
EasyChair Preprint
№ 4896

Using the Graphcore IPU for Traditional HPC
Applications

Thorben Louw and Simon McIntosh-Smith

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 12, 2021

Using the Graphcore IPU for traditional HPC
applications

Thorben Louw, Simon McIntosh-Smith
Dept. of Computer Science

University of Bristol
Bristol, United Kingdom

{thorben.louw.2019, S.McIntosh-Smith}@bristol.ac.uk

Abstract—The increase in machine learning workloads means
that AI accelerators are expected to become common in super-
computers, evoking considerable interest in the scientific high-
performance computing (HPC) community about how these
devices might also be exploited for traditional HPC workloads.
In this paper, we report our early results using the Graph-
core Intelligence Processing Unit (IPU) for stencil computations
on structured grid problems, which are used for solvers for
differential equations in domains such as computational fluid
dynamics. We characterise the IPU’s performance by presenting
both STREAM memory bandwidth benchmark results and a
Roofline performance model. Using two example applications
(the Gaussian Blur filter and a 2D Lattice Boltzmann fluid
simulation), we discuss the challenges encountered during this
first known IPU implementation of structured grid stencils.
We demonstrate that the IPU and its low-level programming
framework, Poplar, expose sufficient programmability to express
these HPC problems, and achieve performance comparable to
that of modern GPUs.

Index Terms—accelerator, HPC, structured grid, stencil, het-
erogeneous computing

I. INTRODUCTION

Recent progress in machine learning (ML) has created an
exponential growth in demand for computational resources [1],
with a corresponding increase in energy use for computation.
This demand, coming at a time when Moore’s Law has
slowed and Dennard Scaling no longer holds, has led to the
development of energy-efficient hardware accelerator devices
for artificial intelligence (AI) processing.

Devices targeting the edge computing or inference-only
markets may have limited support for floating point com-
putation. But devices designed for accelerating ML training
often support 32-bit floating point computation. They have
large amounts of on-chip memory for holding weights without
resorting to transfers from host DRAM and include custom
hardware for common ML operations (e.g. matrix engines).
These capabilities have let to interest in exploiting AI devices
for traditional scientific HPC [2], [3], and research into mixed-
precision implementations of numerical solver algorithms [4].

An example of an AI accelerator that supports floating
point computation is Graphcore’s Intelligence Processsing
Unit (IPU). The IPU has large amounts of fast on-chip SRAM

This work was partly funded by the Engineering and Physical Sciences
Research Council (EPSRC) via the Advanced Simulation and Modelling of
Virtual Systems (ASiMoV) project, EP/S005072/1

(static random-access memory), distributed as 256KiB local
memories for each of its 1216 cores. There is no global
memory, and cores must share data by passing messages over
the IPU’s high-bandwidth, all-to-all interconnect. IPUs incor-
porate specialised hardware for common machine learning op-
erations such as convolutions and matrix multiplication. Most
alluringly for HPC developers, the IPU can be programmed
at a low-level by using its C++ framework, Poplar, making
it possible to implement HPC applications without having to
shoehorn them into higher-level ML frameworks.

The IPU’s design is based on the Bulk Synchronous Parallel
(BSP) model of computation [5] that Poplar combines with a
tensor-based computational dataflow graph paradigm familiar
from ML frameworks such as Tensorflow. The Poplar graph
compiler lowers the graph representation of a program into
optimised communication and computation primitives, while
allowing custom code to access all of the IPU’s functionality.

In this work, we implement two structured grid stencil
applications (a Gaussian Blur image filter and a 2D Lattice
Boltzmann fluid simulation) to demonstrate the feasibility
of implementing HPC applications on the IPU. We achieve
very good performance, far exceeding that of our comparison
implementation on 48 CPU cores, and comparable with the
results we see on the NVIDIA V100 GPU. We present our
performance modelling in the form of STREAM memory
bandwidth benchmarks and a Roofline model for the IPU.

In contrast to the large body of research concerned with
accelerating HPC applications on GPUs, very little has been
published for the IPU. We use results from Jia, Tillman,
Maggioni and Scarpazza’s detailed micro-benchmarking study
of the IPU’s performance [6] in this paper. Other known work
concerns bundle adjustment in computer vision [7], perfor-
mance for deep learning-based image applications [8] and
applying the IPU for machine learning in particle physics [9].
To the best of our knowledge, this work represents the first
application of this architecture for structured grid problems
and “traditional” HPC.

II. THE GRAPHCORE IPU AND POPLAR PROGRAMMING
FRAMEWORK

The Graphcore MK-1 IPU processor consists of 1216 cores,
each with its own 256KiB local high-bandwidth, low-latency
SRAM memory. Together, a core and its memory are termed a

“tile”. There are no other caches, and there is no global shared
memory between cores. Tiles can exchange data using a very
fast all-to-all, on-chip interconnect (theoretically 8 TB/s). For
ML applications, many models’ weights can be held entirely
in on-chip memory.

The IPU supports both 32-bit (single) and 16-bit (IEEE754
half) precision floating point numbers, but not 64-bit (double)
precision. Cores have specialised ML operation hardware, such
as Accumulating Matrix Product (AMP) units and hardware
for efficient convolutions. Being able to use these operations
from HPC programs makes the IPU very attractive, since they
are also common in scientific code.

Every core supports six hardware worker threads, which
run in a time-sliced fashion to hide instruction latency. Most
instructions complete in one “thread cycle”.

MK-1 IPUs are available on dual-IPU C2 cards connected to
a host over PCIe4 x16. Systems scale to multiple IPUs using a
fast custom inter-IPU link that allows communication without
involving the host.

Each IPU uses approximately 150W of power – significantly
less than contemporary HPC GPUs (cf. 250W TDP for the
NVIDIA V100 [6]).

Graphcore recently announced a more powerful MK2 IPU,
with 3x the SRAM and more cores, but we did not have access
to it for this work.

A. Programming framework

IPUs are easily integrated with common ML frameworks
such as Tensorflow and PyTorch, but Graphcore also provides
low-level programmability via its Poplar C++ framework.
In contrast to the scant public details available about the
software stacks of other emerging accelerators, Graphcore’s
libraries are open source and SDK documentation is publicly
available [10].

Poplar programs build a computational dataflow graph in
which nodes represent computation and edges represent the
flow of data, modelled as tensors (typed multidimensional
arrays). Poplar graphs support full control flow such as itera-
tion and branching, but are restricted to be static, and tensor
dimensions must be known at (graph) compile time. Tensors
are a conceptual construct that must be mapped to actual tile
memories during graph construction, with a tensor potentially
partitioned over many tiles.

Poplar programs follow Valiant’s Bulk-Synchronous Parallel
(BSP) model of computation [5], in which serial supersteps are
made up of parallel execution, exchange and synchronisation
phases. This allows concurrency hazards to be avoided, and
the compiler is able to implicitly schedule and optimise the
communication (“exchanges”) of tensor regions both between
IPUs and between each IPU’s tiles. In Poplar, the BSP style
is enforced by grouping operations into “compute sets”, with
restrictions on reading and writing the same tensor regions
from different workers in the same compute phase.

While a large number of optimised operations on tensors
(e.g. matrix multiplication, reductions, padding) are available
through Poplar’s libraries, custom operations called “vertexes”

can be written in standard C++. Vertexes form the primary
mechanism we will exploit for HPC purposes. Example code
for a Vertex is shown in Appendix B.

Vertexes are unaware of either the tensor abstraction or the
graph – they are small C++ objects defining methods which
operate on primitive C++ types. Class members defined as
special Input, Output or InOut types define a vertex’s
interface for wiring into the dataflow graph. Vertexes must be
explicitly mapped to compute sets and tiles during program
construction.

Wiring up vertexes to tensors in the graph tells the graph
compiler when data needs to be sent between tiles, and it auto-
matically generates the required messages. In addition, when
a vertex specifies memory alignments, or input and output
tensors are manipulated during wiring (e.g. reshaping, slicing),
data rearrangements are generated by the graph compiler, and
these are not under the programmer’s explicit control.

Scaling to multiple IPUs is made relatively transparent by
Poplar: by selecting a “multi-IPU” device, the programmer is
presented with a virtual device with the requested multiple
of tiles, and the compiler generates any necessary inter-IPU
communication.

III. STRUCTURED GRIDS AND STENCILS

Structured grids are one of the classes described by
Asanović et al in their characterisation of the computational
requirements of different parallel programming problems [11].
They are commonly used in solvers for differential equations,
such as those underpinning heat and fluid simulations.

In these applications, the domain under investigation is
discretised onto a regular grid of cells. The structured layout
means that a cell’s neighbours can be located in a simple
data structure using offset calculations, resulting in regular,
predictable memory access patterns. This is in contrast to
using unstructured grids, where neighbours are described using
(sparse) graphs.

A. Stencils

Systems of linear equations which arise from the finite
difference approximation of differential equations onto a struc-
tured grid are characterised by a large, sparse coefficient
matrix with low bandwidth. In some cases, it is possible
to avoid representing the coefficients altogether and rely on
matrix-free methods for the sparse matrix-dense vector part of
the solution.

Matrix-free computation uses a stencil, which defines the
regular pattern of computation that is applied to the local
neighbourhood of each cell to determine the next value at
each time step.

B. Implementation on the IPU

Implementing structured grids on the IPU means addressing
a number of concerns:

a) Representing grids and cells: Tensors form a natural
representation of regular 2D and 3D grids of rectangular cells,
and allow multi-valued cells to be represented with an extra
tensor dimension.

b) Partitioning and load balancing: The grid tensor is
too large for any one tile’s memory, so it must be partitioned
by placing slices of the tensor on different tiles.

Partitioning overlaps with a load balancing concern: because
we want to minimise exchanges, a core should operate on the
cells in its local memory where possible, meaning that the size
a tile’s tensor partition defines the amount of work the tile
will do. Achieving a good load balance on the IPU is crucial,
because the BSP design means that execution is limited by the
most heavily loaded tile.

Partitions should be small enough to allow using as many
tiles as possible, yet not so small that the benefits of par-
allelism are outweighed by any increased communication
between tiles. We also want to sub-partition work equally
between the core’s 6 worker threads, and constrain sub-
partitions to fall along tensor slice dimensions for simplicity
of implementation.

Our simple strategy lays out the IPU tiles in a grid whose
dimensions best match the aspect ratio of the domain (e.g.
a 2048x2048 grid is mapped onto the 1216 tiles laid out
in a 38x32 configuration) and divides work as equally as
possible in each dimension. This works well for structured
grid applications where each cell’s work has equal cost. More
complex applications will need to use more advanced graph
partitioning algorithms.

When the grid is so large that it does not fit in the
combined IPUs’ memories, the domain must be decomposed
into overlapping sub-grids in the host memory, each of which
is processed in turn on the IPUs, meaning that the bottleneck
becomes the PCIe connection to the host (64 GB/s). We do not
consider optimisations for these large problems in this work.

c) Halo exchange: Decomposed stencil problems need
to access the “halo” of boundary cells stored on surrounding
neighbour tiles, as shown in Fig. 1. These cells must be
exchanged between BSP compute phases (“halo exchange”).

Extra “ghost cell”
padding for storing
borders from neighbours

This block’s border cells,
to send to neighbours

NNW

EW

S

NE

SW SE

Fig. 1: Halo exchange between a cell and its 8 neighbours.

We experimented with a variety of halo exchange patterns
and implementations on the IPU, but our best performance was
achieved by implicitly letting the compiler generate the nec-
essary exchanges. To prompt this communication, a vertex’s
halo regions are wired up to tensor slices on remote tiles.

A succinct vertex implementation assumes its input data
is packed in one contiguous area of memory (so that loops

only need to consider one underlying data structure), which
we achieve by slicing, concatenating and flattening tensors
when vertexes are wired up. Unfortunately this elegant solution
causes the graph compiler to introduce data rearrangements.
Even when no halo exchange takes place, data rearrangements
will also occur if the vertex specifies constraints on inputs or
outputs (e.g. alignment, or specifies a memory bank).

Other viable options for halo-exchange implementations
either pass separate, non-concatenated input tensors to the
vertex, resulting in a large number of special loop cases; or
use explicit copy steps in the graph to duplicate halo regions.

We do not communicate halos which are more than one
cell wide. Sending wider halos is a common optimisation in
systems where communication is costly and can be overlapped
with communication (see e.g. [12]), but the high bandwidth
of the IPU’s exchange and the synchronisations in the BSP
model reduce the advantages of doing so for the IPU.

d) Data access patterns: The next timestep value of a
cell depends on the previous timestep values of its neighbour-
hood. This means we cannot do in-place updates of cell values,
but must hold temporary copies of at least some parts of the
grid partition during computation. Poplar adds a further data
access constraint that tensor regions cannot be read and written
by two different vertexes in the same compute set.

To overcome these constraints, we use a double-buffered
scheme with two tensors for storing the grid. We read from
tensor A and write to tensor B in one compute set, and read
from tensor B and write to tensor A in the next compute set.
This approach doubles the amount of required memory.

Since the IPU has no cache, performance is less dependent
on the order in which memory locations are accessed than
on a CPU: column- vs row-major layout, stride, and issues
of coalesced access between threads are not important. The
only optimisation which encourages a certain layout is that
we can use the IPU’s 64-bit SIMD instructions to perform
calculations on pairs of 32-bit (“float2”) numbers, or quads
of 16-bit (“half4”) numbers in a single cycle. Case-by-base
considerations for exploiting these vector instructions will de-
termine whether an application uses array-of-structures (AoS)
or structure-of-array (SoA) layouts to store cell contents. For
example, in the Gaussian Blur example in Section V-A, we
use AoS layout and four-wide SIMD instructions to process
all four channels of pixel intensities simultaneously.

Using vectorised data types requires that data is aligned
at natural boundaries, which may incur a data rearrangement
cost that outweighs the benefit of vectorisation, so must be
measured on a case-by-case basis.

e) Optimisations: Stencil computations perform very few
floating point operations (FLOPs) relative to the amount of
memory accessed, making them memory bandwidth bound
on most architectures. Hence, while a large body of work
exists describing stencil optimisations (e.g. [13]–[16]), much
of this work focuses on improving cache locality to increase
the operational intensity of kernels. As a result, few of these
common optimisations apply for the cacheless IPU with its
high local memory bandwidth.

Without resorting to assembly code, we found that the only
“easy win” optimisations involved aligning memory, using
vectorised SIMD instructions, unrolling loops, and exploiting
special hardware through vendor-provided primitive operations
on tensors. The more optimisations we apply manually, the less
portable the code becomes. For kernels optimised in assembly,
one can interleave memory and floating point instructions, use
special instructions that perform simultaneous load-stores, and
make use of counter-free loop instructions. Currently the popc
compiler does not generate these automatically.

IV. MEMORY-BANDWIDTH CHARACTERISATION OF THE
IPU

Graphcore’s marketing material lists the IPU’s theoretical
memory bandwidth as 45 TB/s. However, Jia, Tillman, Mag-
gioni and Scarpazza [6, p. 26] calculate the IPU’s theoretical
maximum aggregate read memory bandwidth as 31.1 TB/s
(assuming all cores issue a 16-byte read instruction on every
clock cycle, while running at maximum clock frequency), but
note that less-than-perfect load instruction density will achieve
only a fraction of this. These impressive numbers are an
order of magnitude greater than the HBM2 memory on the
contemporary NVIDIA A100, and are achieved in the IPU’s
design by placing on-chip SRAM physically close to each
core. Unfortunately, theoretical memory bandwidth is rarely a
useful guide to the achievable sustainable memory bandwidth
that developers should expect.

A. STREAM

Measuring actual achievable bandwidth is the aim of the
BabelSTREAM benchmark suite [17], originally designed for
GPUs, and since applied to CPU caches in [18]. Notably, one
of the kernels in BabelSTREAM is the well-known STREAM
benchmark by McCalpin [19], which is used as the memory
bandwidth ceiling when constructing Roofline performance
models.

In this work, we implemented BabelSTREAM for the IPU
using two approaches: naive C++ kernels with no explicit
optimisations; and a combination of optimised C++ and Poplar
primitives such as scaled, in-place addition. We also compared
these results with an assembly implementation of STREAM
provided by Graphcore. The results are shown in Table I.

TABLE I: STREAM Triad kernel results for 3 implementations
of BabelSTREAM on the IPU

Precision Implementation Bandwidth
GB/s

32-bit
C++ (naive) 3,726
optimised/vendor primitives 7,261
Assemblya 12,420

16-bit C++ (naive) 1,488
optimised/vendor primitives 7,490

aProvided by Graphcore.

The naive kernels achieved a disappointing fraction (approx.
12%) of the theoretical memory bandwidth, confirming the
findings in [6]. Graphcore’s assembly kernels show how to use

some of the exotic simultaneous load-and-store instructions in
the IPU’s instruction set architecture (ISA) to achieve a good
fraction of the peak, but manual assembly optimisations are not
in keeping with the spirit of the BabelSTREAM benchmark.
Instead, we chose the result from optimised C++ mixed with
vendor operations (7.26TB/s, 32-bit), to be a representative
memory bandwidth ceiling in subsequent performance models.

We can put these results into context by comparing them
with the cache bandwidths for other architectures (since caches
are implemented in on-chip SRAM), as shown in Table II. We
see that the IPU’s memory performance is similar to L1/L2
cache performance, but there is significantly more SRAM
available on the IPU.

TABLE II: Comparison of IPU, GPU and CPU memory
hierarchies (running STREAM as per [18])
.

Platform Memory Size Bandwidth
GB/s

IPU SRAM 304 MiB 7,261 .. 12,420
GPU: L1/shared 10 MiB 11,577

NVIDIA V100 L2 6 MiB 3,521
HBM-2 16 GiB 805

CPU: L1 1.5MiB 7,048
Intel Skylake L2 48 MiB 5,424
(2x 24 cores) L3 66 MiB 1,927

DRAM 768 GiB 225

B. Roofline model

Williams, Waterman and Patterson’s Roofline model [20] is
now widely used to discuss the performance of HPC kernels.
Our Roofline model for IPU is shown in Fig. 2.

In this model, the y-axis represents performance attained
in FLOP/s, while the x-axis represents operational intensity
in FLOPs/byte – i.e. the amount of computation performed
for each byte written to or read from main memory. We
plot the ceilings for the platform’s memory bandwidth (deter-
mined by the STREAM benchmark) and the theoretical peak
performance. We show two theoretical performance ceilings
from [6]: the vector unit theoretical maximum, and the bench-
marked matrix-multiply limit for operations that can use the
AMP (Accumulating Matrix Product hardware). 32-bit and 16-
bit precision have different ceilings, so we show two separate
plots.

For any given kernel, we can determine its operational inten-
sity by counting the load/store and floating point instructions
in the compiler output, and its performance by measuring the
execution time over a known amount of data.

By plotting this point on the Roofline model, we can reason
about whether the kernel is memory bandwidth bound or
computation bound, and can measure how close performance
is to the appropriate ceiling. The model can be used to
guide the correct optimisation strategies for a given platform
(e.g. [21]).

We will use this Roofline model to discuss the performance
of our example applications below, but for now we note the
following:

(a) 32-bit precision

(b) 16-bit precision

Fig. 2: Roofline models for the IPU. For clarity, we have only
plotted the performance of the largest simulation size for our
Gaussian Blur and LBM stencil kernels.

a) Realistic expectations: Developers’ hopes for IPU
performance based on the theoretical limits in marketing mate-
rials should be somewhat tempered. In reality, any kernel that
does not perform as least as many floating point operations as
the number of bytes of memory accessed during computation
is still memory bandwidth bound, and we should expect
performance below 7.26 TFLOP/s for 32-bit compute. This
is the limit that will apply to most HPC kernels. In fact, on
other platforms, well-tuned kernels which effectively utilise
caches may be able to achieve similar results to the IPU.

b) Difficulty modelling exchange and data rearrangement
costs: The STREAM triad kernels differ from most realistic
vertexes for the IPU in that they do not require any data
exchange between tiles (i.e. there are only local memory
accesses). In practice, BSP synchronisations, inter-IPU and
inter-tile exchanges, and data rearrangements specified during
vertex wiring introduce costs which place a ceiling on a
kernel’s performance. The design choices are often in tension
(e.g. better kernel performance from using aligned data comes
at the cost of aligning the data before the compute phase
begins).

This situation is not so different from distributed memory
systems, for which Cardwell and Song extended the Roofline
model with communication-awareness [22]. They propose an
additional visualisation showing communication limits, with a
kernel characterised by a new kernel metric: communication
intensity in FLOPs/network byte, and a new platform limit
in the form of a peak communication bandwidth from a
benchmark. While this approach might reasonably be extended
to apply to the IPU’s exchange fabric, it still does not account
for the data rearrangement costs before and after compute
phases, which we found to far exceed communication costs. It
is also impossible to accurately determine the number of bytes
sent, since this is not under the control of the programmer in
Poplar.

Our approach is to preserve the Roofline model’s useful
ability to indicate how a close a kernel is to being limited
by memory bandwidth or peak compute performance by
compensating proportionally for the effect of the non-compute
BSP phases. Poplar’s performance visualisation tooling allows
us to measure the clock cycles taken in each BSP phase (in
an instrumented profiling build). It is also possible to add
cycle count nodes to the compute graph before and after
a compute set of interest. Using this information, we can
divide the execution time measured for a compute set by the
fraction of time observed in the compute phase, giving us a
more accurate model of what is limiting performance within
a compute phase.

We also implement a “no-op” version of each kernel, wired
into the graph in the same way as the actual kernel. By
measuring the maximum rate at which cells can be updated
for a given problem size with this no-op version, we can
compare the costs of different data layouts, alignments and
tensor transformations in isolation from the kernel.

V. EXAMPLE APPLICATIONS

A. Gaussian Blur

As a first simple example of a structured grid application,
we implemented the well-known 3x3 Gaussian Blur image
filter. This simple filter performs a convolution of the Moore
neighbourhood of a pixel with the discretised Gaussian kernel
in Eq. (1):

h =
1

16

1 2 1
2 4 2
1 2 1

 (1)

This operation is applied to each of the red, green, blue
and alpha (RGBA) channels of the input image, resulting in
a blur effect. Because the same operation is applied to the
neighbourhood of each cell, the convolution can be expressed
as a stencil computation.

Pixel intensities are commonly represented as 8-bit values,
but for our purposes we used 32- and 16-bit numbers to
better demonstrate the memory characteristics of a scientific
application. We ran 200 iterations of the stencil on three test
images of increasing size.

Convolutions are so commonplace in modern deep learning
that the IPU contains hardware convolution units, and this
example application provides an opportunity to demonstrate
exploiting dedicated AI accelerator hardware vs. using hand-
coded stencils.

The graph compiler can choose from several strategies for
convolutions, depending on the size and shape of inputs,
and the amount of memory made available to the operation.
We performed a grid search over the amount of memory
allocated to this operation for our test images, and compared
the best result for each image against our matrix-free stencil
implementation.

Fig. 3: Relative performance of Gaussian Blur implementa-
tions on 1 IPU (stencil and convolution) for 32-bit vs 16-bit
precision, and with vectorised vs unvectorised implementa-
tions

Fig. 3 shows that for one IPU, using the IPU’s con-
volution hardware results in much better performance than
our best stencil implementation in 16-bit precision. However,
in 32-bit precision, our stencil implementation surprisingly
outperformed the vendor-optimised convolutions. When we
scaled to 2 IPUs, more memory became available to the
convolution operation, and the implementations achieved much
more similar timings in 32-bit precision (stencil only 1.1x
faster on the largest image). Inspecting detailed debug output
from the compiler shows that the relatively large images leave
insufficient memory to allow using sophisticated convolution
plans on one IPU, and the compiler falls back to choosing
plans that only use vector floating point instructions instead
of the dedicated hardware.

Fig. 3 also shows vectorising the code results in significant
performance improvements.

We compared timings against 32-bit precision parallel im-
plementations for CPU and GPU (details in Appendix A).
Fig. 4 shows these results for a vectorised implementation
with a single IPU, with performance normalised against the
worst result. The 1-IPU stencil implementation was con-
sistently the best-performing for 32-bit precision. OpenCL
compiler limitations meant that extensions for 16-bit precision

were unavailable on the comparison platforms, precluding any
comparison.

Fig. 4: Relative performance of Gaussian Blur implementa-
tions on 1 IPU (stencil and convolution) vs 48 Skylake CPU
cores and NVIDIA V100 GPU (32-bit, vectorised)

The Gaussian Blur kernel has a very low operational inten-
sity (calculated from compiler output as 0.55 FLOPs/Byte,
16-bit and 0.275 FLOPs/Byte, 32-bit). At this operational
intensity, the kernels are very much memory bandwidth bound
according to our Roofline models in Fig. 2, with ceilings at
4.11 TFLOP/s for 16-bit precision and 2.00 TFLOP/s for 32-
bit precision. Adjusted to consider the compute-phase only,
our optimised stencil implementations on 1 IPU achieved 68%
(16-bit) and 88% (32-bit) of this ceiling for the largest problem
sizes, showing that it is possible to achieve an impressive
fraction of peak performance. Less than 1% of execution time
was spent on halo exchange, but data rearrangement costs
could account for up to 14.1% of runtime on one IPU. When
scaling up to 16 IPUs, these costs could account for more
than half of the execution time, largely because of the slower
inter-IPU exchange bandwidth.

B. Lattice-Boltzmann Fluid Simulation

The Lattice-Boltzmann Method (LBM) [23] is an increas-
ingly popular technique for simulating fluid dynamics. In
contrast to methods which solve the Navier-Stokes equations
directly and methods which simulate individual particles, LBM
is a mesoscopic method in which distributions of particle
velocities are modelled on a discretised lattice of the domain.

Our simple example application simulates fluid flow in a
2D lid-driven cavity, using D2Q9 discretisation, for which 9
directions of fluid flow are modelled per grid cell.

The Lattice-Boltzmann method proceeds in two steps:
1) During the streaming step, velocities from 8 cells in the

immediate lattice neighbourhood are “advected” to the
cell under consideration. Informally, the update rule is
“my north-west neighbour’s south-east velocity becomes
my new south-east velocity”, etc. This step involves no
computation, but has complex memory accesses. The

regular pattern of updates from neighbours makes it is
a stencil, and it is always memory bandwidth bound.

2) During the collision step, the directional velocity distri-
butions are updated in a series of operations that only use
local cell values. This step has simple memory accesses,
but is computationally intensive.

At each timestep, we also record the average fluid velocity,
requiring a reduction over all cores.

Common optimisations for LBM implementations on multi-
core CPUs and GPUs are discussed in [24]–[28]. The vast
majority of optimisations are aimed at improving data locality
(on shared memory platforms with caches), so are of little use
for the IPU. Techniques to minimise memory accesses and
storage requirements (e.g. [29]) do not easily lend themselves
to Poplar’s restrictions on updating the same tensor regions in
one compute set. The IPU’s BSP design precludes optimisa-
tions that overlap communication and computation. Our survey
of LBM optimisation techniques yielded only vectorisation
(and data layouts affecting vectorisation choices) and kernel
fusion as applicable IPU optimisations.

Our fused, optimised kernel performs both the streaming
and collision steps, and also calculates each worker’s contri-
bution to the total velocity, after which we must perform a
series of reductions for cross-worker, cross-tile and cross-IPU
calculations of the global average velocity. We use vectorised
operations where possible.

We tested our implementation (32-bit only) on four problem
sizes. A comparison of the execution times on 1 IPU vs our
OpenCL CPU and GPU implementations is shown in Fig. 5.
In this case, the GPU implementation outperforms the IPU
implementation for larger problem sizes, and both accelerator
devices outperform the 48-core CPU implementation, owing
to known limitations of the OpenCL CPU implementation
(e.g. no pinning for OpenCL work-groups to cores). The GPU
version makes very good use of shared memory (at similar
bandwidths to the IPU SRAM), and because our halo exchange
implementation on the IPU induced data rearrangements that
outweighed the benefits of the fast IPU exchange, the GPU’s
implementation using coalesced global memory access outper-
formed the IPU despite the lower HBM2 bandwidth.

We counted 111 FLOPs per cell update with 664 bytes of
memory accesses, for an OI of 0.17 for the kernel, making it
memory bandwidth bound according to our Roofline models.
The high number of memory accesses on the IPU stems from
its cacheless design and low number of registers compared to
other platforms.

Adjusting FLOP/s for the compute phase time, our Roofline
model shows that our implementation achieved 86% of peak
performance for the largest problem size. The smaller problem
sizes only achieved around 45% of peak performance, showing
that good potential for other optimisations remains.

A BSP breakdown showed that 27% of execution time was
spent in exchange and data rearrangement activities for 1 IPU,
with these costs again rising to more than 50% of execution
time on 16 IPUs.

Fig. 5: Relative performance of LBM D2Q9 implementations
on 1 IPU vs 48 CPU cores and NVIDIA V100 GPU

VI. DISCUSSION AND FUTURE WORK

We are encouraged by the promising performance seen for
these two example applications on the IPU, especially in light
of the years of research into optimising stencils and Lat-
tice Boltzmann Method implementations on other platforms.
Continued experience with the IPU may produce even better
optimisations than our early implementations.

Our work so far has focused on structured grid applications,
which find a natural expression in tensor representations, but
we have also begun work with unstructured grids on the IPU
for use with finite element method simulations. These require
more complex representations of the sparse connections be-
tween cells and more memory accesses, but we have been able
to use the graph compiler to generate efficient communication
of halo regions and expect to see similar benefits as structured
grid implementations from the IPU’s plentiful, low-latency
SRAM memory and fast exchanges.

Expressing our chosen HPC problems in Poplar was not
always straightforward compared with familiar HPC technolo-
gies such as OpenMP, MPI and OpenCL. We found Poplar
code to be more verbose than our OpenCL implementations
(∼1.6x lines of code for the Gaussian Blur stencils).

There are important limitations in using IPU for HPC
problems. Firstly, Poplar graphs are static, making it difficult
to implement techniques such as dynamic grids and adaptive
mesh refinement. Secondly, the graph compile time (a run-
time cost) is very high compared to compilation of e.g.
OpenCL kernels. For our small problems, graph compilation
took longer than executing the resulting programs. Ahead-
of-time compilation is also possible in Poplar. Thirdly, code
developed for the IPU is not portable to other platforms.
Fourthly, the IPU is limited to at most 32-bit precision, which
may be insufficient for some scientific applications.

In this work, we did not consider strategies for problems
that are too large to fit in the IPU’s on-chip memory. We
also did not measure energy use, a major reason for using AI

accelerators such as the IPU in the first place. Both of these
concerns are in our sights for the next phase of our research.

VII. CONCLUSION

In this paper, we presented our early work on using the
Graphcore IPU for traditional HPC applications. We showed
that it is possible to use the IPU and its programming frame-
work, Poplar, to express structured grid stencil computations
and achieve performance comparable with modern GPUs.

Many of the techniques commonly used to optimise stencil
code are inapplicable to the cacheless IPU. We also found
that Roofline modelling, which characterises a kernel’s per-
formance relative to platform limits, does not show how costs
associated with non-compute BSP phases might be limiting
code performance. New techniques for selecting optimisations
on emerging architectures may be required.

Making use of the IPU’s specialised hardware, as we did
for the 2D convolutions in the Gaussian Blur application,
can yield large performance benefits, especially for 16-bit
precision computations. Furthermore, since applications such
as the ones we have implemented here are often limited by
memory bandwidth, we expect many HPC applications to
benefit from the large amounts of low-latency, high-bandwidth
on-chip memory that chips like the IPU offer.

ACKNOWLEDGMENT

The authors would like to thank Graphcore for providing
access to a Dell DSS8440 Graphcore 740 16-IPU Server for
this work.

REFERENCES

[1] D. Amodei and D. Hernandez, “Ai and compute,” OpenAI Blog Post,
06 2018. [Online]. Available: https://openai.com/blog/ai-and-compute/

[2] J. Domke, E. Vatai, A. Drozd, P. Chen, Y. Oyama, L. Zhang, S. Salaria,
D. Mukunoki, A. Podobas, M. Wahib et al., “Matrix engines for high
performance computing: A paragon of performance or grasping at
straws?” arXiv preprint arXiv:2010.14373, 2020.

[3] K. Rocki, D. Essendelft, I. Sharapov, R. Schreiber, M. Morrison,
V. Kibardin, A. Portnoy, J. Dieteker, M. Syamlal, and M. James, “Fast
stencil-code computation on a wafer-scale processor,” in 2020 SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). IEEE Computer Society, 2020, pp. 807–820.

[4] D. Göddeke, R. Strzodka, and S. Turek, “Accelerating double precision
fem simulations with gpus,” Proceedings of the ASIM., pp. 1–21, 10
2005.

[5] L. G. Valiant, “A bridging model for parallel computation,” Communi-
cations of the ACM, vol. 33, no. 8, pp. 103–111, 1 1990.

[6] Z. Jia, B. Tillman, M. Maggioni, and D. P. Scarpazza, “Dissecting the
Graphcore IPU Architecture via Microbenchmarking,” arXiv preprint:
1912.03413, 2019.

[7] J. Ortiz, M. Pupilli, S. Leutenegger, and A. J. Davison, “Bundle Adjust-
ment on a Graph Processor,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2020), 2020.

[8] I. Kacher, M. Portaz, H. Randrianarivo, and S. Peyronnet, “Graphcore c2
card performance for image-based deep learning application: A report,”
2020.

[9] L. R. M. Mohan, A. Marshall, S. Maddrell-Mander, D. O’Hanlon,
K. Petridis, J. Rademacker, V. Rege, and A. Titterton, “Studying the
potential of graphcore ipus for applications in particle physics,” arXiv
preprint arXiv:2008.09210, 2020.

[10] Graphcore. (2020) Graphcore Developer Portal. [Online]. Available:
https://www.graphcore.ai/developer

[11] K. Asanović, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick, “The landscape of parallel computing research: A view
from berkeley,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, 12 2006.

[12] B. J. Palmer and J. Nieplocha, “Efficient algorithms for ghost cell
updates on two classes of mpp architectures.” in IASTED PDCS, 2002,
pp. 192–197.

[13] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Pat-
terson, J. Shalf, and K. Yelick, “Stencil computation optimization and
auto-tuning on state-of-the-art multicore architectures,” in Proceedings
of the 2008 ACM/IEEE Conference on Supercomputing, ser. SC ’08.
IEEE Press, 2008.

[14] T. Muranushi and J. Makino, “Optimal temporal blocking for stencil
computation,” Procedia Computer Science, vol. 51, pp. 1303 – 1312,
2015, international Conference On Computational Science, ICCS 2015.

[15] V. Bandishti, I. Pananilath, and U. Bondhugula, “Tiling stencil com-
putations to maximize parallelism,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, ser. SC ’12. Washington, DC, USA: IEEE Computer Society
Press, 2012.

[16] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick,
“Implicit and explicit optimizations for stencil computations,” in Pro-
ceedings of the 2006 workshop on Memory system performance and
correctness, 2006, pp. 51–60.

[17] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, “Gpu-
stream v2.0: Benchmarking the achievable memory bandwidth of many-
core processors across diverse parallel programming models,” Paper
presented at Pˆ3MA Workshop at ISC High Performance, 2016.

[18] T. Deakin, J. Price, and S. McIntosh-Smith, “Portable methods for
measuring cache hierarchy performance,” IEEE/ACM Super Computing,
2017.

[19] J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE computer society technical commit-
tee on computer architecture (TCCA) newsletter, vol. 2, 1995.

[20] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, p. 65–76, Apr. 2009.

[21] C. Yang, T. Kurth, and S. Williams, “Hierarchical roofline analysis for
gpus: Accelerating performance optimization for the nersc-9 perlmutter
system,” Concurrency and Computation: Practice and Experience, 11
2019.

[22] D. Cardwell and F. Song, “An extended roofline model with
communication-awareness for distributed-memory hpc systems,” in Pro-
ceedings of the International Conference on High Performance Comput-
ing in Asia-Pacific Region, 01 2019, pp. 26–35.

[23] G. R. McNamara and G. Zanetti, “Use of the boltzmann equation to
simulate lattice-gas automata,” Phys. Rev. Lett., vol. 61, pp. 2332–2335,
Nov 1988.

[24] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick, “Lattice
boltzmann simulation optimization on leading multicore platforms,” in
International Parallel and Distributed Processing Symposium (IPDPS),
04 2008.

[25] C. Körner, T. Pohl, U. Rüde, N. Thürey, and T. Zeiser, “Parallel lattice
boltzmann methods for cfd applications,” in Numerical Solution of
Partial Differential Equations on Parallel Computers, A. M. Bruaset
and A. Tveito, Eds. Berlin, Heidelberg: Springer, 2006, pp. 439–466.

[26] M. Wittmann, T. Zeiser, G. Hager, and G. Wellein, “Comparison of
different propagation steps for lattice boltzmann methods,” Computers
& Mathematics with Applications, vol. 65, no. 6, pp. 924 – 935, 2013,
mesoscopic Methods in Engineering and Science.

[27] G. Wellein, T. Zeiser, G. Hager, and S. Donath, “On the single processor
performance of simple lattice boltzmann kernels,” Computers & Fluids,
vol. 35, no. 8, pp. 910 – 919, 2006, proceedings of the First International
Conference for Mesoscopic Methods in Engineering and Science.

[28] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5-d
blocking optimization for stencil computations on modern cpus and
gpus,” in SC’10: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2010, pp. 1–13.

[29] M. Geier and M. Schoenherr, “Esoteric twist: an efficient in-place
streaming algorithmus for the lattice boltzmann method on massively
parallel hardware,” Computation, vol. 5, no. 2, p. 19, 2017.

APPENDIX A: PLATFORM DETAILS
• Intel® Xeon® Platinum 8168 (Skylake) CPUs @ 2.70GHz, 2x24 cores, 768GiB

RAM
• IPU driver version 1.0.44, firmware version 1.3.31. Poplar SDK version v1.2.0-

495c1aa368. IPU clock speed at 1.6 GHz
• Intel OpenCL driver v18.1.0.0920
• NVIDIA Volta V100 16GiB, NVIDIA CUDA Toolkit v8.0.44
• GCC 7.5.0 flags -march=native -mtune=native -O3

Comparison implementations for CPU and GPU use OpenCL v1.1.

APPENDIX B: EXAMPLE POPLAR CODE
The Poplar C++ code below demonstrates a Vertex, and the use of the half4 SIMD

vector types:

c l a s s G a u s s i a n B l u r H a l f 4 : p u b l i c V er t e x {
p u b l i c :

/ / F l a t t e n e d RGBA channe l s − l a s t image f r a g m e n t s :
/ / ‘ i n ’ i n c l u d e s g h o s t c e l l padding ,
I n p u t <Vector<h a l f , V e c t o r L a y o u t : : ONE PTR , 8>> i n ;
/ / ‘ o u t ’ has no g h o s t c e l l padd ing
Outpu t <Vector<h a l f , V e c t o r L a y o u t : : ONE PTR , 8>> o u t ;
/ / w i d t h and h e i g h t are unpadded
unsigned wid th ;
unsigned h e i g h t ;

bool compute () {
/ / R e c a s t as h a l f 4 * t o make c o m p i l e r
/ / g e n e r a t e 64− b i t l o a d s and s t o r e s
c o n s t auto h4 in = r e i n t e r p r e t c a s t<h a l f 4 *>(&i n [0]) ;
auto h4ou t = r e i n t e r p r e t c a s t<h a l f 4 *>(&o u t [0]) ;

/ / V e c t o r i s e d : each v a r i a b l e r e p r e s e n t s 4 h a l f s
/ / So each o p e r a t i o n works on 4 v a l u e s
/ / We do one RGBA p i x e l (a l l c h a n n e l s) per i t e r a t i o n
f o r (auto y = 0 ; y < h e i g h t ; y ++) {

f o r (auto x = 0 ; x < wid th ; x ++) {
d e f i n e H4 IDX (ROW, COL) \

(wid th + 2) * ((y +1)+ROW) + ((x +1)+COL)

c o n s t auto nw = h4 in [H4 IDX(−1 , − 1)] ;
c o n s t auto w = h4 in [H4 IDX (0 , − 1)] ;
c o n s t auto sw = h4 in [H4 IDX (+ 1 , − 1)] ;
c o n s t auto n = h4 in [H4 IDX(−1 , 0)] ;
c o n s t auto m = h4 in [H4 IDX (0 , 0)] ;
c o n s t auto s = h4 in [H4 IDX (+ 1 , 0)] ;
c o n s t auto ne = h4 in [H4 IDX (+ 1 , + 1)] ;
c o n s t auto e = h4 in [H4 IDX (0 , + 1)] ;
c o n s t auto se = h4 in [H4 IDX(−1 , + 1)] ;
h4ou t [wid th * y + x] =

1 . f / 1 6 * (nw+ne+sw+ se) +
4 . f / 1 6 * m +
2 . f / 1 6 * (e+w+s+n) ;

}
}
re turn true ;

}
} ;

The following snippet demonstrates how a Vertex is added to the graph and mapped
to a tile:

auto graph = p o p l a r : : Graph (i p u D e v i c e) ;
. . .
/ / Omi t t ed f o r b r e v i t y :
/ / T e n s o r s are d e c l a r e d and p a r t i t i o n e d over t i l e s
/ / Some t e n s o r s l i c e s are d e f i n e d : ’ s o m e T e n s o r S l i c e W i t h H a l o s ’
/ / (m o s t l y on t i l e 123 , w i t h b o r d e r s on n e i g h b o u r i n g t i l e s) ;
/ / ’ someTensorS l i ceNoHalos ’ (w h o l l y c o n t a i n e d on t i l e 123)
. . .
/ / Load t h e f i l e c o n t a i n i n g t h e v e r t e x code
graph . a d d C o d e l e t s (” G a u s s i a n B l u r C o d e l e t s . cpp ” ,

C o d e l e t F i l e T y p e : : Auto ,
”−O3”) ;

/ / Cr ea t e a compute s e t (BSP phase)
auto cs = graph . addComputeSet (” Example Compute S e t ”) ;
/ / Add v e r t e x t o t h e graph , w i r i n g up t o t e n s o r s l i c e s
auto v = graph . addVer t ex (

cs ,
” G a u s s i a n B l u r H a l f 4 ” ,
{

{” i n ” , s o m e T e n s o r S l i c e W i t h H a l o s . f l a t t e n ()} ,
{” o u t ” , someTensorS l i ceNoHalos . f l a t t e n ()} ,

}) ;

g raph . s e t I n i t i a l V a l u e (v [” wid th ”] , w id th) ;
g raph . s e t I n i t i a l V a l u e (v [” h e i g h t ”] , h e i g h t) ;
g raph . s e t T i l e M a p p i n g (v , 1 2 3) ; / / P lace v e r t e x on t i l e 123
. . .

