liu and Li in [16] employed QA to solve
mixed-integer optimization (MIO), and extended the original QA to solve multi-objective
MIO in complex industrial applications (see [17] and [18] ).

With Path-Integral Monte Carlo (PIMC), a quantum system is mapped onto a classical
model to approach the lowest energy state of Ising model. In QA, the fitness function can
be described by Hamiltonian energy as

H = Hp − JΓ∆Hk . (9)

In equation (9), Hp is the average potential energy of all replicas, and ∆Hk is the change
of kinetic energy which provides a disturbance during iteration. ∆Hk should tend to zero
as H approaches the average potential energy. JΓ is the transverse ferromagnetic coupling
coefficient defined as follows:

JΓ = −T
2

ln tanh(
Γ

ZT
) . (10)

In equation (10), T is the temperature, Γ is the tunneling field strength parameter, and
Z is the number of replicas (expressed as symmetric spin matrices in QA).
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The average potential energy Hp is defined as follows:

Hp = (

Z∑
n=1

N∑
i=1

N∑
j=1

dnijSnij)/Z . (11)

In equation (11), d is the distance between row i and column j, and Z is the number of
replicas. And we define Sij equals to 1 if the order of i is connected to the order of j, and 0
otherwise. Meanwhile, the kinetic energy is calculated as follows:

Hk =

Z∑
n=1

N∑
i=1

N∑
j=1

S(n−1)ijSnij+

Z∑
n=1

N∑
i=1

N∑
j=1

S(n+1)ijSnij . (12)

In equation (12), the former term is the sum of products of the current replica with its
previous replica, while the second term is the sum of products of the current replica with
its next replica of all Z replicas.

3.2 Enhanced QA algorithm (EQA)

For large-scale problems with multiple extremums, traditional QA algorithm may fall into
local optimal solution. To improve traditional QA algorithm, an enhanced QA algorithm
(EQA) is designed.

Compared with QA, the improvements of the EQA can be summarized as follows:

(i) A compensation mechanism is added.
(ii) The annealing strategy is updated.
(iii) A storage place is set.

3.2.1 Compensation mechanism
QA is composed by two loops. The inner one is to execute the Monte Carlo step and

update the current optimal solution, and the outer is to execute the annealing process until
the terminal condition is reached. The number of steps in the inner loop is the number of
Monte Carlo steps in each iteration step, and the number of steps in outer loop is the number
of final iteration step.

To increase the global searching ability of QA, a compensation mechanism is added to
the inner loop and a parameter M is set as a threshold. A characteristic of QA is that the
probability of avoiding local optimal extremum is decreasing as the iteration increases. That
is to say, in the front part of iteration steps with high temperature, it has strong global
search ability. Therefore, we make compensation in the front part of the iteration steps (for
example, the front 1/2 iteration steps) and set a parameter K as a threshold in the outer
loop to avoid excessive iteration. Proper parameters should be set to enhance the ability to
avoid local extremum and premature convergence.

3.2.2 Annealing scheduling
The annealing scheduling has influenced the efficiency of the algorithm as well. If the

annealing rate is too fast, the algorithm may stop iteration before reaching global optimal
solution, while if the annealing rate is too small, the efficiency of algorithm will be influenced.
To increase the accuracy and efficiency of EQA, a new annealing strategy is defined as follows:

Tn =

{
W ∗ αn ∗ T, n ≤ K
αn ∗ T, n ≥ K . (13)

Here T is the initial temperature, n is the nth annealing process, α is a coefficient, and W
is the weight less than 1. In the former part of iteration, the global search ability is needed
so that the annealing rate is slower. In the latter part of iteration, the global search ability
decreases and a faster rate of annealing strategy is set to reduce the number of iteration
steps and improves the efficiency of algorithm.
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3.2.3 Storage Strategy
Moreover, a storage space is established to collect the optimal solutions of each iteration

step and the final solution. By comparing all solutions saved in the storage space, the final
solution is ensured to be the optimal solution.

Finally, the specific step of EQA can be summarized as follows:
Step 1: Randomly initialize a matrix that only one value of each row and column is 1

while other elements are 0.
Step 2: Randomly select step dimension d and steps a and b (for a 6= b ). Elements of

each row a and b is one, and the corresponding columns are p and q, so that the change of
energy after spins flipped at the intersection of a, b, p and q is the criteria to judge whether
the flip is needed or not. And a probability is set to execute the tunneling effect.

Step 3: Reduce the annealing parameter after repeating Step 2 in Monte Carlo step.
Step 4: Execute the flipping if there are no flips in MC steps.
Step 5: Repeat the above steps until reaching the termination condition.

4 Experiments

4.1 Part 1: comparison of EQA and other algorithms

To verify the feasibility of EQA, a TSP problem of 52 cities is used and the optimal solution
is shown in Fig 1. Meanwhile, to verify the superiority of EQA, we conduct 50 repeated
experiments for each algorithm and the results are shown in Table 3. The operating environ-
ment of all experiments is set in MATLAB R2019a with a Core i7-2.6 GHz CPU/ Windows
10 in 64 bit.

Fig. 1. Solution of TSP by EQA

Some evaluation indicators are defined as follows:

(i) Steps: to reflect the ability of convergence of an algorithm, equivalent to the average
number of steps in reaching the optimal solution of the repeated experiments.

(ii) Accuracy: to reflect the global search ability of an algorithm, equivalent to ratio of times
reaching global optimal solution and total times.

Table 3. Comparison of SA, QA, and EQA

SA QA EQA

Parameter M 0 0 100
Parameter K 0 0 700

Steps 954 677 643
Accuracy 0.88 0.92 0.98
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It can be seen in Table 3 that EQA shows a superior global searching ability and a
slight better searching efficiency compared with SA and QA.

4.2 Part 2: experiments of BACASP

In this part, two experiments of BACASP are set. Experiment 1 is a small-scale BACASP
problem with 8 vessels arriving in the same time, 10 berth segments, and 8 quay cranes, and
Experiment 2 is a large-scale BACASP problem with 30 vessels arriving in different time,
20 berth segments and 12 quay cranes.

The necessary parameter settings of the BACASP model are set in Table 4. Parameters
and the optimal scheme of Experiment 1 are shown in Table 5 and Fig 2. Furthermore, a
comparison is performed and each algorithm is operated for 50 times respectively. The result
of comparison is shown in Table 6. Parameters and the result of Experiment 2 are shown in
Table 7.

Based on the calculation results below, the proposed EQA can be regarded as a compet-
itive algorithm to solve the BACASP with ideal efficiency and searching capability.

Table 4. Parameters of vessels

Kind of vessel Range of length Range of cranes Range of workload

Small [1,3] [1,2] [5,14]
Medium [4,6] [2,4] [15,25]

Large [7,8] [4,6] [26,35]

Fig. 2. Optimal solution of Experiment 1
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Table 5. Parameters and optimal solution of Experiment 1

Vessel Length Workload Berth time End time Segment Cranes

1 1 12 5 10 1 [1,2]
2 3 9 1 4 1 [1,2]
3 1 10 1 4 4 [3,4]
4 4 21 17 22 2 [1,4]
5 5 10 1 4 5 [5,8]
6 4 22 17 22 6 [5,8]
7 5 25 28 33 1 [1,4]
8 8 26 11 16 1 [1,6]
9 8 32 5 10 2 [3,8]

10 7 30 23 27 1 [1,6]

Table 6. Comparison of SA, QA, and EQA

SA QA EQA

Parameter M 0 0 100
Parameter K 0 0 700

Steps 379 284 253
Accuracy 0.84 0.90 0.98

Table 7. Parameters and optimal solution of Experiment 2

Vessel Arrival time Length Workload Segment Berth time End time Cranes

1 2 3 13 6 2 8 [3,4]
2 12 2 8 7 3 5 [1,4]
3 37 3 9 1 37 40 [1,2]
4 15 3 10 5 15 19 [5,6]
5 13 3 15 9 13 20 [7,8]
6 24 2 8 10 24 27 [7,8]
7 5 2 14 2 5 11 [1,2]
8 30 2 13 18 61 66 [11,12]
9 12 3 14 14 9 16 [9,10]

10 2 3 13 17 2 8 [9,10]
11 39 5 21 14 46 51 [7,10]
12 21 5 19 15 21 25 [9,12]
13 40 5 15 1 52 55 [1,4]
14 14 5 16 14 17 20 [9,12]
15 35 5 21 7 35 40 [9,12]
16 3 5 19 9 5 9 [5,8]
17 1 5 15 11 1 4 [5,8]
18 38 6 25 1 41 47 [1,4]
19 10 4 24 1 12 17 [1,4]
20 40 6 18 1 62 66 [1,4]
21 25 7 33 6 29 34 [1,2]
22 23 7 30 7 51 55 [5,10]
23 27 8 29 11 56 60 [7,12]
24 13 8 30 1 56 61 [1,6]
25 29 7 26 1 29 33 [1,6]
26 35 8 29 11 41 45 [7,12]
27 39 8 29 2 51 56 [1,6]
28 7 8 26 6 46 50 [1,6]
29 24 8 28 1 24 28 [1,6]
30 36 8 30 12 36 40 [7,12]
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5 Conclusion

In this study, a serial two-stage linear programming model of BACASP is built, which con-
sists of BACAP responsible for berth allocation and quay crane assignment, and CSP with
the purpose of quay crane scheduling. Then, considering that the BACAP is a large-scale
integer optimization with multiple extremums, an enhanced quantum annealing algorithm
(EQA) with strong global searching ability is developed. We propose a compensation mech-
anism in EQA, adding two parameters in the inner loop and outer loop to improve global
searching. Also,the a updated annealing rule is set and a storage place of optimal solutions
are built. Furthermore, the superiority of the EQA in global convergence is also verified
compared with QA and SA. Finally, an example of port dispatching is taken. The correct
optimal solution is obtained by the proposed model and algorithm.
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