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A GSC-terminating and orthogonal inductive definition set (IDS, for short) of first-order predi-
cate logic can be transformed into a many-sorted term rewrite system (TRS, for short) such that
a quantifier-free sequent is valid w.r.t. the IDS if and only if a term equation representing the sequent
is an inductive theorem of the TRS. Under certain assumptions, it has been shown that a quantifier-
and cut-free cyclic proof of a sequent can be transformed into a rewriting-induction (RI, for short)
proof of the corresponding term equation. The RI proof can be transformed back into the cyclic
proof, but it is not known how to transform arbitrary RI proofs into cyclic proofs. In this paper,
we show that for a quantifier- and logical-connective-free sequent, if there exists an RI proof of the
corresponding term equation, then there exists a cyclic proof of some sequent w.r.t. some IDS such
that the cyclic proof ensures the validity of the initial sequent. To this end, we show a transformation
of the RI proof into such a cyclic proof, a sequent, and an IDS.

1 Introduction

Inductive theorem proving is well investigated in functional programming and term rewriting. In the field
of term rewriting, rewriting induction [11] (RI, for short) is one of the most powerful principles to prove
equations to be inductive theorems. Here, an equation s ≈ t of terms is an inductive theorem of a given
(many-sorted) term rewrite system (TRS, for short) R if the equation is valid w.r.t. the reduction of R,
i.e., sθ ↔∗

R tθ for any ground substitution θ such that sθ , tθ are ground. RI has been extended to several
kinds of rewrite systems, e.g., logically constrained term rewrite systems [8] (LCTRS, for short) that are
models of not only functional but also imperative programs [7].

RI consists of inference rules that are applied to RI processes (E ,H), where E is a finite set of
term equations and H is a TRS. The application of rewrite rules in H corresponds to the application of
induction hypotheses to subsequent RI processes. Given a TRS R and a finite set E0 of term equations, we
start with the initial RI process (E0, /0), and succeed in proving all equations in E0 to be inductive theorems
of R if we find an RI proof of E0, which is a sequence of RI processes obtained by the application of RI
inference rules and starts with (E0, /0) to ( /0,H′) for some TRS H′.

A cyclic proof system [5] is a proof system in sequent-calculus style for first-order logics with induc-
tive predicates which are defined by inductive definition sets (IDSs, for short), a set of productions. In
contrast to structural proofs which are (possibly infinite) derivation trees, cyclic proofs are finite deriva-
tion trees with back-links from bud nodes to inner nodes called companions. Such back-links allow
explicit induction rules, making trees finite. For the last decade, cyclic proof systems have been well
investigated for several logics, e.g., separation logic [12].

RI and cyclic proof systems seem very similar because they have similar inference rules: Case anal-
ysis, the application of rules in given systems, generalization, and so on. For this reason, it is worth
comparing them even regarding terminating systems to study their differences from several viewpoints.
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2 On Transforming RI Proofs for Logical-Connective-Free Sequents into Cyclic Proofs

For the comparison, we have prepared a common setting for IDSs and TRSs [18, 20]: A (A1) GSC-
terminating and (A2) orthogonal IDS Φ such that

(A3) there is no ordinary predicate in Φ, and

(A4) any variable in A1, . . . ,Am appears in A for any production A1 ... Am
A ∈ Φ,

can be transformed into a GSC-terminating confluent quasi-reductive constructor TRS RΦ such that a
quantifier-free sequent Γ ⊢ ∆ is valid w.r.t. Φ if and only if the corresponding equation seq(Γ̂, ∆̂)≈⊤ is
an inductive theorem of RΦ∪Rseq. Here, Γ̂ and ∆̂ are terms representing the conjunction and disjunction
of formulas in Γ and ∆, respectively, Rseq is a TRS for seq, a TRS is GSC-terminating if its termination
is proved by the generalized subterm criterion [17, Theorem 33], and Φ is orthogonal (GSC-terminating)
if {A → Ai | A1 ... An

A ∈ Φ, 1 ≤ i ≤ n} is orthogonal (GSC-terminating).
An approach to the comparison is to show that there exists a cyclic proof of a sequent Γ ⊢ ∆ if and

only if there exists an RI proof of seq(Γ̂, ∆̂) ≈ ⊤. The proof can be achieved by transforming cyclic
proofs and RI proofs into each other. For Φ and RΦ ∪Rseq above, it has been shown in [19] that under
the following additional assumptions, a cyclic proof of a sequent F ⊢ F ′ w.r.t. Φ can be transformed into
an RI proof of seq(F̃ , F̃ ′)≈⊤ w.r.t. RΦ ∪Rseq ∪Rscr, where F̃ is a term representation of F and Rscr is
a TRS representing some sequent-calculus rules:

(A5) Cyclic proofs are quantifier-free,

(A6) cyclic proofs are cut-free,

(A7) each inductive definition has at most one premise,

(A8) for any sequent Γ ⊢ ∆ in a cyclic proof, the multiset Γ is empty or singleton and the multiset ∆

is singleton,1

(A9) cyclic proofs do not include the application of (∧L1), (∧L2), (∨R1), (∨R2), and (WL), and

(A10) any companion in cyclic proofs is the conclusion of an instance of the case rule which corre-
sponds to a case distinction depending on rules in Φ.

It is possible to transform the obtained RI proof back into the cyclic proof. On the other hand, it is not
so easy to transform an arbitrary RI proof of seq(F̃ , F̃ ′)≈⊤ into a cyclic proof of F ⊢ F ′.

In this paper, under the assumptions (A1)–(A4), (A7), we show a transformation of an RI proof of
seq(A,Q(⃗u))≈⊤ into a cyclic proof that ensures the validity of A ⊢ Q(⃗u), where A is either true or P(⃗t).
Note that due to the form A ⊢ Q(⃗u), (A11) our target sequents do not have logical connectives—logical-
connective-free. In addition, we assume that (A12) RI proofs we deal with are constructed by the main
inference rules: EXPAND, SIMPLIFY, and DELETE. Missing proofs can be seen in the appendix.

In [19], POSTULATE is considered for RI proofs. When we add some equations to an intermediate
RI process by means of POSTULATE and succeed in proving the initial equations, we can start with the
initial RI process together with the added ones to reach the intermediate RI process. For this reason, to
simplify discussions, we do not consider the use of POSTULATE in RI proofs.

To facilitate the transformation, we first propose some derived rules of RI, and also a restricted set
of RI (derived) rules for sequents (Section 4.1). We call an RI proof over the restricted set an RId

proof. We show that every RI proof can be transformed into an RId proof. Then, for cyclic proofs,
we define the Case rule for the right-hand sides of sequents, called (R-Case P), and show that an RId

proof of seq(A,Q(⃗u)) ≈ ⊤ can be transformed into a quasi pre-proof of A ⊢ Q(⃗u), which is a pre-proof

1This assumption implies that none of (¬L), (¬R), (ContrL), (ContrR), (WR), (PL), and (PR) is used in cyclic proofs.
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constructed by cyclic-proof rules and (R-Case P). Finally, we show a transformation of the quasi pre-
proof into a cyclic proof of a sequent Q′(⃗u),A ⊢ Q(⃗u) w.r.t. an IDS Φ such that Φ ⊆ Φ, Q′ is a new
predicate symbol that is not defined in Φ but in Φ′, no predicate symbol in Φ \Φ appears in Φ,2 and
Q′(⃗x) is valid w.r.t. Φ (Section 4.2). The properties above of Φ implies that the validity of A ⊢ Q(⃗u) w.r.t.
Φ is equivalent to that of Q′(⃗u),A ⊢ Q(⃗u) w.r.t. Φ.

Related Work A related work is a comparison of structural proofs with cyclic induction [15]. The
comparison may help us in the sense to compare RI and structural proofs; instead of comparing RI and
cyclic proof systems, we may compare RI and structural proofs and then we may be able to indirectly
compare RI with cyclic proof systems. In [14], the relationship between term- and formula-based induc-
tion principles has been discussed. This work would help us e.g., relax the assumptions in this paper.

2 Preliminaries

In this section, we briefly recall basic notions and notations of many-sorted term rewriting [16], RI [11,
2], and cyclic proofs [5]. Basic familiarity with term rewriting is assumed [3, 10].

2.1 Many-Sorted Term Rewriting

Let S be a set of sorts. Throughout the paper, we use X as a family of S-sorted sets of variables: X =⊎
s∈SXs. Each function symbol f in a signature Σ is equipped with its sort declaration α1×·· ·×αn → α ,

written as f : α1 ×·· ·×αn → α , where α1, . . . ,αn,α ∈ S and n ≥ 0. The set of (well-sorted) terms is
denoted by T (Σ,X ). The set of ground terms, T (Σ, /0), is abbreviated to T (Σ). The set of variables
appearing in any of terms t1, . . . , tn is denoted by Var(t1, . . . , tn). Let t be a term. The set of positions of t
is denoted by Pos(t). The function symbol at the root position ε of t is denoted by root(t). The domain
and range of a substitution σ which is a sort-preserving mapping from variables to terms are denoted by
Dom(σ) and Ran(σ), respectively. A most general unifier of terms s, t is denoted by mgu(s, t).

An S-sorted term rewrite system (TRS, for short) is a set of rewrite rules of the form ℓ→ r such that
the sorts of the LHS ℓ and the RHS r coincide, ℓ is not a variable, and Var(ℓ) ⊇ Var(r). The reduction
relation →R of a TRS R is defined as follows: s →R t if and only if there exist a rewrite rule ℓ→ r ∈R,
a position p ∈ Pos(s), and a substitution θ such that s|p = ℓθ and t = s[rθ ]p. We say that a TRS R
is GSC-terminating if R is terminating and its termination can be proved by the generalized subterm
criterion [17] (cf. [19, 20]).

The sets of defined symbols and constructors of R are denoted by DR and CR, respectively: DR =
{root(ℓ) | ℓ → r ∈ R} and CR = Σ \DR. Terms in T (CR,X ) are called constructor terms (of R). A
substitution σ is called ground constructor if Ran(σ) ⊆ T (CR). A term t is called basic if t is of the
form f (t1, . . . , tn) such that f ∈ DR and t1, . . . , tn ∈ T (CR,X ). A position p of a term t is called basic if
t|p is basic. The set of basic positions of t is denoted by B(t). R is called quasi-reductive if every ground
basic term is reducible.

2.2 Rewriting Induction

Our formulation of RI [11, 4] with the generalization (cf. [7]) follows [1, 13]. In the RI setting below, R
is assumed to be terminating and quasi-reductive.

2For all ground formulas F of Φ, Φ |= F iff Φ |= F .
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An equation (over a signature Σ) is a pair of terms, written as s ≈ t, such that s, t ∈ T (Σ,X ). We write
s ≃ t to denote either s ≈ t or t ≈ s. An equation s ≈ t is called an inductive theorem (of R) if sθ ↔∗

R tθ
for all ground constructor substitutions θ with Var(s, t)⊆Dom(θ).

A pair (E ,H) consisting of an equation set E and a TRS H is called an RI process. Inference
rules of RI defined below replace an equation by some equations, drop an equation, and insert some
equations. From viewpoint of the replacement, to explicitly show descendant/ancestor relationships
between equations, we attach to each equation s ≈ t a unique label ρ , written (ρ) s ≈ t, that is a sequence
of non-zero integers such as positions of terms;3 We may use negative integers for freshly introduced
labels. For case distinctions based on rewrite rules, we assume some fixed order of rewrite rules for each
function symbol f .

The basic inference rules of rewriting induction are defined over RI processes as follows:

SIMPLIFY (E ⊎{(ρ) s ≃ t},H)⇛s (E ∪{(ρ .1) s′ ≈ t},H), where s →p,R∪H s′.

DELETE (E ⊎{(ρ) s ≈ t},H)⇛d (E ,H), where s ↔∗
R∪E t.4

EXPAND (E ⊎{(ρ) s ≃ t},H)⇛e (E ∪Expdp(s, t),H∪{s → t}), where p ∈ B(s), R∪H∪{s → t} is
terminating, and

Expdp(s, t) = {(ρ.i) (s[r]p)σ ≈ tσ | σ = mgu(s|p, ℓ), ℓ→ r ∈R is the i-th rule of root(s|p)}

GENERALIZE (E ⊎{(ρ) sθ ≃ tθ},H)⇛g (E ∪{(ρ .1) s ≈ t},H).

We denote ⇛s ∪⇛d ∪⇛e ∪⇛g by ⇛RI. To make the position p at EXPAND step clear, we write EX-
PAND-p and ⇛ep. To make the reduction step s →p,R∪H s′ at SIMPLIFY step clear, we write SIMPLIFY-
p(R′) and ⇛sp(R′) if s →p,R′ s′ for some R′ ⊆ R, and SIMPLIFY-H and ⇛sH if s →H s′. The proof
based on RI starts with the initial RI process (E , /0) and proceeds by applying the inference rules above
to RI processes. We attach labels to equations in E as follows: If E is singleton, then E = {(ε) s ≈ t},
and otherwise, E = {(1) s1 ≈ t1, (2) s2 ≈ t2, . . .}. A sequence (E , /0) = (E0,H0)⇛RI (E1,H1)⇛RI · · ·⇛RI
(En,Hn) = ( /0,H) is called an RI proof (of E).

Theorem 2.1 ([11, 1]) Let R be a quasi-reductive and terminating TRS. For a finite set E of equations,
if (E , /0)⇛∗

RI ( /0,H) for some TRS H, then every equation in E is an inductive theorem of R.

Example 2.2 Let us consider the signature Σ1 = {+ : nat× nat → nat, s : nat → nat, 0 : nat} and the
TRS R1 = { 0+y → y, s(x)+y → s(x+y) } representing addition over natural numbers. Using RI, we
can prove that x+0≈ x is an inductive theorem of R1 as follows:

({(ε) x+0≈ x}, /0)⇛e ({ (1) 0≈ 0, (2) s(x1 +0)≈ s(x1)},{(ε) x+0→ x})
⇛d ({ (2) s(x1 +0)≈ s(x1)},{(ε) x+0→ x})
⇛sH ({ (2.1) s(x1)≈ s(x1) },{(ε) x+0→ x})
⇛d ( /0 ,{(ε) x+0→ x})

2.3 First-Order Formulas with Inductive Definition Sets

In the rest of this paper, we consider a signature Σ with sorts S ⊇ {bool} such that true, false : bool ∈ Σ.
A symbol P : α1 ×·· ·×αn → bool ∈ Σ is called a predicate symbol. A term P(t1, . . . , tn) with predicate

3E of an RI process (E ,H) is a set, but due to attached labels, E may contain an equation s ≈ t as ρ1 : s ≈ t and ρ2 : s ≈ t
such that ρ1 ̸= ρ2. This is not a problem because we can apply the same inference rules to both equations in order.

4We use a simplified side condition, which is enough for our purpose.
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symbol P : α1×·· ·×αn → bool is called an atomic formula. For brevity, we assume that S = {α,bool},
and every predicate symbol P has sort α × ·· ·×α → bool. In addition, we do not deal with ordinary
predicates but inductive predicates as in [18, 20].

An inductive definition set (IDS, for short) Φ over Σ is a finite set of productions of the form
A1 . . . Am

A
, where A,A1, . . . ,Am are atomic formulas over Σ. We denote the set of productions for

a predicate symbol P by Φ|P: Φ|P = {A1 ... Am
A ∈ Φ | root(A) = P}. We say that Φ is orthogonal (GSC-

terminating, resp.) if {A → Ai | A1 ... An
A ∈ Φ, 1 ≤ i ≤ n} is orthogonal (GSC-terminating, resp.). In the

rest of this paper, we assume that (A4) and (A7) hold, i.e., every production in Φ is of the form either A
or A′

A such that Var(A)⊇ Var(A′). For brevity, we allow A′ to be true, writing both A and A′

A .

Example 2.3 ([5]) Let us consider the signature Σ1 = { 0 : nat, s : nat → nat, true, false : bool, E,O,N :
nat → bool } and the following inductive definition set:

Φ1 =

{
N(0)

N(x)
N(s(x)) E(0)

O(x)
E(s(x))

E(x)
O(s(x))

}
Note that the symbols E, O, and N stand for predicates Even, Odd, and Nat, respectively. This IDS is
orthogonal and GSC-terminating.

We now consider standard first-order quantifier-free formulas over Σ. Structures for Σ are irrelevant
because we do not deal with any ordinary predicate. For this reason, we do not deal with any structure
for Σ, and define the semantics of formulas over the term structure for Σ in the syntactic way as usual:
For an IDS Φ and a ground formula F , we write Φ |= F if F holds w.r.t. Φ (cf. [18, 20]). We say that a
formula F ′ is valid w.r.t. Φ if Φ |= F ′θ for all ground substitutions θ with Dom(θ)⊇ Var(F ′).

A sequent is a pair Γ ⊢ ∆ such that Γ,∆ are finite multisets of formulas, which can be written like
lists of formulas. The application of a substitution θ to a finite multiset Γ of formulas is defined as
Γθ = {Fθ | F ∈ Γ}. A sequent Γ ⊢ ∆ is said to be valid (w.r.t. Φ) if ¬(

∧
F∈Γ F)∨ (

∨
F ′∈∆ F ′) is valid

w.r.t. Φ.

Example 2.4 For Φ1 in Example 2.3, the sequent E(x)∨O(x) ⊢N(x) is valid w.r.t. Φ1 because ¬(E(x)∨
O(x))∨N(x) is valid w.r.t. Φ1.

2.4 Cyclic Proofs

In this section, we consider proofs in the sequent-calculus style. We follow the formulation in [5] to
define cyclic proofs. As in [19], we consider some simplified rules for sequent calculus illustrated in
Figure 1.

The rule of applying a production in Φ is defined as follows:

Γ ⊢ P(t1, . . . , tn)θ ,∆
(Pi-App)

Γ ⊢ Aθ ,∆

Γ ⊢ P(u1, . . . ,un)θ ,∆
(Pj-App)

where P(t1,...,tn)
, A

P(u1,...,un)
∈ Φ are the i- and j-th rules of P, respectively. The rule for case distinctions

based on productions in Φ is defined as follows:

Γθ1,A1 ⊢ ∆θ1 . . . Γθn,Ak ⊢ ∆θn

Γ,P(y1, . . . ,yn) ⊢ ∆
(Case P)
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Γ∩∆ ̸= /0
Γ ⊢ ∆

(Axiom)
Γ ⊢ ∆

Γθ ⊢ ∆θ
(Subst)

Γ,F1 ⊢ ∆ Γ,F2 ⊢ ∆

Γ,F1 ∨F2 ⊢ ∆
(∨L)

Γ ⊢ F1,∆ Γ ⊢ F2,∆

Γ ⊢ F1 ∧F2,∆
(∧R)

Figure 1: Sequent-calculus rules considered in this paper.

where Φ|P = { Ai
P(ti,1,...,ti,n)

| 1 ≤ i ≤ k} for some k, Ai
P(ti,1,...,ti,n)

is renamed as Var(ti,1, . . . , ti,n,Ai)∩Var(F) =

/0, and θi = {y j 7→ ti, j | 1 ≤ j ≤ n} for 1 ≤ i ≤ k.
Next, for cyclic proofs, we define some notions. Note that given a function f , we write f : X ⇀ Y

and f : X → Y if f is partial and total, respectively.

Definition 2.5 (derivation tree and bud/companion nodes [5]) Let Seqs be the set of well-formed se-
quents in some language, Rules some set of rules, and n the maximum number of premises of any rule
in Rules. A derivation tree is a rooted tree T represented by a quadruple (V,s,r, p) such that V is a set
of nodes, s : V →Seqs is a mapping that assigns a sequent to a node, r : V ⇀Rules is a mapping that
assigns a rule to a node, p : V ⇀ V n is a mapping that assigns premises nodes to a node, where p j(v)
denotes the j-th component of p(v), and for all nodes v ∈ V , p j(v) is defined just in case r(v) is a rule
with m premises (1 ≤ j ≤ m), and s(p1(v)) ... s(pm(v))

s(v) is an instance of rule r(v). Note that the edges of the
derivation tree is {(v, p j(v)) | v ∈V, p j(v) is defined}. A node v ∈V is called a bud node (of T ) if r(v) is
undefined, i.e., v is not the conclusion of any proof-rule instance in T , and a companion for a bud node
v′ if r(v) is defined and s(v) = s(v′).

Note that a companion does not have to be an ancestor of its bud nodes. For readability, in illustrating a
derivation tree, we attach to each node a label as well as RI proofs; such labels are sequences of positive
integers indicating positions in the tree.

Definition 2.6 (pre-proof [5]) A pre-proof of a sequent Γ ⊢ ∆ is a pair (T ,ξ ) of a finite derivation tree
T = (V,s,r, p) (with v0 the root node) and a mapping ξ : V ⇀ V such that the codomain of s is the set
of well-formed sequents, s(v0) = (Γ ⊢ ∆), the codomain of r comprises the sequent calculus rules in this
section, and every bud node v of T is assigned by ξ a companion, i.e., ξ (v) is a companion.

Definition 2.7 (trace) Let P be a pre-proof. The pre-proof graph of P , written as GP , is a diredcted
graph (V ′,{(v,vi) | v ∈ V ′, p(v) = v1 . . . vm, 1 ≤ i ≤ m}), where V ′ is obtained from V by identifying
each bud node v in T with its companion ξ (v). A trace following a (possibly infinite) path v1 v2 . . . in GP
is a (possibly infinite) sequence τ1 τ2 . . . such that, for all i > 0:

• τi = Fi ∈ Γi, where s(vi) = (Γi ⊢ ∆i),

• if r(vi) is (Subst), then τi+1θ = τi, where θ is the substitution associated with the rule instance,

• if r(vi) is (Case P), then either

– τi+1 = τiθ , where θ is the substitution associated with the case distinction at s(vi+1), or
– τi is the principal formula P(y1, . . . ,yn) of the rule instance and τi+1 is a case descendant of

P(y1, . . . ,yn)—i is said to be a progress point of the trace,

and

• if r(vi) is neither (Subst) nor (Case P), then τi+1 = τi.

An infinite trace having infinitely may progress points is called an infinitely progressing trace.
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(N1-App)
(1.1) ⊢ N(0)

(1.2.1.1) O(x) ⊢ N(x) †
(Subst)

(1.2.1) O(y) ⊢ N(y)
(N2-App)

(1.2) O(y) ⊢ N(s(y))
(Case E)

(1) E(x) ⊢ N(x) ‡

(2.1.1.1) E(x) ⊢ N(x) ‡
(Subst)

(2.1.1) E(y) ⊢ N(y)
(N2-App)

(2.1) E(y) ⊢ N(s(y))
(Case O)

(2) O(x) ⊢ N(x) †
(∨L)

(ε) E(x)∨O(x) ⊢ N(x)

Figure 2: A cyclic proof for E(x)∨O(x) ⊢ N(x) [5].

Definition 2.8 (cyclic proof [5]) A pre-proof P is said to be a cyclic proof if, for every infinite path in
the pre-proof graph of P , there is an infinitely progressing trace following some tail of the path.

Theorem 2.9 ([5]) If there exists a cyclic proof of a sequent Γ ⊢ ∆, then Γ ⊢ ∆ is valid w.r.t. Φ.

Example 2.10 Consider the IDS Φ1 in Example 2.3 again. Figure 2 illustrates a cyclic proof for E(x)∨
O(x) ⊢ N(x) [5]. Therefore, E(x)∨O(x) |=Φ1 N(x) holds.

3 From Orthogonal IDSs to Confluent TRSs

In this section, we briefly recall the transformation of orthogonal IDSs into confluent quasi-reductive
constructor TRSs [18, 20, 19].

Given an orthogonal IDS Φ, RΦ is defined as Rbase
Φ

∪Rind
Φ

∪Rco
Φ
∪Rpl ∪Rseq, where

• Rbase
Φ

= { A → true | A ∈ Φ },

• Rind
Φ

= { A → A′ | A′

A ∈ Φ, A′ ̸= true },

• Rco
Φ
= { t → false | t ∈ Cop } with Cop a finite set of co-patterns [9] of {A → A′ | A′

A ∈ Φ},

• Rpl =


and(false, false)→ false, or(false, false)→ false, not(false)→ true,
and(false, true)→ false, or(false, true)→ true, not(true)→ false,
and(true, false)→ false, or(true, false)→ true,
and(true, true)→ true, or(true, true)→ true

, and

• Rseq=

{
seq(false, false)→⊤, seq(false, true)→⊤, ⊥&⊥→⊥, ⊥&⊤→⊥,
seq(true, false)→⊥, seq(true, true)→⊤, ⊤&⊥→⊥, ⊤&⊤→⊤

}
.

Note that ⊤,⊥ mean validity and invalidity of sequents, respectively.

Example 3.1 ([20, 19]) We transform Φ1 in Example 2.3 into the following TRS:

RΦ1 =

{
N(0)→ true, E(0)→ true, O(0)→ false,

N(s(x))→N(x), E(s(x))→O(x), O(s(x))→E(x)

}
∪Rpl ∪Rseq

For sequent-calculus rules (Axiom), (∨L), and (∧R) in Figure 1, we define the following TRS [19]:

Rscr =

{
(Axiom) seq(x,x)→ true, (∨L) seq(or(x,y),z)→ seq(x,z)&seq(y,z),

(∧R) seq(x,and(y,z))→ seq(x,y)&seq(x,z)

}
Theorem 3.2 ([20, 19]) For a GSC-terminating and orthogonal IDS Φ, all of the following hold:

• RΦ ∪Rseq is a GSC-terminating, confluent, and quasi-reductive constructor TRS, and

• a sequent A ⊢ A′ is valid w.r.t. Φ iff seq(A,A′)≈⊤ is an inductive theorem of RΦ ∪Rseq ∪Rscr.
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4 Transformation of RI Proofs into Cyclic Proofs

In this section, given an IDS Φ, we consider to prove the validity of a quantifier- and logical-connective-
free sequent A ⊢ Q(⃗u) such that A is either P(⃗t) or true. We transform an RI proof of seq(A,Q(⃗u))≈⊤5

w.r.t. RΦ ∪Rpl ∪Rseq into a cyclic proof of Q′(⃗u),A ⊢ Q(⃗u) w.r.t. Φ such that
• Q′ is a newly introduced predicate not appearing in Φ,

• Φ\Φ defines only Q′ and other related predicates not defined in Φ,

• Q′(⃗x) is valid w.r.t. Φ\Φ, and

• the patterns of Q′ in Φ\Φ are the same as those of Q in Φ.
Note that the validity of Q′(⃗u),A ⊢ Q(⃗u) w.r.t. Φ is equivalent to that of A ⊢ Q(⃗u) w.r.t. Φ.

4.1 Derived Rules of RI Inference Rules

In applying rules in Rbase
Φ

∪Rind
Φ

, the applied position p is either 1 or 2 because equations are of the form
seq(A,A′) ≈ ⊤ and defined predicates may appear only at 1 or 2. In applying rules in Rscr ∪H, p is ε

because rules in Rscr ∪H are of the form seq(A,A′)→⊤. To facilitate the transformation of RI proofs
into cyclic proofs, we propose the following derived rules of RI w.r.t. RΦ ∪Rscr:

SIMPLIFY-1(Rco
Φ
) & DELETE

(E ⊎{(ρ) seq(s, t)≃⊤},H)⇛s1(Rco
Φ
)&d (E ,H) if seq(s, t)→1,Rco

Φ
seq(false, t)

SIMPLIFY-2(Rbase
Φ

) & DELETE

(E ⊎{(ρ) seq(s, t)≃⊤},H)⇛s2(Rbase
Φ

)&d (E ,H) if seq(s, t)→2,Rbase
Φ

seq(s, true)

SIMPLIFY-ε(Rscr) & DELETE

(E ⊎{(ρ) seq(s, t)≃⊤},H)⇛sε(Rscr)&d (E ,H) if seq(s, t)→ε,Rscr ⊤

SIMPLIFY-H & DELETE

(E ⊎{(ρ) seq(s, t)≃⊤},H)⇛sH&d (E ,H) if seq(s, t)→⊤∈H

As described in [19], at the EXPAND-1 step, any equation generated by a rule in Rco
Φ

can be deleted
by DELETE. For this reason, we use the following derived rule instead of EXPAND-1:
EXPAND+

1 (E ⊎{(ρ) seq(P(s1, . . . ,sn), t)≃⊤},H)⇛e (E ∪E ′,H∪{seq(P(s1, . . . ,sn), t)→⊤}) where
E ′ = {(ρ.i) seq(rσ , tσ)≈⊤ | σ = mgu(P(s1, . . . ,sn), ℓ), ℓ→ r ∈RΦ is the i-th rule of P,}

In the following, ⇛e1 denotes the application of EXPAND+
1 .

An RI proof is called an RId proof if it is a sequence of ⇛RId which denotes the following relation:

⇛e1 ∪⇛e2 ∪⇛s1(Rbase
Φ

∪Rind
Φ

)∪⇛s1(Rco
Φ
)&d∪⇛s2(Rind

Φ
)∪⇛s2(Rbase

Φ
)&d∪⇛sε(Rscr)&d∪⇛sH&d∪⇛g

Every RI proof for sequents of the form A ⊢ Q(⃗u) can be transformed into an RId proof.

Theorem 4.1 Let E = {Ai ⊢ Qi(u⃗i) | 1 ≤ i ≤ n} for some n > 0. For an RI proof of E w.r.t. RΦ ∪Rseq ∪
Rscr, there exists an RId proof of E w.r.t. RΦ ∪Rseq ∪Rscr.

In the rest of this section, we only deal with RId proofs.
5No rule in Rpl ∪{(∨L), (∧R)} is used in any RI proof for logical-connective-free sequents.
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({ (ε) seq(E(x),N(x)))≈⊤ }, /0)
⇛e2 ({ (1) seq(E(0), true)≈⊤, (2) seq(E(s(y)),N(y))≈⊤ },{ (ε) })
⇛s2(Rbase

Φ
)&d ({ (2) seq(E(s(y)),N(y))≈⊤ },{ (ε) })

⇛s1(Rind
Φ

) ({ (2.1) seq(O(y),N(y))≈⊤ },{ (ε) })
⇛e2 ({ (2.1.1) seq(O(0), true)≈⊤, (2.1.2) seq(O(s(z)),N(z))≈⊤ },{ (ε), (2.1) })
⇛s1(Rco

Φ
)&d ({ (2.1.2) seq(O(s(z)),N(z))≈⊤ },{ (ε), (2.1) })

⇛s1(Rind
Φ

) ({ (2.1.2.1) seq(E(z),N(z))≈⊤ },{ (ε), (2.1) })
⇛g ({ (2.1.2.1.1) seq(E(x),N(x))≈⊤ },{ (ε), (2.1) })
⇛sH&d ( /0 ,{ (ε), (2.1) })

Figure 3: An RId proof for E(x) ⊢ N(x).

4.2 Transformation of RId Proofs into Cyclic Proof

In this section, we transform an RId proof of seq(A,Q(⃗u)) ≈ ⊤ into a cyclic proof of a sequent, the
validity of which is equivalent to that of A ⊢ Q(⃗u).

Let us consider RΦ1 , a sequent E(x) ⊢ N(x), and its RId proof in Figure 3. The first and fourth steps
by ⇛e2, the second step by ⇛s2(Rbase

Φ
)&d, and fifth step by ⇛s1(Rco

Φ
)&d do not correspond any rule of

cyclic proof systems because (Case P) is not applicable to the right-hand side of ⊢ and the second and
fifth steps are complements of the first and fourth steps to delete (1) and (2.1.1), respectively. The third
and sixth steps by ⇛s1(Rind

Φ
) correspond to (Case E) and (Case O), respectively.6 The last step by ⇛sH&d

corresponds to a bud node in cyclic proofs. For this reason, we define a rule for cyclic proofs, which
corresponds to ⇛e2.

Definition 4.2 We define the rule for case distinction in the right-hand side of sequents as follows:

Γθ1 ⊢ A1 . . . Γθk ⊢ Ak Γθk+1 ⊢ false . . . Γθk′ ⊢ false

Γ ⊢ P(y1, . . . ,yn)
(R-Case P)

where Φ|P \ {P(...) ∈ Φ} = { Ai
P(ti,1,...,ti,n)

| 1 ≤ i ≤ k} for some k,7 {ℓ | ℓ → r ∈ Rco
Φ
} = {P(ti,1, . . . , ti,n) |

k+ 1 ≤ i ≤ k′} for some k′ ≥ k, and θi = {yi, j 7→ ti, j | 1 ≤ i ≤ k′, 1 ≤ j ≤ n} for 1 ≤ i ≤ k′. We call a
pre-proof with (R-Case P) a quasi pre-proof.

In the following, we consider false a constant predicate that is not defined by any IDS.
The correspondence between RId rules and quasi pre-proof rules is summarized in Table 1. Referring

to Table 1, an RId proof can be transformed into a quasi pre-proof.

Theorem 4.3 For an RId proof of A ⊢ Q(⃗u) w.r.t. Φ, there exists a quasi pre-proof of A ⊢ Q(⃗u) w.r.t. Φ

such that each companion is the conclusion of the application of either (Case P) or (R-Case P) for some
predicate P.

Example 4.4 The RId proof in Figure 3 is transformed into a quasi pre-proof in Figure 4. Both (1)
and (2.1.1) disappear in the quasi pre-proof because the corresponding sequents are implicitly deleted by
(R-Case N).

6The application of production rules to the left-hand side is not introduced but (Case P) takes the place of it [6]. On the
other hand, (Case P) in this paper is not enough for this point, but, for brevity, we use the current formulation.

7Ai is not true, and Ai
P(ti,1,...,ti,n)

is renamed as Var(ti,1, . . . , ti,n,Ai)∩Var(A) = /0.
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Table 1: The correspondence between RId rules and quasi pre-proof rules.
RId rules quasi pre-proof rules

EXPAND+
1 (⇛e1) (Case P)

EXPAND-2 (⇛e2) (R-Case P)
SIMPLIFY-1(Rbase

Φ
) (⇛s1(Rbase

Φ
)) (Case P) for leaves

SIMPLIFY-1(Rind
Φ

) (⇛s1(Rind
Φ

)) (Case P) for inner nodes
SIMPLIFY-1(Rco

Φ
) & DELETE (⇛s1(Rco

Φ
)&d) (Case P)

SIMPLIFY-2(Rind
Φ

) & DELETE (⇛s2(Rind
Φ

)) (Pi-App) for inner nodes
SIMPLIFY-2(Rbase

Φ
) & DELETE (⇛s2(Rbase

Φ
)&d) (Pi-App) for leaves

SIMPLIFY-ε(Rscr) & DELETE (⇛sε(Rscr)&d) (Axiom)
SIMPLIFY-H & DELETE (⇛sH&d) bud nodes

GENERALIZE (⇛g) (Subst)

(2.1.2.1.1) E(x) ⊢ O(x) †
(Subst)

(2.1.2.1) E(z) ⊢ N(z)
(Case O)

(2.1.2) O(s(z)) ⊢ N(z)
(R-Case N)

(2.1) O(y) ⊢ N(y)
(Case E)

(2) E(s(y)) ⊢ N(y)
(R-Case N)

(ε) E(x) ⊢ N(x) †

Figure 4: A quasi pre-proof obtained from the RId proof in Figure 3.

Finally, we transform a quasi pre-proof obtained from an RId proof into a cyclic proof. To this
end, we simulate (R-Case P) by the original rules by introducing a dummy predicate P′ for P, replacing
(R-Case P) by (Case P′). Given an IDS Φ, we define Φ as follows:

Φ = { Q′ (⃗u)
P′ (⃗t) | Q(⃗u)

P(⃗t) ∈ Φ }∪{ P′ (⃗t) | P(⃗t) ∈ Φ }∪{ P′ (⃗t) | P(⃗t)→ false ∈Rco
Φ
}

Since Φ is GSC-terminating, by definition, it is clear that Φ and Φ \Φ are GSC-terminating. GSC-
termination of Φ\Φ implies that for any predicate P, P′(⃗x) is valid w.r.t. Φ. In the following, we use P′

as a generated dummy symbol that does not appear in Φ.

Lemma 4.5 Let A ⊢ Q(⃗u) be a sequent that A is either true or P(⃗t). Then, A ⊢ Q(⃗u) is valid w.r.t. Φ if
and only if Q′(⃗u),A ⊢ Q(⃗u) is valid w.r.t. Φ.

Example 4.6 The IDS Φ1 in Example 2.3 is transformed into the following one:

Φ1 = Φ1 ∪
{

N′(0)

N′(x)
N′(s(x)) E′(0)

O′(x)
E′(s(x))

E′(x)
O′(s(x)) O′(0)

}
Let us consider the quasi pre-proof in Figure 4 again. We transform the quasi pre-proof into a pre-

proof of N′(x),E(x) ⊢ N(x). We use N′(x) instead of N(x) in applying (R-Case N), that is, we replace
(R-Case N) by (Case N′). Using this idea, the quasi pre-proof in Figure 4 is transformed into a pre-proof
in Figure 5. Nodes without labels are newly introduced to simulate the application of productions at
(R-Case N). The transformation is formulated as follows.
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(N1-App)
E(0) ⊢ N(0)

(N1-App)
E(0) ⊢ N(0)

(2.1.2.1.1) N′(x),E(x) ⊢ N(x) †
(Subst)

(2.1.2.1) N′(z),E(z) ⊢ N(z)
(Case O)

(2.1.2) N′(z),O(s(z)) ⊢ N(z)
(N2-App)

N′(z),O(s(z)) ⊢ N(s(z))
(Case N′)

(2.1) N′(y),O(y) ⊢ N(y)
(Case E)

(2) N′(y),E(s(y)) ⊢ N(y)
(N2-App)

N′(y),E(s(y)) ⊢ N(s(y))
(Case N′)

(ε) N′(x),E(x) ⊢ N(x) †

Figure 5: A cyclic proof obtained from the quasi pre-proof in Figure 4.

Definition 4.7 Let P = ((V,s,r, p),ξ ) be a quasi pre-proof. We define P ′ = ((V ∪V ′,s′,r′, p′),ξ ) such
that V ′ is the set of nodes introduced during the construction of s′,r′, p′ and for a node v ∈ V with
s(v) = (A ⊢ Q(⃗u)) and p(v) = v1 . . . vn, we define s′,r′, p′ as follows:

• s′(v) = Q′(⃗u),A ⊢ Q(⃗u),

• if r(v) is (Case P), then r′(v) = (Case P) and p′(v) = p(v),

• if r(v) is (Qi-App), then r′(v) = (Qi-App), p′(v) = v′, p′(v′) = p(v), s′(v′) = (Q′(u⃗′),A ⊢ R(u⃗′)),
and r′(v′) = (Case Q′), where v′ /∈V is a fresh node and s(v1) = (A ⊢ R(u⃗′)),

• if r(vi) is (Subst), then r′(v) = (Subst) and p′(v) = p(v), and

• if r(vi) is (R-Case Q), then p′(v) = v′1 . . . v′n, r′(v) = (R-Case Q′), s′(v′i) = Q′
i(u⃗i),Ai ⊢ Q(u⃗i)θi for

1 ≤ i ≤ n, p′(v′i) = vi for 1 ≤ i ≤ n, and r′(v′i) = (Qi-App) for 1 ≤ i ≤ n, where s(vi) = (Ai ⊢ Qi(u⃗i))
and θi is the matching substitution for the application of the i-th rule of Q.

Theorem 4.8 Let P ′ be a tree constructed in Definition 4.7, v0 the root node of P ′ such s(v0) = (A ⊢
Q(⃗u)). Then, P ′ is a cyclic proof of Q′(⃗u),A ⊢ Q(⃗u) w.r.t. Φ.

Finally, we show the existence of a cyclic proof for an RId proof. The following is a direct conse-
quence of Theorems 4.1 and 4.8.

Theorem 4.9 (main result) For a sequent A ⊢ Q(⃗u), if there exists an RI proof of seq(A,Q(⃗u)) ≈ ⊤,
then there exists a cyclic proof for a sequent Q′(⃗u),A ⊢ Q(⃗u) w.r.t. Φ.

Recall that the validity of Q′(⃗u),A ⊢ Q(⃗u) w.r.t. Φ is equivalent to that of A ⊢ Q(⃗u) w.r.t. Φ (Lemma 4.5).

5 Conclusion

In this paper, under the assumptions (A1)–(A4), (A7), we showed a transformation of an RI proof of
seq(A,Q(⃗u))≈⊤ into a cyclic proof of Q′(⃗u),A ⊢ Q(⃗u) such that the validity A ⊢ Q(⃗u) w.r.t. Φ is equiv-
alent to that of Q′(⃗u),A ⊢ Q(⃗u) w.r.t. Φ. This result indicates that under the assumptions (A1)–(A12),
for a sequent A ⊢ Q(⃗u) such that A is either true or P(⃗t), there exists a cyclic proof of A ⊢ Q(⃗u) or
Q′(⃗u),A⊢Q(⃗u) w.r.t. Φ if and only if there exists an RI proof of seq(A,Q(⃗u))≈⊤ w.r.t. RΦ∪Rseq∪Rscr.

Our future work is to relax the assumptions (A1)–(A4), (A7), (A11) as much as possible. For the
relaxation of (A7) and (A11), we will start by ensuring the global trace condition which is one of the
most difficult characteristics of cyclic proofs.
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A Missing Proofs

Theorem 4.1 Let E = {Ai ⊢ Qi(u⃗i) | 1 ≤ i ≤ n} for some n > 0. For an RI proof of E w.r.t. Rco
Φ
∪Rseq,

there exists an RId proof of E w.r.t. Rco
Φ
∪Rseq.

Proof. Under the assumptions in Section 4, we have that

⇛RI = ⇛e1 ∪⇛e2
∪⇛s1(Rbase

Φ
∪Rind

Φ
)∪⇛s1(Rco

Φ
)∪⇛s2(Rind

Φ
)∪⇛s2(Rco

Φ
)∪⇛s2(Rbase

Φ
)∪⇛sε(Rseq)∪⇛sε(Rscr)

∪⇛sH

∪⇛d

∪⇛g

By definition, we have that Recall that ⇛RId is defined as

⇛RId = ⇛e1 ∪⇛e2
∪⇛s1(Rbase

Φ
∪Rind

Φ
)∪⇛s1(Rco

Φ
)&d∪⇛s2(Rind

Φ
)∪⇛s2(Rbase

Φ
)&d∪⇛sε(Rscr)&d

∪⇛sH&d

∪⇛g

It suffices to show that steps of ⇛s1(Rco
Φ
)∪⇛s2(Rco

Φ
)∪⇛s2(Rbase

Φ
)∪⇛sε(Rseq)∪⇛sε(Rscr)∪⇛sH∪⇛d are

simulated by ⇛RId.

• The equation modified at the ⇛s1(Rco
Φ
) is of the form seq(false,A) ≈ ⊤. To delete it, SIMPLIFY-

1(Rco
Φ
) & DELETE can be used.

• The equation modified at the ⇛s2(Rco
Φ
) is of the form seq(A, false) ≈ ⊤. To delete the equation, A

have to be simplified to false, and thus, SIMPLIFY-1(Rind
Φ
) and SIMPLIFY-1(Rco

Φ
) & DELETE can

be used.

• The equation modified at the ⇛s2(Rbase
Φ

) is of the form seq(A, true) ≈ ⊤. To delete it, SIMPLIFY-
2(Rbase

Φ
) & DELETE can be used.

https://doi.org/10.4230/LIPIcs.CSL.2016.8
https://www.ipl.riec.tohoku.ac.jp/wpte2021/Zhang21wpte.pdf
https://www.ipl.riec.tohoku.ac.jp/wpte2021/Zhang21wpte.pdf
https://doi.org/10.1007/978-3-030-99461-7_15
https://doi.org/10.1016/j.jlamp.2022.100779
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• The equation modified at the ⇛sε(Rseq) is of the form seq(true, true)≈⊤ because Rco
Φ

is not used
at SIMPLIFY steps. The equation is not in E and its parent is obtained by SIMPLIFY-2(Rbase

Φ
). The

equation is deleted by DELETE, and thus, SIMPLIFY-2(Rbase
Φ

) & DELETE can simulate the steps.

• The equation modified at the ⇛sε(Rscr) step is of the form ⊤ ≈ ⊤ which cannot be oriented. The
equation is deleted by DELETE, and thus, SIMPLIFY-ε(Rscr) & DELETE can simulate the steps.

• The equation modified at the ⇛sH step is of the form ⊤ ≈ ⊤ which cannot be oriented. The
equation is deleted by DELETE, and thus, GENERALIZE and SIMPLIFY-H & DELETE can simulate
the steps.

• Any step of ⇛d follows another as mentioned above, and no single step of ⇛d appears. 2

Theorem 4.3 For an RId proof of A ⊢ Q(⃗u) w.r.t. Φ, there exists a quasi pre-proof of A ⊢ Q(⃗u) w.r.t. Φ

such that each companion is the conclusion of the application of either (Case P) or (R-Case P) for some
predicate P.

Proof. Let the RId proof be ({(ε) : seq(A,Q(⃗u))≈⊤}, /0)⇛RI · · ·⇛RI ( /0,H) for some TRS H. A quasi
pre-proof ((V,s,r, p),ξ ) can be constructed as follows:

• V is the set of labels in the RId proof, except for labels whose equations are of the form either
seq(. . . , true)≈⊤ or seq(false, . . .)≈⊤,

• s(v) is the corresponding sequent of the equation v represents,

• p(v) is the sequence of child equations of v, and

• r(v) and ξ are determined by referring to Table 1: If an equation with label v is deleted by
SIMPLIFY-H & DELETE using a rewrite rule in H with label v′, then r(v) is undefined (i.e., v
is a bud node) and ξ (v) = v′ (i.e., v′ is a companion connected with v by means of ξ ).

By construction, the equation of a companion v′ is oriented at the application of either EXPAND+
1 or EX-

PAND-2. Therefore, the companion v′ is the conclusion of the application of either (Case P) or (R-Case P)
for some predicate P. 2

Lemma 14.5 Let A ⊢ Q(⃗u) be a sequent that A is either true or P(⃗t). Then, A ⊢ Q(⃗u) is valid w.r.t. Φ if
and only if Q′(⃗u),A ⊢ Q(⃗u) is valid w.r.t. Φ.

Proof. The only-if part is trivial, and the if part follows from the construction of Φ and the validity of
Q′(⃗u) w.r.t. Φ′. 2

Theorem 4.8 Let P ′ be a tree constructed in Definition 4.7, v0 the root node of P ′ such s(v0) = (A ⊢
Q(⃗u)). Then, P ′ is a cyclic proof of Q′(⃗u),A ⊢ Q(⃗u) w.r.t. Φ.

Proof. By definition, it is clear that P ′ is a pre-proof for Q′(⃗u),A ⊢ Q(⃗u) w.r.t. Φ. It suffices to show the
trace condition. P has at most two traces: One is along the left-hand side of sequents, and the other is
along the right-hand side of sequents. The latter is a trace along the left-hand side of sequents in P ′. It
follows from Theorem 4.3 that any companion in P is the conclusion of the application of either (Case P)
or (R-Case P) for some predicate P, and thus, any companion in P ′ is the conclusion of the application
of either (Case P) or (Case P′). Therefore, P ′ satisfies the trace condition. 2
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