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Abstract—We describe a general work-flow which scales in-
tuitively to high-performance computing (HPC) clusters for
different domains of scientific computation. We demonstrate our
methodology with a radial distribution function calculation in
C++, with mental models for FORTRAN and Python as well. We
present a pedagogical framework for the development of guided
concrete incremental techniques to incorporate domain-specific
knowledge and transfer existing expertise for developing high-
performance, platform-independent, reproducible scientific soft-
ware. This is effected by presenting the acceleration of a radial
distribution function, a well known algorithm in computational
chemistry. Thus we assert that for domain specific algorithms,
there is a language-independent pedagogical methodology which
may be leveraged to ensure best practices for the scientific HPC
community with minimal cognitive dissonance for practitioners
and students.

Index Terms—pedagogy, best-practices, tooling, methodology,
reproducible-research

I. INTRODUCTION

High performance scalable computing techniques have per-
meated all fields of science, engineering and technology.
Digital literacy has gained traction as an invaluable tool for sci-
entific reproducible research, with basic tools being more than
adequately covered by initiatives such as the Carpentries [1],
[2] workshops and certifications. In addition to the renewed
focus on digital tools and their use, the community has also
recognized the necessity of well developed code for research
[3]. However, even as open workflows have been recognized
by the life sciences [4], [5], high performance tools have not
been addressed in terms of their unique pedagogical issues.
Given that distributed computing in general is considered
to be a complex topic, it is natural that students unused to
computational techniques, comfortable in their own scien-
tific domains would not be able to leverage the appropriate
compute, as it has been reported that the view of a novice
and an expert per domain will differ [6]. Herein we present
an overview of contemporary HPC education, and develop a
methodology to incorporate best practices while facilitating
familiarity by suitable generalizations and variations [7], [8].

We have taken the domain specific example of a standard
analysis code for the calculation of the radial distribution
function in three dimensions [9]. We enumerate the nature of
the algorithm in pseudo-code, as the equivalent steps in both
performance oriented C++, FORTRAN, and a “simpler” high
level language (python) to show how each may be linked to
domain specific representations. Furthermore we then show the
natural extension of the mental model developed for C++ to
encompass concepts for the parallelism on distributed systems
and thus present an optimal pedagogical perspective for guided
practice [10] of high performance computing.

II. IMPLEMENTATION AND MODELS

That coherent group activities enhance the understanding
and nature of scientific endeavors has been long understood
in the pedagogical literature [11], [12]. In keeping with the
same principles, we have used a striped down set of software
development best-practices from life sciences and physical
sciences [5], [13]–[15] suitable for novices, which may be
described below with an optimal progression of topics:

1) Logging This is established by version control at a
granular scale, and by the Zenodo archive at a coarse-
grained, software-level perspective. The source code
available on Github [16] for collaborative development,
and to ensure reproducible workflows we implement a
Zenodo archive [17] with versioning where the data-sets
and history of the code may be tracked by mile-stoning.

2) Consistency Software linters and code commit guide-
lines are a crucial part of scalable computing, and
we have found that, for pedagogical purposes, it is
sufficient to introduce them as part of the git collab-
orative guidelines. The principles of guided practice are
found to be at odds with the varying levels of comfort
learners have while approaching a project to be re-
worked for distributed execution, so in this instance we
have enforced consistency via Clang (clang-format)
without being tied to an IDE.
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3) Reliability The build process, consisting of a CMake
modular system to maintain homogeneity across ma-
chines is also amenable to stricter dependency manage-
ment via reproducible cryptographic hashes of the nix
packaging system [18].

4) Documentation Incorporating a suitable self generating
documentation tool like Doxygen or Sphinx allows stu-
dents to couple the code concepts to the underlying sci-
ence in an efficient manner. For this project, we have im-
plemented a Doxygen workflow, integrated with Travis
CI to ensure that the documentation is built and served
by default (at https://eduhipc2019.femtolab.science/) as
shown in Fig. 1.

Fig. 1. Doxygen generated API level documentation of function descriptors
for the RDF namespace

Once serial code has been developed as per the guidelines
above, we then assert the following generic progression and
tooling for distributed, high performance execution:

1) Algorithm Analysis With the documentation in place, it
should be relatively easy to determine the pain points for
the software. The focus here is to recognize the portions
which are amenable to be accelerated and are not limited
primarily by I/O.

2) Memory Management Identifying the data which is
to be transferred to the networked devices is crucial
for memory allocation. The networked devices may be
explicit, as in connected in a cluster, or implicit, as in
between a GPU and CPU on the same machine. For
OpenACC directives [19], the ability to allocate memory
for the parallel regions is the last step of optimization,
before delving into low level library code, like CUDA.

3) Code Refactor Once the previous optimizations have
been completed, it is possible for advance data structure

changes to be implemented with a focus on scalable
performance, like the transference of data as space filling
curves [15], however, this is typically too advanced for
most domain specific practitioners.

Similar to the principles of the carpentries [1], the pedagogical
concepts described will not typically allow for exponential
performance gains for generic scientific software, however,
given the proliferation of frameworks like OpenACC [19], it
is reasonable to assume this is the intended goal for most
teachers.

III. RADIAL DISTRIBUTION FUNCTION

The radial distribution function (RDF) g(r), or the first
order pair correlation function is an appropriate starting point
to generate a domain specific language for high performance
computation, as it defined in the form of a deviation function.
That is, it is the ratio of the average number density from a
given atom to that of the average number density of an ideal
gas of the same density [9]. A pictorial schematic of the RDF
logic is shown in Fig. 2.

Fig. 2. Schematic of the RDF logic, pictorially describing the binning of
pairwise distances from a reference particle.

The algorithm is amenable to distribution in theory, how-
ever, in practice the size of the underlying data-set is often a
limiting factor without special considerations. The pseudocode
for the algorithm is given in Algo. 1 and can be paraphrased
as:

1) Initialization The g(r) array is initialized to zero.
2) Sampling The histogram is added to for a particular

bin, if the distance of a pair of atoms falls within the r
associated with the bin.

3) Normalization Every bin of the g(r) array is normalized
by the product of the number of ideal gas particles in that
bin, and the number of particles and number of frames.

We have considered a “water box” containing 4096 water
molecules with inter-particle interactions defined by the mW
force-field [20]. This was simulated using LAMMPS [21]
with a 10fs timestep using the velocity verlet algorithm for
the integration. We have used the isothermal–isobaric (NPT)
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Data: Molecular Dynamics Trajectory
Result: g(r) v/s r in a plain-text file

1 initialization;
2 if Initialization then

/* Calculate the bin size */
3 numFrames=0; /* Frames processed */
4 numBins= (cutoff/binSize)+1;

/* Initialize rdf array to zero */
5 foreach element do from 0 to numBins
6 element=0;
7 end
8 end
9 if Sampling then

/* Update number of frames */
10 numFrames=numFrames+1;
11 while iatom=1 → nparticles-1 do
12 while jatom=1→nparticles do

/* Calculate distance between
iatom and jatom */

13 if rij <cutoff then
/* Update Histogram */

14 ibin=Nearest Integer of (rij/binSize);
15 g(ibin) = g(ibin) + 2;
16 end
17 end
18 end
19 end
20 if Normalization then

/* Loop over bins */
21 while ibin=1→numBins do

/* Calculate the distance r for
each ibin */

22 r=binSize×(ibin+0.5);
/* Volume between bins i+1 and i

*/
23 binVolume=((i+ 1)3 − i3)× (binSize3);

/* Number of Ideal Gas particles
in bin volume */

24 numIdeal=(4/3)× π × binVolume× ρ;
/* Normalize by using the

product of numFrames,
numberOfParticles and
numIdeal, called normFactor

*/
25 g(ibin) = g(ibin)/normFactor;
26 end
27 end

Algorithm 1: Pseudo code implementation of the RDF.
In line number 15, the addition of two to the histogram
counter is to account for the contribution of both ij and
ji pairs in the loop. On line 24, ρ is the average, bulk
number density of the system.

ensemble at a pressure of 1 atm and a temperature of 298K
implemented by the Nose-Hoovier barostat and thermostat.

IV. PROGRAMMING MODELS

A. Python

Python is often the programming language of choice for
undergraduate students [22], [23] for its ease of use. However,
the mental model for python programming, being as it is
heavily dependent on OOP (Object Oriented Programming)
is often detrimental to the structuring of data for parallel
execution. This is due to the fact that though certain aspects
of the code are linked conceptually and might be seen to
benefit from being classified together, but this often yields
large objects which need to be passed repeatedly, thus proving
to be a performance bottleneck. Beyond this, the dependency-
hell brought on by conflicting versions of python packages
is more often than not unavoidable, and save for specialized
container systems or nix derivations, package management
systems are not scalable for distributed computing. Further-
more, larger code bases suffer from the lack of dedicated
debugging support, and execution pathways are difficult to
trace due to the dynamic typing. We describe the mental model
in Figure 3.

Fig. 3. A naive OOP workflow would be to group the associated coordinates
and types as a single object (blue), while keeping the neighbor-list in a separate
data-structure (red). The neighbor-list is expensive to generate and is frame
dependent. In practice, such conceptually elegant groupings are unwieldy as
the entire frame needs to be distributed over the HPC cluster.

B. FORTRAN

FORTRAN is a statically typed, math oriented scientific
programming language with a long and distinguished pedigree
including well-known libraries like BLAS [24]. It enjoys sup-
port for many optimization libraries including OpenACC, and
is supported by GDB. FORTRAN is somewhat less flexible
in terms of the programming paradigms which may be imple-
mented, and difficulties in terms of having to deal with shared
memory regions make it more complicated than required for
most domain specific coding novices. It is relatively difficult
to design incremental exercises for guided practice sessions
towards distributed computing, and hence we have found it to
be unsuitable.

C. C++

Given that C++ is the super-set of the C language which
forms the basis of many of the system kernels, we have opted



to leverage it for our teaching purposes. C++ is widely used in
the scientific community [21], [25], especially at the back-end,
where most optimizations take place. Given the debugging
ease due to GDB, along with its statically typed nature,
namespaces, and build systems like CMake further improve
the viability of the language for distributed computing. The
ease with which programming paradigms, from object oriented
to functional styles may be mixed makes it more viable for
practitioners to design incremental exercises. Furthermore, the
self documenting support provided by Doxygen (Fig. 1) allows
for an API level link between sections of the code and the
scientific principles being implemented in a cohesive and
visually pleasing whole.

V. REASSIGNING LANGUAGE

Without any loss of generality, we demonstrate the develop-
ment of concepts of high performance computing in linguistic
terms amenable to the molecular dynamics community. The
naive algorithm described in Algo. 1 is essentially a brute
force nested loop over every pair of particles in the system,
without repetition. It is immediately evident, that we require
each reference atom to have access to every other particle
in the system, by virtue of the RDF being a pair correlation
function. Furthermore since every particle in the system has to
be a reference particle N(N−1) pair calculations are required.
To share this expensive calculation over multiple processors
to attain the optimal speedup limited by Amdahl’s law [26],
we therefore understand from the nature of the RDF, that
we require the coordinates of every atom to be distributed to
each processor. This consideration leads us to reject arbitarily
large structures containing information not relevant to the RDF
calculation.

VI. PARALLELISM

The heart of this particular algorithm is the double nested
for loop. Practically, there are I/O bottlenecks, and the exact
data structures used are often too large to be passed effectively.
We have leveraged the generalized OpenACC [19] pragma
preprocesser directives to control the flow of data and direct
parallelism. We note that the memory requirements of data
structures to be passed must be determined in advance for
optimal results. It is also trivial, with the nix packaging
system [18] to test multiple compilers including PGI, Clang
and GNU compilers. The pseudo-code for the optimization
to be generated is given in Algo. 2 while the un-optimized
nested loops implementing Algo. 1 is shown in Fig. 4. The
OpenACC library defaults to shallow copies, so it is non-trivial
to distribute STL containers such as a vector of vectors.

VII. CONCLUSIONS

We are able to show by example, a methodology which
enables domain specific scientists and programming novices to
prepare their code in a manner suited for distributed execution.
We assert that a modest understanding of the core concepts of
HPC computing is sufficient for performance enhancements
for existing software, and have used the principles of guided

Data: Molecular Dynamics Trajectory
Result: g(r) v/s r in a plain-text file

1 if Sampling then
/* Update number of frames */

2 numFrames=numFrames+1;
/* These two loops are to be

accelerated, sizes of coord and
g are known */

3 #pragma acc data copyin(coord[nparticles][3])
copy(g[nbins]);

4 while iatom=1 → nparticles-1 do
5 #pragma acc loop while jatom=1→nparticles

do
/* Calculate distance between

iatom and jatom */
6 if rij <cutoff then

/* Update Histogram */
7 ibin=Nearest Integer of (rij/binSize);
8 g(ibin) = g(ibin) + 2;
9 end

10 end
11 end
12 end

Algorithm 2: Indicative regions of parallelism. 3 depicts
passing in the data-structure explicitly.

Fig. 4. The bottleneck of Algo. 1 is the nested loop shown here. The pairwise
distance and square-root calculation is also expensive.

practice and incremental sub-goal completion for the same.
We demonstrate how modern tools are able to bring together
concepts of science and HPC computing with minimal dis-
sonance. We utilize the methodology and pedagogical tooling
described for the specific case of molecular dynamics radial



distribution function acceleration. It is expected that this work
be followed by statistical studies formally affirming the results
of our experiences and will also facilitate the development of
better, performant, reproducible scientific workflows.
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