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Continus Finger Tracking System based on Inertial
Sensor

Abstract—Finger tracking has become an appropriate ap-
proach to interact with smart wearable devices or virtual
reality(VR). However, designing circuit system almost required
in many system. In this article, we present a continuous
finger tracking system, which does not need special equipment
or design a special environment. We regard the acceleration
sequence of 2.4 seconds before as the features of displacement
between current 0.04 seconds. In order to avoiding accumulative
errors, caused by double integration,we using long short-term
memory(LSTM) models to calculate the displacement directly
at the corresponding time. In particular, there is no necessary
to know the initial speed in this way. Our system has a
resolution of 0.38mm and an accuracy of 2.32mm per frame
under 25HZ sampling rate. The system can draw the target
track accurately.

Index Terms—inertial sensor, finger tracking, LSTM

I. INTRODUCTION
In recent years, with the rapid development of smart

wearable devices such as smartwatches, smart rings, and
VR technologies, the interaction methods in a digital
scenario have been diversified, not only mouses, keyboards,
or a touch screen. Then, many researchers have expanded
the interaction ways with smart devices in various meth-
ods, especially by tracking fingers. And finger tracking
can be divided into two categories: discrete hand posture
classification and continuous finger movement trajectory
tracking. Early solutions including but are not limited
to use sound signals propagate on the skin to track
fingers [8], [17]. Nevertheless, it will be interfered with
by environmental noise. Magnetic field tracking [11], [27]
needs to separate the geomagnetic field. Self-occlusion is a
severe interference that must be eliminated for computer
vision tracking [29], [30].

In this work, consider the cost and practicability,
we attempt to make use of only an inertial sensor for
tracking finger. Almost all wearable devices integrate
acceleration sensors, so there is no need to design new
hardware circuits. Besides, the system can overcome
the interference from the environment case the inherent
characteristics of the inertial sensor. Different from
the traditional finger tracking system based on inertial
sensors, to avoid the accumulative errors caused by
double integration, we choose the long short-term

Fig. 1. Finger tracking based on inertial sensor

memory(LSTM) model to calculate displacement. In this
case, we train a pipeline model to calculate displacement
with acceleration sequences at the corresponding time
and then accumulate the displacement at each time to
get the motion trajectory. The details will be explained
in the Theory of Operation section.

The main contribution of our work is presenting a
new finger tracking system based only on an inertial
sensor which avoids accumulative errors caused by double
integral. Compared to previous work, our system is more
portable and usable. Experimental results show that the
average displacement error of each segment calculated
by LSTM is less than 2.32mm. By accumulating each
segment of displacement, the trajectory of the finger
can be completely restored. In the end, we build an
application for handwriting letters and numbers.

II. REKATED WORK
In this section, we mainly introduce several important

finger tracking methods.

A. Magnetic Tracking
Magnetic field tracking system can be characterized

by whether they use alternating current (AC) or direct
current (DC) to produce magnetic fields [19]. In DC
tracking system, permanent magnets or electromagnets



are matched to generate a constant magnetic field, which
can be measured by a magnetic sensor, and continuously
interact with smart devices [1], [4], [7], [10], [16]. However,
the magnetic field generated by permanent magnets is
difficult to be separated from the earth’s magnetic field.
In this case, many reachers choose AC magnetic fields
in recent years [5], [21], [22]. According to Maxwell’s
equation, an AC magnetic field is generated when an AC
electric current passed through a wire coil. Parizi used
the fingerprint method to track the magnetic field. The
position of the finger is estimated by comparing magnetic
filed collected by a magnetic sensor with a database
containing magnetic filed data and corresponding position
information [19].

B. Computer Vision Tracking
With the growth of computer capability and the ex-

tensive application of machine learning, finger tracking
based on computer vision has become a viable option.
Researchers placed multiple cameras to capture different
perspectives of the hand [2], [9], [23], [24]and restored the
complete hand model by combining data from different
perspectives. The server limitation of this method is self-
occlusions that leads to a decrease in the perception of
the object [3]. Combined with optical tags, Pavllo used
inertial sensors to predict the occluded mark location in
2018 [20].

C. Other Approaches for Finger Tracking
Apart from the tracking methods proposed in the

previous section, there are also other methods to track
the movement or posture of the fingers. Wang used a
radio frequency spectrum for fine-grained hand posture
recognization [26]. SkinTrack leverages electrical waveg-
uides to track fingers on the arm [31]. Truong implemented
a continuous capacitive sensing system to recognize hand
gestures [25]. FingerIO uses cell phone sonar for fine-
grained finger tracking [18]. WIFI channel state infor-
mation(CSI) can also be used to track finger movement
[14], [28]. FM-Track uses acoustic signals to track multiple
targets [13]. Also, there are still many ways to track hands.

III. THEORY OF OPERATION
In this section, we introduce the theoretical basis of

the experiment primarily, explain how to build a pipeline
model from acceleration to displacement, and elaborates
ultimate goal that we hope to achieve.

If acceleration has been collected, assuming that the
acceleration at is constant at every time interval. And the
initial velocity is v0. Then we can get this:

v1 = v0 + a1 ∗ t vture1 = v1 + δ1 (1)

Here, vtrue stands for true velocity and δ represents
difference value with calculated velocity. The rest can be
done in the same manner :

v2 = v1 + a2 ∗ t vture2 = v2 + δ2
v3 = v2 + a3 ∗ t vture3 = v3 + δ3

•
•
•

vn = vn−1 + an ∗ t vtruen = vn + δn (2)

Note that the difference error δn−1 at time n-1 will be
accumulated by difference error δn of vn at time n . After
multiple accumulations, the difference error between
v and the true value vtrue will be unaccepted, which
eventually leads to a complete distortion of the velocity v.

Given that vt depends on the velocity vt−1 at time
t − 1 and the acceleration at from time t − 1 to t. We
default to the acceleration from time t − 1 to time t
is constant. Similarly, the velocity vt−1 at time t − 1
depends on vt−2 and at−1. By analogy, vt−n+1 relay on
vt−n and at+1. Then, the displacement s at all moments
can be obtained through v, which shows in Figure 2(a).
In this way, a simplified model diagram can be obtained
in Figure 2(b). And the closer acceleration a to time t,
the greater the impact on the displacement st. Given
the time-sequential nature of accelaration, appropriate
machine learning models ought to be selected in the
experiment or practical application .

Due to their power in modeling the dynamics
and dependencies in sequential data [15], LSTM is
appropriate to build a pipeline model from acceleration
to displacement. Simplify the relationship shows in 2(a),
replace the calculation of velocity vt with the function f ,
and get a mapping relationship shows in Figure 3. So far,
what we hope to achieve is to use the first n acceleration
data from the current moment to directly predict the
displacement st at the current moment, skipping the
intermediate calculation of the velocity. Which means
that we make use of acceleration at−n+1 ∼ at from time
t-n+1 to time t as the features of displacement st at time
t, and represent it as input to build the LSTM in Figure4.

The details of the LSTM model parameter setting and
data preprocessing will be described in the next section.

IV. LONG SHORT-TERM MEMORY MODEL
In this section, we elaborate on the input and output

structure and parameter settings of the LSTM model, as
well as data acquisition and preprocessing.

A. Model
As mentioned in the previous section, the system takes

the acceleration at−n+1 ∼ at from time t-n+1 to time t as
the features of the displacement st at time t. Given the x
and y directions , the input end is a dimensional vector
as n*2, and the output end is a 1*2 vector. According to
the actual finger movement state, the value of n should
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Fig. 2. Model from acceleration to displacement

Fig. 3. The mapping from acceleration to displacement: n represents
the previous n time nodes, and t represents time. A single node on
the upper layer represents the displacement at time t, and the n
nodes on the lower layer represent acceleration data from t-(n-1) to
time t.

be less than 100, which means that st is determined by
the acceleration a in the previous 4 seconds. Meanwhile,
the sampling rate is 25HZ which means 100 data are
sampled in 4 seconds. Aim to choose the value of n, we
adjust different values of n into the model training and
then calculate the standard deviation. To this end, we
collected 15 minutes of motion (writing letters) data,
about 22,000 frames of data as the training set, and 45
seconds of motion (writing the same letters) data, about
1,000 frames of data, as the test set. The experimental
results are shown in Figure 5. It can be seen from the
results that as the value of n increases, the standard
deviation shows a downward trend at a sampling rate
of 25HZ, the value of n is between 20 and 80. To
reduce the time cost of model prediction, 60 is chosen as

Fig. 4. LSTM schematic diagram: the input data is a two-
dimensional vector of n*2, and the output data is the displacement
in the x and y directions.

the value of n. That is, the input of LSTM is a 60*2 vector.

B. Preprocessing
Noise Reduction——It is necessary to eliminate the

jitter problem of the data caused by the floating of the
LED mark captured by the camera and the inherent
characteristic of the inertial sensor. To ensure the
portability of the model, we did not preprocess the
acceleration, but the displacement data ware denoised



Fig. 5. At the 25HZ sampling rate, the value of n is between 20
and 80. As the value of n increases, the standard deviation shows a
downward trend.

to alleviate the problems of jitter and light source drift.
Daubechies wavelet is chosen, in which the order of
vanishing moment is 4, to complete by decomposing,
denoising, and reconstructing.

Synchronization——As there is no synchronization sig-
nal to synchronize the acceleration captured by the inertial
sensor and the displacement captured by the camera, it is
necessary to synchronize the two types of data on PC. The
acceleration sequences keep fluctuating within a certain
range as the inertial sensor remained stationary in the
initial state of the experiment. It is worth noting that
the accelerations in the stationary are not zero caused by
gravity. And displacement fluctuates around zero within
±1 pixels because of the error of the position capture
algorithm. Once the experimenter wearing an inertial
sensor starts to move, the acceleration and displacement
will have a sudden change that is defined as the starting
time in Figure 6. By setting, the frame rate taken by
the camera is 25fps as same as the sampling rate of the
inertial sensor. In this way, the obtained displacement
sequence and acceleration sequence maintain a one-to-one
correspondence. And we get the synchronized acceleration
and displacement.

C. Train
We choose average absolute error as the loss function

3 so as to reflect the actual situation of the prediction.
Among them, h(xi) stands for the predicted value of the
model, and y is the template value (displacement captured
by camera ).

MAE(X,h) =
1

m

m∑
i=1

|h(xi)− yi| (3)

The model uses adaptive gradient optimization algo-
rithm 4 to optimize, where gt represents the gradient of

Fig. 6. Find the initial moment through the mutation point

the t-th time step. The specific algorithm description can
be found in the article [6], [12].

θt+1 = θt − η • gt/
√∑t

i=1
gt (4)

V. RESULTS
A. Experimental Settings
The experiment needs an accelerometer module with

an LED mark. Our system uses a commercial module
of mpu6050. Acceleration includes the x-axis and y-
axis between ±2g, collected by stm32 development board
with an accuracy of four decimal places. And we collect
displacement that is an integer that includes the x-axis
and y-axis of the led mark through the camera. Input
acceleration sequence and displacement sequence into the
PC to synchronize the data stream. And train through
python. As shown in Figure 8
We recruited 4 participants (3 men and one woman,

aged between 20-30). The data collection was carried out
in a lab that keeps in the dark to ensure no influence of
illuminant. The writing area is about 49.5cm × 28cm in
size. The sampling rate of the inertial sensor is 25HZ, and
the frame rate of the camera is 25fps. During operation,
the participant wearing the inertial sensor on the index
finger of the right-hand remains horizontal and moves
slowly on the desktop. Meanwhile, the camera collects
displacement on the top.

B. Tracking Accuracy
Displacement, which consists of the x-axis and y-axis in

each time interval, was used as indicators to evaluate the
accuracy. Before the operation, we show the participant
drawing target. And then, the participant wears the
sensor to draw the corresponding image on the desktop.
The drawing speed is roughly kept below 30cm per
second if not mentioned.

For the convenience of observation, we expand the
displacement between each frame linearly. The ordinate
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Fig. 7. The displacement of each time is overlapped according to the starting point. The upper part is the displacement in the y-axis and
the lower part is the displacement in the x-axis.

Fig. 8. experiment process

of Fingure 7 represents the displacement, and the unit
is pixel. Each pixel equals to 0.3867mm. Then the
calculated value (displacement calculated by the pipeline
model) and the template value (displacement captured
by the camera) are coincident through the synchronized
data stream. And then, the standard deviation graph
between the template value and the calculated value
is calculated. The experimental results show that the
standard deviation of displacement in the x-direction
and y-direction is less than 6 pixels about 2.32mm at a
sampling rate of 25hz.

The influence of sampling frequency——Before the
operation start, reachers gave the participant an irregular
circle and asked the participants to draw images relatively
freely. Participants first draw ten circles as the training
set and then draw a single circle as the test set. The same
experiment was performed 4 times, sampling at 10HZ,
15HZ, 20HZ, 25HZ shown in Figure9(a). Experimental
results show that as the sampling rate increases, the
standard deviation of displacement between each period

will decrease.

The influence of writing speeds——We test the drawing
accuracy of a template ‘Z’ with three different writing
speeds. We asked a participant to draw the template
at three different speeds. The measured writing speed
is 38cm/s, 19cm/s, and 9cm/s for the fast, nature, and
slow speed, respectively. For each speed, we collect 10
samples to calculate the standard deviation. And the
tracking accuracy at three different speeds is shown in
Figure 9(b). We observe that as the speed increases, the
accuracy gradually decreases.

The influence of different templets——We test the
drawing accuracy of different templates. In the beginning,
We show the participant nine different templates from ’h’
to ’o’. And the participant draws the nine templates at
9cm/s. For each templet, we also collect 10 samples. The
drawing accuracy of different templets are shown in Figure
9(c). Observe the figure, there is no significant accuracy
difference at different templets.
C. Text Writing
In this section, we limit the application scenario to class-

room teaching, and the experimental data only collects
commonly used letters. Participants are required to draw
the corresponding letters according to the given pictures,
and the writing speed is kept as constant as possible during
the writing process. Each letter drew 11 times, stitch 10
samples into a training set, and leave one for as a test
set. Here, we print several writing examples, including 26
letters, 2 numbers, a triangle, and a Chinese character
”you”.

recognition accuracy——We asked participants to write
26 letters, each letter ten times. Then other participants



(a) different sampling rates (b) different writing speeds (c) different templets

Fig. 9. the tracking accuracy under various settings

identify them. The recognition accuracy is shown in Table
I. The letter ’g’ and the letter ’h’ are indistinguishable
from the letter ’y’ and the letter ’n’ due to errors. The
letter ‘o’ unrecognizable because it cannot be connected
end to end.

Fig. 10. Writing sample, including 26 letters, 2 numbers, a triangle,
and a Chinese character ”you”,

TABLE I
recognition accuracy

A B C D e f g h I
perc 100 100 80 80 90 60 20 60 100

J k l m n o p q r
perc 70 50 90 80 100 10 70 100 100

s T U v w x y z
perc 90 90 100 90 80 100 60 100

VI. LIMITATION AND DISCUSSION
In this part we present and discuss some limitations of

this work.

A. Tracking Accuracy
Accumulating the displacement between each frame

through a machine learning pipeline depends on the
dataset excessively. In a specific application scenario, due
to the different writing habits of each person, varying
degrees of error always exists even in the writing of the
same person, which leads to the same writing objects cor-
respond to different acceleration sequences. Hence, there

is a difference between the calculated displacement values
and the template both in x and y directions. Besides, the
pipeline model cannot calculate the abrupt value. At the
same time, there exist misalignment between the calcu-
lated value and the template value. This misalignment
caused by a data synchronization error will cause a delay
or error during the application. Besides, different writing
objects correspond to different acceleration sequences, so
the system cannot identify writing objects that have not
been collected. In future work, we hope to synchronize
data streams through synchronization signals to avoid
errors caused by manual synchronization. and collect more
datasets.

B. Error Accumulation
Compared with a double integral calculation of

displacement, our system avoids the influence of
calculation error in the previous time on the displacement
of the next time. However, there are still errors between
the displacement calculated by the pipeline model and the
true displacement. After all segments of the displacement
are accumulated to form a trajectory, these errors will
be accumulated to a large cumulative error. Observe the
triangle sample in Figure 10, the triangle drawn by the
system is different from the template figure. Different
from the finger tracking system based on computer vision
and magnetic field, which use the fingerprint algorithm to
directly locate the position of the object frame by frame
to form a trajectory, our system cannot completely avoid
the error accumulation by accumulating the displacement.
It can only be improved by improving accuracy. That
is determined by the inherent characteristics of inertial
sensors.

Finally, due to the limitations of experimental equip-
ment and the number of participants, we can not conduct
detailed experiments on influencing factors here. At the
same time, because of the patience of machine learning
data, the dataset collected by experimenters with very
different writing habits have large recognition errors. It



is worth noting that the pipeline model cannot correctly
calculate the corresponding displacement if there is a large
speed deviation between training data and test data.

VII. CONCLUSION
In this work, we implemented a fine-grained finger

tracking system based on inertial sensors. Use acceleration
sequences, our system can draw the corresponding
trajectory. The principle is to regard the acceleration of
the first 2.4 seconds (the sampling rate is 25HZ, 60 in
total) as the feature of displacement. This method avoids
the accumulative errors caused by the double integral
calculation of the displacement. Experiments show the
error is less than 2.32mm per frame under the 25HZ
sampling rate and draw speed is less than 30cm per second.

Few studies use inertial sensors for continuous fine-
grained finger tracking but discrete motion classification.
In this work, we try to use inertial sensors to perform
fine-grained continuous tracking in a new way, hoping to
explore different ways of using inertial sensors. In future
work, we hope to choose a more appropriate model. We
will also explore the combination of this new application
method and other sense methods.
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