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Abstract. The method of prime modulo cycles or prime harmonics was applied 

in the analysis of several types of consecutive prime distributions such as single 

primes; quadruplet primes; and several cases of Polignac’s conjecture, allowing 

to produce heuristic estimates for the number of prime sequences in an arbitrary 

range. As well, a complete classification of consecutive prime sequences is giv-

en. 
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1 Introduction 

Extensive work has been done in the area of prime number distribution, including 

Prime Number Theorem a number of strong distance and number bounds [1,2] and 

many others. In this work we investigate distributions of sequences of consecutive 

prime pairs with the approach based on prime modulo cycles, or prime harmonics 

analysis proposed in the earlier works to describe distribution of twin primes [3].  

2 Prime Sequences 

2.1 Definitions 

We will use prime modulo cycles or harmonic functions of prime orders p, h(p, x) and 

cumulative harmonic C(p, x) on the set of positive odd integers as defined in [3]. 

Definition [Prime sequence] 

A prime sequence P of integer type N with the key k is defined as: 

 𝑃(𝑘, 𝑁) =  (𝑝,  𝑝12), 𝑘, (𝑝2, 𝑝22), 𝑘1, … (𝑝𝑁 , 𝑝𝑁2) (1) 

where pk: prime, 3 | ki, N: the length of the sequence. 

 Clearly, k and N uniquely define a prime sequence. The case of N = 1, i.e. twin 

prime sequence was described in [3] and N = 2 corresponds to quadruplet (quad) 

primes [4]. Prime sequences are a special case of prime k-tuples [5] and the scope of 

this work unless stated otherwise will be limited to sequences of consecutive primes. 
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2.2 Harmonic Condition 

We will now establish the harmonic condition for the key of a prime sequence of 

length N > 1. Recalling that according to the definition of the prime harmonic func-

tion, h(p, x) = p – 1 ≡ -1, h(p, x) = p – 2 ≡ -2 it can be seen immediately that to allow 

a minimum of two consecutive pairs of primes, the condition on the key of the se-

quence is | C(p, k) | > 2. 

Lemma 1. The harmonic condition for the key k of a prime sequence with length N > 

1 is | C(p, k) | > 2. 

 

Proof. For the position x of the key, 3 | x, x – 2, x – 1, x + 1, x + 2 must be prime and 

the condition for (x + 1, x + 2) being prime was established in [3]: C(p, x) > 2.  

For (x – 2, x – 1) to be prime, C(p, x) cannot be -2 ≡ p – 2 or -1 ≡ p – 2 and the 

proof is complete. 

An immediate corollary of Lemma 1 is that they key of a sequence with N > 1 has 

to satisfy h5(x) = 0 or 5 | k, being the only value of h5(x) that satisfies the harmonic 

condition of Lemma 1. 

It follows then that the minimal distance between the positions of possible keys of 

a prime sequence of type N > 1 is 3 × 5. 

2.3 Maximum Length 

Another immediate consequence of the harmonic condition is that the length of a 

prime sequence cannot be greater than 2. Indeed, if existed a sequence with N > 2 

with the key k, then the harmonic condition requires h5(k) = 0. Then, h5(k1 = k + 3) = 

2 and the harmonic condition for the following pair (x3, x32) is not satisfied so they 

cannot be both prime. 

Lemma 2. The maximum length of a consecutive prime sequence with the key k > 3 is 

2. 

Hence, for sequences with N > 1 only N = 2, or quadruplet primes is possible. The 

only exception is the sequence (5,7) 9 (11,13) 15 (17,19) of length N = 3 and the key k 

= 3 < 5, for which the condition of h5 does not apply. 

3 Prime Distributions 

The results of [1-3] and Section 2 allow to provide a complete classification of con-

secutive prime sequences: 

1. Regular single primes (RS): p = k + 1, 3 | k. This case corresponds to C(k / 3, 

k) = 2 [d] 

2. Irregular single primes (IS): p = k + 2, 3 | k. The harmonic condition for this 

case is C(k / 3, k) = 1, and hp(k) = 1 or hp(k) > 2. A special value can be add-

ed for this case in the definition of the cumulative harmonic function (Def.4, 

[3]) to associate this case with a unique value of C(p, x). 



3 

3. Twin primes (T): the harmonic condition is C(k / 3, k) > 2. This distribution 

was analyzed in [3]. 

4. Quad primes (Q): as per Lemma 1, the harmonic condition for sequences of 

quad primes is | C(k / 3, k) | > 2. 

5. No-Prime (NP): pairs identified by a key 3 | k are not required to contain at 

least one prime so this case should also be considered for the classification to 

be complete. The harmonic condition for this case is C(k / 3, k) = 1 and hp(k) 

= 2, 4, 5, … according to the lengths of the NP-sequence, as discussed in 

Section 4. 

Immediately, it follows that Q ⸦ T. 

We will now note that the cumulative harmonic approach defined in [3] for twin 

prime distributions can be readily applied to regular single prime (RS, IS) and quad 

prime (Q) distributions. 

3.1 Regular Single Primes 

Following the analysis in [3], the initial distribution of key positions is still D3: 3 | x 

and the harmonic condition for the following position x + 1 being a prime candidate 

at a prime order p is defined by C(p, x) > 1. Hence, higher harmonics in this case have 

a single position collision range in each p-modulo cycle defined by hp(x) = 1. 

As in the analysis of twin prime distributions, a candidate position can be eliminat-

ed by a “collision” with a higher harmonic that erases it and creates a non-trivial 

prime gap. Then repeating derivations (15)-(18) [3] one can obtain an estimate for the 

number of prime candidate positions up to distance d as:  

 𝑁𝑐𝑎𝑛(𝑝, 𝑑) =  
𝑑

3
 (1 − 𝑆(𝑝)) (2) 

𝑆(𝑝) = 𝑆(𝑝𝑛−1) +  
1

𝑝𝑛−1

 (1 −  𝑆(𝑝𝑛−1));  1 − 𝑆(𝑝) = ∏(1 −  
1

𝑝𝑙

𝑝

5

 ) ~ 
𝐴

log 𝑝
  

𝑁𝑐𝑎𝑛(𝑝, 𝑑) =  
1

3
 

𝐴 𝑑

log 𝑝
+ 𝑂(

1

log2 𝑝
) 

 

with Mertens theorem [6].  

Finally, to obtain an estimate of the number of true primes in the range of n the or-

der p has to be greater than p_m, the maximum prime that can produce collisions at n, 

pm ≲ n // 3: 

 𝑁𝑅𝑆(𝑑) =  
1

3
 

𝐴 𝑛

log 𝑛/3
+ 𝑂 (3) 

The estimate above includes all pairs with the first member, x + 1, a prime i.e. regular 

single primes (RS) and twin primes (T).  

Interestingly, the same result can be obtained for irregular single primes (IS). In 

this case the collision range still has a single position hp(k) = 2; hp = 1 does not result 

in a collision in this case as k + 1 is not required (but allowed) to be a prime. Then the 
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derivation for regular primes can be repeated. This result confirms the intuitive expec-

tation that the number of RS and IS primes should be asymptotically equal: 

 lim
𝑛→ ∞

𝑁𝑅𝑆 =  lim
𝑛→ ∞

𝑁𝐼𝑆 =  
1

3
 

𝐴 𝑛

log 𝑛/3
+ 𝑂 (4) 

Indeed, the number of RS vs IS primes is 5 / 4 for n = 100, 24 / 23, n = 500 and so on. 

The total number of primes in the range n can then be obtained straightforwardly as 

the double of (3): 

 𝑁𝑃𝑅(𝑛) =  
2

3
 

𝐴 𝑛

log 𝑛/3
+ 𝑂(

𝑛

log2 𝑛
) (5) 

 

in agreement with PNT [1].  

Note that as commented in [3], the estimate assumes the existence of rigorous 

bounds that account for the granularity effects at incomplete cycles of multiple inter-

sections of prime harmonics.  

3.2 Quadruplet Prime Distribution 

In the case of quad primes, the initial distribution has the period of 3 × 5 (Corollary, 

Section 2.2) and collision ranges of higher harmonics, four positions: hp(x) = -2; -1; 1; 

2. 

Again, following the interval analysis [3], (15)-(18) one obtains: 

 𝑁𝑐𝑎𝑛(𝑝, 𝑑) =  
𝑑

15
 (1 − 4 𝑆(𝑝)) (6) 

𝑆(𝑝) = 𝑆(𝑝𝑛−1) +  
1

𝑝𝑛−1

 (1 −  4 𝑆(𝑝𝑛−1));  1 − 4 𝑆(𝑝) = ∏(1 − 
4

𝑝𝑙

𝑝

7

 )  

𝑁𝑄(𝑛) =  
1

15
 

𝐵 𝑛

log4 𝑛/3
+ 𝑂(

1

log5 𝑛
) 

where B can be calculated from (5), the quad prime constant (as discussed in the next 

section). 

Quad χ Function Asymptotics 

Quad χ function is defined from (5) as:  

𝜒(𝑝𝑛) = 𝑆(𝑝𝑛+1)  

𝑆(𝑝 = 7) =  
1

7
  

𝑆(𝑝) = 𝑆(𝑝𝑛−1) +  
1

𝑝𝑛−1

 (1 −  4 𝑆(𝑝𝑛−1))  

1 − 4 𝑆(𝑝) = ∏ (1 −  
4

𝑝𝑙

𝑝;< 𝑝

𝑝𝑙= 7

 ) 
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The product can be calculated based on a similar derivation of the product of (1 - 
2

𝑝
) 

[7]. Indeed, consider the equality:  

(1 − 
2

𝑝
)

2

× (1 − 
4

(𝑝 − 2)2
) = 1 − 

4

𝑝
  

Then,  

∏ (1 − 
2

𝑝
)

2𝑛

7

× ∏ (1 − 
4

(𝑝 − 2)2
)

𝑛

7

= ∏ (1 − 
4

𝑝
)

𝑛

7

   

The first term on the left was calculated [7] as:  
𝐶 𝛱2

𝑙𝑜𝑔2 𝑛
+ 𝑂(

1

𝑙𝑜𝑔3 𝑛
) and one obtains for 

the sought product: 

 

𝑆(𝑛) = ∏ (1 −  
4

𝑝
) =   

𝐶 𝛱2
2𝛱4 

log4 𝑛
+ 𝑂(

1

log5 𝑛
 )

𝑛

7

 

where quad prime constant: 

𝛱4 =  lim
𝑛→ ∞

∏ (1 − 
4

(𝑝 − 2)2
)

𝑛

7

 

 The plot of the Quad χ function in the first prime orders is given in Figure 1. 

 
 

Fig. 1. Quad χ in the first prime orders 

Again, a robust accounting of the granularity effects in incomplete cycles of multiple 

intersections is needed to complete the formal proof of this result. It is hoped that 

once such bounds are obtained it would be possible to prove infiniteness of quad 

primes based only on the number bound (5), by showing that for a given distance n 

always exists nnext such that NQ(n) < NQ(nnext). That would allow to bypass a more 

complex analysis of gap distributions as for twin distribution in [3]. 
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4 No-Prime (NP) Sequences 

In accordance with the classification of prime sequences, Section 3, a no-prime (NP) 

sequence can be defined as: 

 𝑃𝑁𝑃,𝐿 = (… ) 𝑘 (𝑥, 𝑥) 𝑘1(𝑥, 𝑥) (… )  

In analogy with consecutive prime sequences (Section 2.1), no-prime sequences can 

be defined for any length L and well-known examples show that unlike prime case, 

there is no limit for possible length of NP-sequence.  

An estimate for the number of NP-sequences of lengths N = 1 (i.e., a single pair of 

non-primes) in a range n can be obtained from the single prime distributions, Section 

3.1. One can observe that a key preceding such configuration cannot be either of regu-

lar single prime (RS) or irregular one (IS), Then: 

 𝑁0(𝑛) =  
𝑛

3
−  𝑁𝑅𝑆(𝑛) − 𝑁𝐼𝑆(𝑛) + 𝑁𝑇(𝑛)~ 

𝑛

3
 ( 1 −

2 𝐴

log
𝑛

 3

+ 
2 𝐷

log2 
𝑛

3

) +  𝑂 (7) 

and the number of NP pairs in a range n grows as ~ n (1 – 
𝐴

log 𝑛
). 

4.1 NP Distributions 

NP-sequences and distributions with N ≥ 1 will be discussed in more detail in another 

work. However, general approach to understanding distributions of NP-sequences 

based on prime modulo cycles is quite straightforward. The necessary and sufficient 

condition for a sequence of K consecutive non-prime pairs (x, y) and the key k is h(p, 

k) ∈ {(1, 2), (4, 5), (7, 8), …} for at least 2K prime harmonics p. Each combination of 

harmonic values satisfying this condition repeats with a period of 3 Π pk leading to the 

estimate of the number of NP-sequences of length K in a given interval d: 

 𝑁𝑁𝑃𝐾(𝑑) =  
𝑑 2𝐾!

3
(𝐶2𝐾(𝑝𝑚) − 𝑁𝑜𝑣𝑒𝑟(𝑝)) (8) 

where C2K is the cyclic prime sum of order 2K, pm the maximum prime that can be a 

factor in the range d, pm ~ d / 3 and Nover, the count of overlaps between combinations 

of prime orders at certain positions.  

A cyclic prime sum of order N is defined as: 

 𝐶𝑁(𝑃) =  ∑
1

𝑝1𝑝2..𝑝𝐾

𝑝𝑙<𝑃,𝑝𝑖≠𝑝𝑗

𝑃𝑙
 (9) 

so, C1(P) = ∑
1

𝑝𝑙

𝑝𝑙<𝑃
 , and will be discussed in more detail elsewhere. 

5 Cases in Polignac’s Conjecture 

Whereas the general case of the conjecture [8] with an arbitrary even N may not be 

immediately straightforward to approach with harmonic analysis due to large number 

of possible configurations, certain advances can be made in some specific cases where 

the number of configurations is limited.  
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The case of N = 2 constitutes the twin prime conjecture that was discussed in [3]. 

5.1 N = 4 Conjecture  

As before, we consider two pairs of odd positions separated by a key k | 3. As can be 

concluded immediately, for N = 4 there is only one possible configuration of positions 

with a gap of 4: an IS prime in the first pair and an RS one in the following one: 

 𝑃4 = (𝑥, 𝑝1) 𝑘 (𝑝2, 𝑥)  

The harmonic conditions for the initial distribution can then be easily established 

as | h5(k) | ≠ 1, i.e. h5(k) = (0; 2; -2 ≡ 3). This produces initial distribution DP4 with 3 

strands corresponding to allowed values of h5 and a period of 3 × 5. 

The collision of positions in the initial distribution with a higher harmonic occurs if 

the higher harmonic cancels one of the prime candidate positions at k i.e. hp(k) = -1 or 

1, resulting in a two-position collision range, as in the case of twin prime distribution. 

Then the collision estimation as in [3] and previous sections can be repeated, produc-

ing the estimate on the number of P4-candidate positions in a range d as: 

 𝑁𝑃4_𝑐𝑎𝑛(𝑝, 𝑑) =  
3

15
 

𝐶 𝑑

log2 𝑝
 + O (10) 

 𝑁𝑃4(𝑛) =  
1

5
 

𝐶 𝑛

log2 𝑛/3
 + O  

again, allowing to obtain an estimate of the number of prime positions in an arbitrary 

range n. 

5.2 N = 6 

In the case of N = 6 there are two possible configurations with a gap of 6: 

 𝑃61 = (𝑝1 , 𝑥) 𝑘 (𝑝2, 𝑥), 𝑃62 =  (𝑥, 𝑝1) 𝑘(𝑥, 𝑝2)  

Similar to the previous case of N = 4 the conditions for the initial distribution and 

collisions can be written for these cases as: 

P61: h5(k) = (0, 2, 4); hp(k) collision range: (1, 3) 

P62: h5(k) = (0, 1, 3); hp(k) collision range: (2, 4) 

Each of these configurations produces three strand initial distributions DP61, DP62 with 

a period of 3 × 5. The estimate of P4, Section 4.1 can be used then, with the following 

result for the number of prime configurations with the gap of 6 in a range n: 

 𝑁𝑃6(𝑛) = 2 𝑁𝑃4(𝑛) =  
2

5
 

𝐶 𝑛

log2 𝑛/3
 + O (11) 

5.3 N = 8  

For N = 8, there is a single possible configuration P8 with a gap of 8 that is symmetric 

to P4 in the case N = 4: 

 𝑃8 = (𝑝1, 𝑥) 𝑘 (𝑥, 𝑝2)  
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Similar to the case of N = 4 the conditions for the initial distribution and collisions 

can be written as: 

P8: h5(k) = (0, ± 1); hp(k) collision range: (± 2) 

As in P4, this configuration produces a three-strand initial distribution D8, with a peri-

od of 3 × 5 and the estimate of P4 for the number of P8 key positions within a range n 

should apply: 

 𝑁𝑃8(𝑛) =  𝑁𝑃4(𝑛) =  
1

5
 

𝐶 𝑛

log2 𝑛/3
 + O (12) 

5.4 Polignac’s Conjecture with N > 8  

N = 8 is the last gap configuration that is possible between two consecutive pairs. As 

can be seen immediately, any configuration with a gap that is greater than 8 must 

contain an NP-sequence: 

𝑃𝑁> 8 = (𝑃) 𝑘 (𝑁𝑃) 𝑘𝑛 (𝑃) 

where P is one of the configurations with primes. The configurations with a gap N > 8 

can then be described, similarly to the cases N = 4, 6, 8 discussed earlier: 

𝑃6𝑘+4 = (𝑥, 𝑝1) 𝑘 (𝑁𝑃) (𝑝2, 𝑥)  (13) 

𝑃6𝑘+6 = (𝑝1, 𝑥) 𝑘 (𝑁𝑃) (𝑝2, 𝑥);  (𝑥, 𝑝1) 𝑘 (𝑁𝑃) (𝑥, 𝑝2) 

𝑃6𝑘+8 = (𝑝1, 𝑥) 𝑘 (𝑁𝑃) 𝑘𝑛(𝑥, 𝑝2) 

These configurations can then be described as combinations of one of the four bound-

ary configurations in (13) with an NP-sequence of an appropriate length. The harmon-

ic condition on C(k/3, k) for N > 8 configurations would be a combination of the 

boundary pair conditions discussed in Sections 5.1 – 5.3 with more complex con-

straints on specific harmonics of NP-sequence. These cases will be discussed in an-

other study. 

6 Conclusion 

It was shown that prime harmonics analysis can be instrumental in understanding and 

estimating the distributions of consecutive prime sequences. With the classification of 

prime sequences, Section 3, the distribution of prime sequences can be described as 

the combination of distributions of single primes (RS, IS); twin primes (T); quadru-

plet primes (Q) and no-prime (NP) sequences described in Sections 3, 4 and previous 

works [1-7]. 

 Harmonic analysis was as well instrumental in approaching a number of specific 

cases of Polignac’s conjecture (Section 5). 

It can be concluded that prime harmonics analysis offers a simple and consistent 

framework to approach distributions of prime sequences and related problems in this 

area of research and with attention and development, could produce further interesting 

results. 
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