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Abstract

The need for online assistance regarding health-
care has grown significantly; a deficiency
which has become readily apparent after the
advent of the SARS-COV-2/COVID-19 pan-
demic. A widespread, trusted means of dis-
persing the latest medical knowledge could
have provided tremendous benefit from a pub-
lic health standpoint and curtailed the spread
of a disease which has claimed lives of mil-
lions. Question Answering (QA) systems are
well-suited to provide this assistance for both
medical professionals and the public at-large,
especially considering the increased adoption
in recent years of virtual digital assistants
such as Samsung’s Bixby and Google Assis-
tant. The overall performance of QA systems
can be improved by a variety of methods, in-
cluding entailment-based methods. In this pa-
per, we propose a Query-Based Framework for
Recognizing Question Entailment (QBF-RQE),
which leverages a query formulation method to
identify whether two questions are in an entail-
ment relationship – with a specific emphasis
on Consumer Health Questions (CHQs). Our
approach also incorporates type and focus fea-
tures of CHQs to determine the entailment re-
lationship. We evaluate our approach with the
MEDIQA 2019 shared task organized at the
ACL-BioNLP workshop. Our method gives
83.48%, while the best-performing model for
MEDIQA 2019 was 74.9%.

1 Introduction

The purpose of the entailment recognition (or
recognition) task is to classify the entailment rela-
tionship between a text pair (usually two separate
sentences), which are known as the premise and the
hypothesis. The entailment relationship are classi-
fied as: entailment (the hypothesis having a similar
meaning as the premise), neutral (hypothesis hav-
ing similar lexical items but has a different meaning
than the premise), and contradiction (hypothesis
having contradicting meaning versus the premise)

relation (Neeraj, 2020; Paramasivam and Nirmala,
2021). Within entailment recognition, there exists
Recognizing Question Entailment (RQE) where
both the premise and the hypothesis are question
sentences. Harabagiu and Hickl (2006) showed
improving performance for RQE also improves the
QA system in the general domain. Furthermore,
Demner-Fushman et al. (2019) showed applicabil-
ity to the CHQ domain as well by augmenting their
Consumer Health Information Question Answering
(CHiQA) system with a specific module for RQE.

According to Abacha and Demner-Fushman
(2019), the definition of entailment in QA is as
follows: “a question A entails a question B if every
answer to B is also a complete or partial answer to
A". The primary goal of RQE is to ensure the an-
swers of the premise and the answers of the hypoth-
esis align with the entailment relationship, per the
definition of entailment. According to Ben Abacha
and Demner-Fushman (2016), achieving this goal
in QA requires multiple, different approaches.

We propose a new framework – QBF-RQE –
which recognizes entailment relations based on
the query formulation approach. Our framework
leverages insights from CHiQA model presented
by Abacha and Demner-Fushman (2019), which
uses type and focus information to form a query to
retrieve answers using multiple AI models. Thus,
if the hypothesis has the same focus and/or type
as the premise, the retrieved answers to a premise
can be a partial or full answer to the answers of
the hypothesis. We can state the hypothesis is an
entailment of the premise.

While AI models would be ideally trained with
premise and hypothesis pairs to achieve high perfor-
mance, there is a relative lack of suitable, generally-
available datasets for CHQA. To directly address
this aforementioned lack of available datasets, we
attempted several different approaches to augment
the official MEDIQA 2019 training set, via sev-
eral merging-based methodologies: 1) a module



trained with a premise and hypothesis pairs 2) a
module trained with question (Entailment Recog-
nition Module: ER Module) and type pairs (Type
Recognition Module: TR Module) 3) a module
trained with question and focus pairs (Focus Recog-
nition Module: FR Module), as shown in Figure 1.

2 Datasets

In this section, we describe datasets used to train
and test our pipeline modules. The overall per-
formance of RQE in CHQ is measured with the
MEDIQA 2019 RQE Challenge test set.

2.1 Entailment Datasets
This section describes the dataset used for the ER
module. We use different combinations of MeQ-
Sum, the MEDIQA 2019 training set, and the
MEDIQA 2019 NLI dataset for training.

1. MEDIQA2019 RQE Datasets1: This dataset con-
sists of sets of text-hypothesis pairs (clinical question-
question pairs) provided by Abacha et al. (2017); Ben
Abacha and Demner-Fushman (2016) at NLM. The
pairs are labeled either Entailment or Not-Entailment.
In the 8,890-pair training set, 4,680 pairs were labeled
Entailment and 3,963 pairs were Not-Entailment. In
the 302-pair validation set, 129 pairs were labeled En-
tailment and 173 pairs were Not-Entailment. In the
230-pair test set, the pairs are evenly divided with 115
each.

2. MeQSum2: We leveraged the fact that answers from
summarized CHQ should result in the same answers
as the original CHQ to include MeQSum to our RQE
task training set. The dataset (Ben Abacha and Demner-
Fushman, 2019), also provided by the NLM group, in-
cludes 1,000 pairs of CHQ and summarized CHQ.

3. MEDIQA2019 NLI Datasets3: While not consist-
ing of pairs in question form, a few teams incorpo-
rated MEDIQA-NLI (MedNLI) (Romanov and Shivade,
2018) in the MEDIQA 2019 RQE task (Zhu et al., 2019;
Pugaliya et al., 2019). The dataset includes clinical sen-
tence pairs: Entailment (3,744 pairs), Neutral (3,744
pairs) and Contradiction (3,744 pairs). Each label has
465 pairs in the validation set, and 474 pairs in the test
set.

2.2 Type and Focus Datasets
This section describes the dataset used to train and
test the TR module and FR module. For the TR
module for RQE task, we use LiveQA, MedInfo
and MedQuAD to train the model. For the TR task
itself, we use the LiveQA training set, MedInfo and
MedQuAD to train, and the LiveQA test set to mea-
sure the performance of each model to compare the

1https://github.com/abachaa/MEDIQA2019/tree/master/
MEDIQA_Task2_RQE

2https://github.com/abachaa/MeQSum
3https://physionet.org/content/mednli-bionlp19/1.0.1/

Figure 1: Architecture of the proposed QBF-RQE.

performance with the baseline (Demner-Fushman
et al., 2019). The type names and their frequencies
are shown in Table 6 in Appendix A.2. For the FR,
we consider disease names as a focus of the CHQs
to be consistent with the answer retrieval method of
CHiQA. LiveQA, MedQuAD, and MedInfo all are
in the CHQ domain and have focus entities labeled.
However, the Named Entity Recognition (NER)
task to identify disease names are already widely
available, and for the purposes of this paper, we do
not perform re-training for the NER task with CHQ
datasets.

1. TREC-2017 LiveQA4: The TREC-2017 LiveQA: Med-
ical Question Answering Task (Abacha et al., 2017) or-
ganizer provides a dataset (LiveQA) that has 446 pairs
in the training set and 104 pairs in the test set.

2. MedInfo5: The MedInfo (Ben Abacha et al., 2019)
dataset is about medication CHQs. The dataset has
CHQs, answers, focus, type, section title and URL of
the information source.

3. MedQuAD6: MedQuAD (Abacha and Demner-
Fushman, 2019) has 47,457 pairs of medical ques-
tions/answers created from NIH websites.

3 Methodology

We describe our model in this section. Our model
has 3 modules for different tasks: ER, TR and FR.
The detailed architecture of our model is shown
in Figure 1. All the models are transformer-based
models, and we use pretrained models publicly
available in the Hugging Face repository. The pa-
rameters we used are listed in Appendix B.

4https://github.com/abachaa/LiveQA_MedicalTask_
TREC2017

5https://github.com/abachaa/Medication_QA_MedInfo2019
6https://github.com/abachaa/MedQuAD

https://github.com/abachaa/MEDIQA2019/tree/master/MEDIQA_Task2_RQE
https://github.com/abachaa/MEDIQA2019/tree/master/MEDIQA_Task2_RQE
https://github.com/abachaa/MeQSum
https://physionet.org/content/mednli-bionlp19/1.0.1/
https://github.com/abachaa/LiveQA_MedicalTask_TREC2017
https://github.com/abachaa/LiveQA_MedicalTask_TREC2017
https://github.com/abachaa/Medication_QA_MedInfo2019
https://github.com/abachaa/MedQuAD


3.1 ER Module

For ER, we experiment with 4 different dataset
combinations with 6 different models.

Data With MedNLI, MedQuAD and
MEDIQA2019, we create 4 combinations of
sets: 1) MEDIQA 2019 training set, 2) MEDIQA
2019 training set + MedNLI, 3) MEDIQA 2019
training set + MeQSUM, 4) MEDIQA 2019
training set + MeQSUM + MedNLI.

Model

1. Bio-Clinical-BERT: Bio-Clinical-BERT (Alsentzer
et al., 2019) is domain-specific contextual word embed-
ding model, which is initialized with BIOBERT model
and trained on all MIMIC notes (Johnson et al., 2016).

2. BiomedNLP-PubMedBERT-base-uncased-abstract
Gu et al. (2020) provide a BERT-based neural language
model pretrained on the biomedical NLP benchmark.
BiomedNLP-PubMedBERT-base-uncased-abstract-
fulltext and BiomedNLP-PubMedBERT-base-uncased
-abstract are pretrained models which are available in
the Hugging Face repository78.

3. BioELECTRA-base-discriminator-PubMed
BioELECTRA-base-discriminator-PubMed (Kanakara-
jan et al., 2021) is a pretrained ELECTRA model-based,
biomedical domain-specific language model using
discriminators, showing great performance in
MedNLI (Romanov and Shivade, 2018) (Language
inference task), i2b2-2010 (Uzuner et al., 2011) (NER
and relation extraction task), ShARe/CLEFE (Kelly
et al., 2013) (NER task) and ClinicalSTS (Wang et al.,
2020) (Sentence Similarity task).

4. BioMed-RoBERTa-base BioMed-RoBERTa-base (Gu-
rurangan et al., 2020) is a language model based on the
RoBERTa-base (Liu et al., 2019) model, fine-tuned with
2.68 million scientific papers from the Semantic Scholar
corpus. Both full-text of papers and abstracts were used
to train.

3.2 TR Module

Data We union labels of the LiveQA (26 types),
MedInfo (17 types) and MedQuAD (16 types in
Disease-related questions, 20 types in the drug cat-
egory), resulting in 39 labels. For similar labels,
we prioritized matching with LiveQA labels. Spe-
cific details regarding the label union methodol-
ogy/procedure as well as the labels after union
are shown in the bottom row of Table 6 in Ap-
pendix A.1.

Model We use the same models in the TR module
as those in the ER Module.

7https://huggingface.co/microsoft/BiomedNLP-
PubMedBERT-base-uncased-abstract

8https://huggingface.co/microsoft/BiomedNLP-
PubMedBERT-base-uncased-abstract-fulltext

Entailment Score We measure the score as either
1 or 0 (Consistent or Not-Consistent), based on
overlapping type labels. If there is any overlap
between the type of text and the type of hypothesis,
then we consider it Consistent. If there are no
overlaps, then it is Not-Consistent.

3.3 FR Module

NER tasks to identify disease names are popu-
lar research area and publicly-available datasets
and models are easily accessible. For this pa-
per, we used 2 of the state-of-the-art models for
the task and selected the one that gives higher
accuracy based on the validation set. One is
biobert-diseases-ner (Casero, 2021), which is a
BERT-based model trained on NCBI-disease. NER-
disease-ncbi-bionlp-bc5cdr-PubMed (Zhang, 2021)
is a RoBERTa-based model (Liu et al., 2019),
trained on NCBI-disease and BC5CDR datasets.

Entailment Score We test 2 different methods
to measure the score: 1) Exact-Match, and 2)
Similarity-Based Match. Exact-Match occurs when
there is overlap in disease names; which we then
classify as entailment. If there is no overlap, then
it is not entailment. Similarity-Based Match is
utilized to address minor differences/typos in the
disease names. We measure the similarity score be-
tween each focus in the premise and the hypothesis.
If the similarity scores of focus in the hypothe-
sis and premise score is above a threshold, then
we consider the pairs to be in an entailment rela-
tionship. The similarity score is measured with
the S-BioBert-snli-multinli-stsb sentence similar-
ity model (Deka and Jurek-Loughrey, 2021) and
the spaCy sentence similarity model (Honnibal
and Montani, 2017). S-BioBert-snli-multinli-stsb
model is BioBERT (Lee et al., 2019) finetuned with
several language inference datasets: SNLI (Bow-
man et al., 2015), MultiNLI (Williams et al., 2017)
and STS-b (Cer et al., 2017). The spaCy model
measures similarity by measuring the distance be-
tween word vectors trained on a large English gen-
eral domain.

3.4 Merge

To merge the results, we test a majority-voting (m-
voting) and a weighted-voting (w-voting) system.
We evaluate three methods for the w-voting, giving
a weight on the ER module result, the TR module
result or the FR module result.

https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext


4 Evaluation

In this section, we discuss the overall performance
of the QBF-RQE, along with the performance of
each individual module.

4.1 QBF-RQE Results

We measure the performance of the QBF-RQE
by calculating the number of correctly-predicted
labels over the total number of premise and hy-
pothesis pairs. We then compare our results to
the results of the MEDIQA 2019 challenge par-
ticipants. In Table 1, we list the results of each
module for the RQE task, along with the pipeline
result with the m-voting method, and the pipeline
result with the w-voting methods. The table also
includes the list of accuracies from the top 3 best-
performing teams at MEDIQA 2019. Accuracy
scores of Team Sieg for the Validation set were not
reported. Team IIT-KGP reported multiple exper-
iment results. Their model with Sci-BERT with
the Hinge-Loss method gave the best performance
with the testing set, model with QSpider gave the
best result with the validation set.

With the test set, the QBF-RQE model with the
w-voting method on the TR module gave 8.58%
higher accuracy than the best-performing team.
It also showed the best performance amongst all
the experiments we performed: ER module, TR
module, FR module, QBF-RQE with the m-voting
method, QBF-RQE with the w-voting method and
QBF-RQE with the union merging method.

4.2 Module Performance

We also investigate the performance of each mod-
ule of the pipeline separately.

4.2.1 ER Module
We notice that the testing set is challenging to clas-
sify entailment or not-entailment compared to the
validation set or training set. This may be caused
by using different methods to create the training,
validation, and testing set. The training set in-
cludes a repetition of hypothesis questions for not-
entailment relationships, while we see fewer of
these cases on the validation and none in the test-
ing set. We believe these are the cause of a lot of
challenge scores lying below 80% accuracy, while
validation accuracies from challenge participants
are usually above 80%. To overcome this prob-
lem, the majority of teams, including this paper,
incorporated augmentation of the training sets.

Model test acc val acc
ER module 57.39% 83.04%
TR module 82.17% 74.17%
FR module 51.3% 70.76%
QBF-RQE m-voting 60.0% 82.46%
QBF-RQE w-voting (ER module) 62.17% 81.29%
QBF-RQE w-voting (TR module) 83.48% 83.04 %
QBF-RQE w-voting (FR module) 56.52% 76.32%
QBF-RQE ER module ∪
(TR module&FR module) 60.43% 81.87%

PANLP (Zhu et al., 2019): Ensem-
ble, transfer learning, re-ranking
with BERT and MT-DNN

74.9% 84.77%

Sieg (Bhaskar et al., 2019): MT-
DNN 70.6% -

IIT-KGP (Sharma and Roychowd-
hury, 2019): The best model result
for Test set - Sci-BERT with Hinge
Loss

68.4% 62.0%

IIT-KGP (Sharma and Roychowd-
hury, 2019): The best model result
for Val Set - QSpider

51.3% 80.5%

Baseline - SVM (Ben Abacha
et al., 2019) 54.1% -

Table 1: Evaluation of the QBF-RQE for RQE task.

Hence, for the ER module, we investigate the
different combinations of available datasets, along
with the performance of 5 different models, and
results are shown in Table 2.

Augmenting training set with MedNLI, or MeQ-
Sum gives higher performance for all models. Both
the MEDIQA training set+MedNLI combination
and the MEDIQA training set+MeQSum combi-
nation demonstrated a greater than 10% increase
vs just the MEDIQA 2019 training set. This
shows that augmenting the MEDIQA 2019 helps
to improve RQE models. However, merging the
MedNLI, MeQSUM and MEDIQA training sets to-
gether did not necessarily improve the performance.
Combining all datasets gave the best score of
80.99% and the average score of 79.13%, which is
higher than the MEDIQA + MedNLI combination,
but lower than the MEDIQA + MeQSUM combina-
tion. We can therefore conclude that MedNLI may
increase performance with a training set which is
relatively small/limited, but if there is a training
set that has closer characteristics to the test set,
merging with MedNLI may not be advantageous.

For the test accuracy on Table 2, we selected the
dataset combination which gave the best accuracy
to the validation set (MEDIQA 2019 + MeQSum)
and added the MEDIQA 2019 validation set to the
training set to train and tested on the MEDIQA
2019 test set.



Model with Train-set, MedNLI, MeQSum Test
Accuracy

Validation
Accuracy

Bio-Clinical-BERT 51.52% 70.20%
BiomedNLP-PubMedBERT-base-uncased-abstract-full text 51.52% 78.65%
BiomedNLP-PubMedBERT-base-uncased-abstract 52.38% 79.24%
BioELECTRA-base-discriminator-PubMed 54.98% 80.99%
BioELECTRA-base-discriminator-PubMed-PMC-lt 53.68% 80.12%
Biomed-RoBERTa-base 51.08% 74.56%
Model with Train-set, MedNLI
Bio-Clinical-BERT 49.35% 72.81%
BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext 53.25% 79.82%
BiomedNLP-PubMedBERT-base-uncased-abstract 51.95% 81.29%
BioELECTRA-base-discriminator-PubMed 56.28% 80.12%
BioELECTRA-base-discriminator-PubMed-PMC-lt 54.98% 78.95%
Biomed-RoBERTa-base 52.38% 73.98 %
Model with Train-set, MeQSum
Bio-Clinical-BERT 51.08% 69.0%
BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext 51.52% 77.78%
BiomedNLP-PubMedBERT-base-uncased-abstract 52.38% 80.12%
BioELECTRA-base-discriminator-PubMed 55.41% 83.04%
BioELECTRA-base-discriminator-PubMed-PMC-lt 53.25% 80.99%
Biomed-RoBERTa-base 51.95% 76.61%
Model with Train-set
Bio-Clinical-BERT 54.55% 58.19%
BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext 52.38% 56.43%
BiomedNLP-PubMedBERT-base-uncased-abstract 54.55% 64.33%
BioELECTRA-base-discriminator-PubMed 56.28% 79.53%
BioELECTRA-base-discriminator-PubMed-PMC-lt 55.84% 78.65%
Biomed-RoBERTa-base 53.25% 75.44%
Model with Train-set, MeQSum, Validation set
Bio-Clinical-BERT 50.43% -
BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext 57.83% -
BiomedNLP-PubMedBERT-base-uncased-abstract 55.22% -
BioELECTRA-base-discriminator-PubMed 57.39% -
BioELECTRA-base-discriminator-PubMed-PMC-lt 56.09% -
Biomed-RoBERTa-base 51.73% -

Table 2: Evaluation of the ER module for RQE task.

4.2.2 TR Module
Demner-Fushman et al. (2019) thoroughly investi-
gated the individual TR and FR models using Re-
call, Precision and F1 score with LiveQA test set.
They used combinations of SVM and rule-based
methods (regular expressions) and deep learning
methods to extract the Type from CHQs. We con-
sider this method as a baseline and compare it with
transformer-based models. As shown in Table 3,
simply merging LiveQA, MedInfo and MedQuAD
showed improved performance.

We use the same models to test the ER pur-
pose, to pick the best performing model and plug it
into the pipeline, BiomedNLP-PubMedBERT-base-
uncased-abstract-fulltext showed the best perfor-
mance on both the test and validation set. Results
are shown in Table 4.

4.2.3 FR Module
ner-disease-ncbi-bionlp-bc5cdr-PubMed shows
slightly higher performance than biobert-disease-

ner model for the RQE task. Therefore, QBF-RQE
results listed in the Section 1, ner-disease-ncbi-
bionlp-bc5cdr-PubMed model was used for the
FR module, with the entailment score calculated
with the Similarity-Based Match method. Exact
accuracy is listed on the Table 5.

4.3 Error Cases
In this section, we show 2 cases of error types
to show the effect of the TR module and the FR
module of our framework.

Case 1. Incorrect prediction from a module. In
this case, the QBF-RQE error was caused by the
error in the individual module.

• Not-Entailment (PREMISE) (Type: infor-
mation, Focus: fibromyalgia): I want more in-
formation on Hypertension and fibromyalgia,
I seem to be getting only topics on diabetes
and I do not have this. I enjoy reading the
current info. thanks (HYPOTHESIS) (Type:



Data Precision Recall F1
Bio-Clinical-BERT 62.77% 44.70% 52.21%
BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext 67.39% 46.97% 55.36%
BiomedNLP-PubMedBERT-base-uncased-abstract 64.95% 47.73% 55.02%
BioELECTRA-base-discriminator-PubMed 65.93% 45.45% 53.81%
BioELECTRA-base-discriminator-PubMed-PMC-lt 61.7% 43.94% 51.33%
Biomed-RoBERTa-base 66.33% 49.24% 56.52%
SVM+Rule-Based+BiLSTM (Demner-Fushman et al., 2019) 55.5% 42.5% 48.1%

Table 3: Evaluation of a TR module with LiveQA Test Set.

Model Test
Accuracy

Validation
Accuracy

Bio-Clinical-BERT 80.43% 71.19%
BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext 82.17% 74.17%
BiomedNLP-PubMedBERT-base-uncased-abstract 81.3% 73.18%
BioELECTRA-base-discriminator-PubMed 80.0% 73.51%
BioELECTRA-base-discriminator-PubMed-PMC-lt 80.43% 70.20%
Biomed-RoBERTa-base 81.74% 70.20%

Table 4: Evaluation of TR module on RQE task.

Information, Focus: Fibromyalgia): How Is
Fibromyalgia Treated?

The premise and hypothesis in the above example
are in a not-entailment relationship. While our TR
model incorrectly predicted it as an entailment rela-
tionship by classifying both premise and hypothesis
Types as “information", and Focus as “fibromalgia"
for premise and “Fibromyalgia", while the Type of
the premise should be “treatment".

Case 2. Correct prediction from each module
This case is caused by either Type or Focus was not
enough information to determine two questions are
in entailment relationship.

• Not-Entailment (PREMISE) (Type: Infor-
mation, complication, Focus: Arrhythmia) Ar-
rhythmia. can arrhythmia occurs after abla-
tion? What is the success rate of Ablation?
During my Holter test it was found that my
Heart rate fluctuates from 254 to 21. How
do you rate the situation? (HYPOTHESIS)
(Type: Information, Focus: Arrhythmia) What
is an Arrhythmia?

The above example with a question that has
“What is [disease name]" format. This is one of
the most commonly occurring errors with QBF-
RQE. The answers to this question could include
a definition of a potential treatment used for the
disease, medicine types, symptoms, and list con-
tinues. There is a possibility that answers to “Can
arrhythmia occurs after ablation?" could be a part

of an answer to “What is [disease name]". Thus,
with Type information can not be the primary fac-
tor of determining the entailment or not-entailment
relationship.

• Entailment (PREMISE) (Type: information,
Focus: Itching): babygirl vagina itching. My
newborn is 9 weeks and I noticed when I went
to clean inside her vagina there was a little
bit of spotting. Should I be concerned? (HY-
POTHESIS) (Type: Consideration): When to
Worry About Your Newborn’s Genitals?

The above example shows an example of Focus
problem. The Focus of premise is “Itching" and
there is no disease name we can detect from the
hypothesis. Thus no Focus was found in the hy-
pothesis. From both the similarity match method
and the exact match method, the entailment score
is 0 (Not-Entailment). This is caused by limiting
the Focus to disease names only. Expanding the
boundary of focus could be one of our future works.

4.4 Limitations and Future work
While the performance of the QBF-RQE is gener-
ally improved by combining multiple modules, it
is important to note that if the accuracy of a sin-
gle module is significantly lower for a particular
use case, the net effect can decrease overall per-
formance. This characteristic is prominent on the
test set. Individual module accuracy of the ER
module, TR module and FR modules are 57.39%,
82.17% and 51.3% respectively. The TR Mod-
ule has the highest recognition and difference of



Data Test
Accuracy

Validation
Accuracy

biobert-diseases-ner (Exact Match) 52.17% 66.67%
biobert-diseases-ner (Similarity-Based Match) 51.3% 70.76%
ner-disease-ncbi-bionlp-bc5cdr-PubMed (Exact Match) 48.70% 60.82%
ner-disease-ncbi-bionlp-bc5cdr-PubMed (Similarity-Based Match) 52.61% 71.93%

Table 5: Evaluation of FR module on RQE task.

accuracy between the TR module vs FR and ER
modules is more than 20%. With the majority-
voting system, we can see the accuracy reduced to
60% from 82.17%. With weighted-voting based on
type, the accuracy is increased by 1.31%. There-
fore, when using this approach, it is advantageous
primarily when the individual modules have a bal-
anced performance profile. Otherwise, simply em-
ploy the module with the best performance, partic-
ularly when the individual module is has an over-
whelmingly superior performance profile. Second,
when there is an bias in performance in one mod-
ule (though not to an overwhelming degree), the
weighted merge imparts improved performance. In
the future, we hope to explore methods to further
improve the performance of each module and hope-
fully investigate the different methods to merge the
ER, FR and TR modules.

5 Conclusion

Ideally, the best scenario for RQE would be having
one AI model and suitably training the dataset with
appropriate premise and hypothesis pairs. But, the
CHQ domain lacks such a dataset, which therefore
limits the performance of the AI models. How-
ever, we showed significant improvement in perfor-
mance in RQE in the CHQ domain by using the
query formulation method inspired by the defini-
tion of Entailment in QA. In the future, we hope
to investigate different ways to incorporate queries
and study different methods of extracting queries
(not limited to question focus and type characteris-
tics) to build a more versatile RQE pipeline.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of ACL.

Sanda Harabagiu and Andrew Hickl. 2006. Methods
for using textual entailment in open-domain question
answering. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational
Linguistics, pages 905–912, Sydney, Australia. Asso-
ciation for Computational Linguistics.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Alistair Johnson, Tom Pollard, Lu Shen, Li-wei Lehman,
Mengling Feng, Mohammad Ghassemi, Benjamin
Moody, Peter Szolovits, Leo Celi, and Roger Mark.
2016. Mimic-iii, a freely accessible critical care
database. Scientific Data, 3:160035.

Kamal raj Kanakarajan, Bhuvana Kundumani, and
Malaikannan Sankarasubbu. 2021. BioELEC-
TRA:pretrained biomedical text encoder using dis-
criminators. In Proceedings of the 20th Workshop
on Biomedical Language Processing, pages 143–154,
Online. Association for Computational Linguistics.

Liadh Kelly, Lorraine Goeuriot, Hanna Suominen,
Tobias Schreck, Gondy Leroy, Danielle L. Mow-
ery, Sumithra Velupillai, Wendy W. Chapman,
David Martínez, G. Zuccon, and João Palotti. 2013.
Overview of the share/clef ehealth evaluation lab
2013. In CLEF.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2019. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
CoRR, abs/1901.08746.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Trishala Neeraj. 2020. Semantic entailment. trishala-
neeraj.github.io.

Aarthi Paramasivam and S. Jaya Nirmala. 2021. A sur-
vey on textual entailment based question answering.
Journal of King Saud University - Computer and
Information Sciences.

Hemant Pugaliya, Karan Saxena, Shefali Garg, Sheetal
Shalini, Prashant Gupta, Eric Nyberg, and Teruko
Mitamura. 2019. Pentagon at MEDIQA 2019: Multi-
task learning for filtering and re-ranking answers
using language inference and question entailment.
CoRR, abs/1907.01643.

Alexey Romanov and Chaitanya Shivade. 2018.
Lessons from natural language inference in the clini-
cal domain. CoRR, abs/1808.06752.

Prakhar Sharma and Sumegh Roychowdhury. 2019. IIT-
KGP at MEDIQA 2019: Recognizing question entail-
ment using sci-BERT stacked with a gradient boost-
ing classifier. In Proceedings of the 18th BioNLP
Workshop and Shared Task, pages 471–477, Florence,
Italy. Association for Computational Linguistics.

Özlem Uzuner, Brett R South, Shuying Shen, and
Scott L DuVall. 2011. 2010 i2b2/VA challenge on
concepts, assertions, and relations in clinical text.
Journal of the American Medical Informatics Associ-
ation, 18(5):552–556.

Yanshan Wang, Sunyang Fu, Feichen Shen, Sam Henry,
Ozlem Uzuner, and Hongfang Liu. 2020. The 2019
n2c2/ohnlp track on clinical semantic textual similar-
ity: Overview. JMIR Med Inform, 8(11):e23375.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. CoRR,
abs/1704.05426.

Xiaochen Zhang. 2021. raynardj/ner-disease-ncbi-
bionlp-bc5cdr-pubmed.

Wei Zhu, Xiaofeng Zhou, Keqiang Wang, Xun Luo,
Xiepeng Li, Yuan Ni, and Guotong Xie. 2019.
PANLP at MEDIQA 2019: Pre-trained language
models, transfer learning and knowledge distillation.
In Proceedings of the 18th BioNLP Workshop and
Shared Task, pages 380–388, Florence, Italy. Associ-
ation for Computational Linguistics.

https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.1093/jamia/ocz152
https://doi.org/10.1093/jamia/ocz152
https://doi.org/10.1093/jamia/ocz152
http://arxiv.org/abs/arXiv:2007.15779
http://arxiv.org/abs/arXiv:2007.15779
http://arxiv.org/abs/arXiv:2007.15779
https://doi.org/10.3115/1220175.1220289
https://doi.org/10.3115/1220175.1220289
https://doi.org/10.3115/1220175.1220289
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.18653/v1/2021.bionlp-1.16
https://doi.org/10.18653/v1/2021.bionlp-1.16
https://doi.org/10.18653/v1/2021.bionlp-1.16
http://arxiv.org/abs/1901.08746
http://arxiv.org/abs/1901.08746
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://trishalaneeraj.github.io/2017-12-22/semantic-entailment
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.11.017
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.11.017
http://arxiv.org/abs/1907.01643
http://arxiv.org/abs/1907.01643
http://arxiv.org/abs/1907.01643
http://arxiv.org/abs/1808.06752
http://arxiv.org/abs/1808.06752
https://doi.org/10.18653/v1/W19-5050
https://doi.org/10.18653/v1/W19-5050
https://doi.org/10.18653/v1/W19-5050
https://doi.org/10.18653/v1/W19-5050
https://doi.org/10.1136/amiajnl-2011-000203
https://doi.org/10.1136/amiajnl-2011-000203
https://doi.org/10.2196/23375
https://doi.org/10.2196/23375
https://doi.org/10.2196/23375
http://arxiv.org/abs/1704.05426
http://arxiv.org/abs/1704.05426
https://huggingface.co/raynardj/ner-disease-ncbi-bionlp-bc5cdr-pubmed
https://huggingface.co/raynardj/ner-disease-ncbi-bionlp-bc5cdr-pubmed
https://doi.org/10.18653/v1/W19-5040
https://doi.org/10.18653/v1/W19-5040


A Drug Label Merge Details

A.1 Union Labels
To avoid redundant labels, we merged labels origi-
nating in different datasets which are functionally
identical but possess minor variations in spelling.
The bottom row in Table 6 contains the labels
resulting from the union of LiveQA, MedInfo
and MedQuAD. The labels in black originated in
LiveQA. Blue labels are labels that originated in
MedInfo that do not exist in LiveQA. Red labels
only exist in MedQuAD.

We union the labels manually, setting the prior-
ity of labels as: #1 LiveQA, #2 MedInfo and #3
MedQuAD. We prioritized LiveQA due to its pre-
vious use in CHiQA research, better facilitating
comparisons. Thus, we rename the labels to match
the spelling as it exists with LiveQA, if possible.
If the label does not exist in the LiveQA but only
in MedInfo and MedQuAD, we arbitrarily modi-
fied the MedQuAD label to match with MedInfo.
For example, side effects in MedInfo is modified
to side-effect to match with LiveQA, while side
effects, severe reaction in MedQuAD are modified
to side-effect to match with LiveQA. In Table 6,
the example is represented as “side effects (side
effects, side effects, severe reaction)".

Another manual task is to identify entailment
relationships. For the purposes of the paper, if the
two types are in an obvious entailment relationship,
we unified the labels. The label special instruc-
tions, important warning, precautions, are renamed
to considerations. In Table 6, the example is rep-
resented as “considerations (special instructions,
important warning, precautions)".

A.2 Union Datasets
After merging the 3 datasets with the method men-
tioned in Appendix A.1, the total number of ques-
tions and the type pairs are 48,577 and the total
number of labels is 39. Due to the resource limita-
tions and to prevent the dataset from overfitting
on MedQuAD characteristics, we only select a
max of 500 question and type pairs for each type.
Among the 48,577, more than 97% of the dataset
is from MedQuAD. With this limit, we have a total
of 12,620 pairs. The detailed distribution is listed
in Table 7.

B Parameters

We use default parameters of hugging face for
6 models for ER and TR except warmup_steps,

save_steps, batch size, epochs, weight_decay and
learning_rate. We perform a grid search method
to find an optimal parameter for each model:
warmup_steps=100, save_steps = 500, batch size
= 16, epochs = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
weight_decay={0.01, 0.1}, learning_rate = {5e-6,
1e-5, 5e-5, 1e-4}. weight_decay of 0.01 gave the
best result for all tasks and models. learing_rate
of 5e-5 gave the best results for the TR module.
For the ER module, the best results were given
when learning_rates lies between 1e-5 and 5e-5.
Bio-Clinical-BERT, BiomedNLP-PubMedBERT-
base-uncased-abstract-fulltext, Biomed-RoBERTa-
base results are model results with learning_rate of
1e-5. BiomedNLP-PubMedBERT-base-uncased-
abstract, BioELECTRA-base-discriminator-
PubMed and BioELECTRA-base-discriminator-
PubMed-PMC-lt results are models trained with
learning_rate of 5e-5.



Dataset
Name Labels # of Pairs /

# of Labels

LiveQA

treatment, information, cause, diagnosis, susceptibility, interaction,
person-organization, side-effect, effect, ingredient, prevention, symp-
tom, tapering, usage, complication, contraindication, dosage, indication,
prognosis, storage-disposal, comparison, inheritance, action, alternative,
lifestyle-diet, other-question, genetic changes, resources

Train:
(p) 446 / (L) 23
Test:
(P) 104 / (L) 26

MedInfo

information, dose, usage, side effects, indication, interaction, action,
appearance, usage/time, stopping/tapering, ingredient, action/time, stor-
age and disposal, comparison, contraindication, overdose, alternatives,
usage/duration, time, brand names, combination, pronunciation, manu-
facturer, availability, long term consequences

(P) 674 / (L) 25

MedQuAD

Diseases: information, research (or clinical trial), causes, treatment,
prevention, diagnosis (exams and tests), prognosis, complications, symp-
toms, inheritance, susceptibility, genetic changes, frequency, considera-
tions, contact a medical professional, support groups
Drugs: information, interaction with medications, interaction with food,
interaction with herbs and supplements, important warning, special in-
structions, brand names, how does it work, how effective is it, indication,
contraindication, learn more, side effects, emergency or overdose, severe
reaction, forget a dose, dietary, why get vaccinated, storage and disposal,
usage, dose, precaution
Medical Entities (ME): information

(P) 47,457 /
(L-disease) 16,
(L-drug) 20,
(L-ME) 1

Union

treatment, information (other-question, learn more), cause (causes), di-
agnosis, susceptibility, interaction (interaction with food, interaction
with herbs and supplements, interaction with medications), person-
organization (contact a medical professional, support groups), side-effect
(side effects, side effects, severe reaction), effect (how effective is it), in-
gredient, prevention, symptom (symptoms), tapering (stopping/tapering),
usage, complication (complications), contraindication, dosage (dose,
overdose, dose, forget a dose, emergency or overdose), indication, prog-
nosis(long term consequences), storage-disposal (storage and disposal,
storage and disposal), comparison, inheritance, action (how does it work),
alternative, lifestyle-diet (dietary), genetic changes, resources (research),
appearance, time (duration), comparison, alternatives, brand names, com-
bination, pronunciation, manufacturer, availability,
frequency, considerations (special instructions, important warn-
ing,precautions), why get vaccinated

Train:
(P) 48,577 / (L) 39
Test:
(P) 104 / (L) 26

Table 6: Consumer Health Question Type Dataset.



Type Name # of pairs with
500 max limit

# of pairs without
max limit on MedQuAD

information 705 10724
symptom 515 4353
treatment 725 4131
consideration 500 2653
cause 537 2473
dosage 583 2422
prognosis 524 2256
diagnosis 523 2081
organization 517 1976
brand names 503 1471
inheritance 508 1454
side_effect 568 1393
usage 609 1353
indication 559 1317
prevention 505 1244
storage_disposal 515 1132
complication 508 1128
frequency 500 1120
lifestyle_diet 500 1092
genetic changes 501 1088
susceptibility 489 489
resources 401 401
interaction 359 359
action 161 161
effect 103 103
stages 80 80
time 80 80
tapering 62 62
appearance 38 38
contraindication 34 34
ingredient 28 28
why get vaccinated 16 16
comparison 12 12
alternative 8 8
pronounce name 3 3
combination 3 3
manufacturer 2 2
availability 1 1

Table 7: Type distribution after Union of LiveQA, MedInfo and MedQuAD with max number of pairs limit to 500.


