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Abstract 
Computational semantic space models have now been applied to sentences, but it is unclear 
whether they capture how the human brain represents sentences. Using fMRI we scanned adult 
readers reading expository texts and compared their brain responses to 3 semantic space vectors 
that modeled sentences either as combinations of words or as single units. We observe that 
computational semantic representations that are specifically designed to capture sentence content 
share information content with brain responses.  
 
Introduction 
To understand how information is processed by the brain, computational modeling of word 
semantics has been used in combination with brain imaging data. Moving onto larger units of 
language processing, it will be important to model sentence and discourse representations. In this 
emerging literature, sentences are sometimes modeled as a combinations of the word 
representations of the words in a sentences; for example, sentence semantic vectors are created by 
simply summarizing word vectors (i.e. Pennington, Socher, & Manning, 2014). However, 
sentences can also be viewed as units themselves and can be modelled without using word 
representations directly.  
Sentence vectors created by computational networks perform well across tasks such as finding 
sentences with similar content (Reimers & Gurevych, 2019), but it is unclear if they resemble 
human sentence processing. In this study, we aim to explore whether sentence vectors can be used 
to study brain imaging data obtained from humans in a similar way as has been successfully done 
with word representations. Specifically, we compared the underlying information content of 
sentence vectors that use different approaches to model sentences to the brain responses from 
adults reading expository texts in a natural self-paced manner.  
Materials and Methods 
We tested 52 monolingual English-speaking adults who read 5 expository texts at a self-paced rate 
(see Hsu et al., 2019 for detailed procedure). While participants were reading both eyetracking 
data and fMRI data was acquired. fMRI data was acquired using a TR of 400 ms to collect one full 
brain volume (32 slices). The 5 texts participants read were between 28-31 sentences long and 
explained one concept, for example how electrical circuits work or if humans could live on Mars. 
The eyetracking data was used to determine word fixations during sentences for each participant 
to model brain responses to each sentence (fixation-related fMRI).  
We used three sentence modeling approaches as models with which we compared the brain 
response to sentences.  Global Vectors (GloVe, Pennington et al., 2014)is a model that was first 
developed for word semantic representation but can be used to represent sentence content by 
averaging the words of a sentence. GloVe is trained on co-occurrence corpora to obtain single 
word vectors. The word vectors can be summarized through different methods i.e. averaging, 
addition etc. to obtain a sentence vector that includes all words in a sentence 
(https://nlp.stanford.edu/projects/glove/). In this study, we used averaged word vectors. 



Skipthought  (Kiros et al., 2019) is based on a word semantic representation modeling approach 
as well (skip-gram) but this method models sentences as one unit. The model is trained to predict 
sentences that are left out (skipped) of a larger text context. BERT (Devlin, Chang, & Toutanova, 
2018)is a recently developed successful word semantic model. BERT is a word based model that 
models word context in a bidirectional manner by masking preceeding or following words of the 
word that the algorithm is acquiring a representation for (Devlin et al., 2018). BERT has been 
adapted to be used on sentences by Reimers and Gurevych (2019, Sentence-BERT). Unlike GloVe, 
BERT is context-sensitive in extracting semantic representations, using the surrounding text to 
create word vectors. We obtained sentence vectors for the 5 texts participants read in the scanner 
from these 3 sentence representation models and compared each model to the brain responses in 
order to test if sentence vectors do capture how the brain represents sentence content.  
We used representational similarity analysis (RSA, Kriegeskorte, 2008) to compare the 
information content of sentence vectors with the information content of the brain while reading 
the same sentences. RSA is a widely used method to study representations between different 
methods, for example neuroimaging and computational modeling.  All analyses were carried out 
using the RSA toolbox for Matlab (Nili et al., 2014). The brain response to each sentence was 
compared to the response to each other sentence in the text to obtain a similarity score for each 
sentence pair and each sentence vector pairs analyzed in an analogous way.   
We use a ROI-based approach focused on the left hemisphere and compared RDMs across 13 
ROIs in the left hemisphere including Broca’s area, the temporal lobes and the angular and 
supramarginal gyrus. A depiction of the ROIs used can be viewed in figure 1. The ROIs were 
calculated based on the Harvard-Oxford cortical atlas implemented in FSL (Desikan et al., 2006). 
RDMs were computed for each ROI based on the responses in the voxels in this ROI and then 
compared to each model RDM separately for each text resulting in 65 separate model to brain 
response comparisons.  

 
Figure 1. Regions of interest: There were 13 ROIs from three brain lobes. Two frontal lobe ROIs, 
the superior frontal lobe and Broca’s area are shown in orange. There were four parietal ROIs 
(light green), the inferior parietal lobule, the precuneus, the supramarginal gyrus and the angular 
gyrus. Finally there were 6 temporal ROIs depicted in blue, the inferior, middle and superior 
temporal gyrus, the temporal fusiform gyrus and the temporal pole and the posterior inferior 
temporal gyrus.  
 
Results 
Across all 5 texts and 13 ROIs, BERT based RDMs were most similar to the RDMs obtained from 
brain responses (44 out of 65 comparisons). The Skipthought based RDMs performed second best, 



being the best fit in 21 cases. All correlations between BERT based RDMs and brain response and 
Skipthought based RDMs and brain responses reached significance. The GloVe based RDMs were 
less similar to the brain responses and failed to reach significance in 17 cases. There were no 
observable trends across ROIs with most ROIs showing highest similarity for the BERT based 
RDM. In 12 ROIs, the Skipthought based RDM was also observed to be most like the brain 
response, with the only ROI that was only correlated highest with one sentence vector type (BERT 
in this case) being the left angular gyrus.  

 
Figure 1. Comparison of the three NLP models compared to the brain data. Across 5 texts and 13 
ROIs BERT was the most representationally similar model in 63% of cases, whereas Skipthought 
was the most similar in 37% of cases. The word based model GloVe was less similar to the 
representations obtained by using fMRI data.  
Discussion and Conclusion  
Natural language processing using computational modeling has moved from capturing semantic 
representations of words to larger linguistic units such as sentences (and discourse in rare cases; 
see Wehbe et al., 2014). It remains unknown whether computationally generated sentence vectors 
can capture how the human brain processes sentences, if the vectors are based on models that were 
trained on human texts but are not designed to model how humans process language. The 
preliminary results presented here support that models that are aiming to specifically represent 
sentences are successfully modeling aspects of human sentence processing. We observed that 
across 13 ROIs in the language network, BERT based sentence vectors trained using an adaptation 
of BERT specifically aiming at modeling sentences, more closely represent information content 
as brain responses. Skipthought based sentence vectors also seem to capture at least some aspects 
of the information content, but this model performed less accurately in comparison to the BERT 
model. Sentence vectors based on averaging word representations do not appear to represent 
information content that resembles brain response information content. This supports to the idea 
that sentence representations in the brain are more than a combination of word semantic 
representations.  
Interestingly, we did not observe a differentiation across different parts of the language network 
in terms on what kind of information content is represented. It has been hypothesized that there is 
a division of labor across the language network with some regions being related to semantic 
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processing of smaller units such as words, whereas other regions are more representative of 
syntactic processing (Friederici, Rüschemeyer, Hahne, & Fiebach, 2003). It has also been 
suggested that there are gradations of unit size that is processed across the language network, with 
units of processing becoming increasingly larger more anteriorly in the brain (Bornkessel-
Schlesewsky, Schlesewsky, Small, & Rauschecker, 2015). There is also evidence that across the 
sentence, the brain responses could change depending on the contents of information processing 
and the level of depth in processing (Hsu, Clariana, Schloss, & Li, 2019). Our results do not show 
a difference in more word based vs more sentence based or smaller vs larger unit differentiation. 
However, this conclusion remains to be examined further, because our study only targets sentences 
and there is no direct comparison between sentence representation and word representation.  
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