On the Tractability of Un/Satisfiability

Latif Salum

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

On the Tractability of Un/Satisfiability

Latif Salum (©)
Department of Industrial Engineering, Dokuz Eylül University, Izmir, Turkey
latif.salum@deu.edu.tr \& latif.salum@gmail.com

Abstract

This paper shows $\mathbf{P}=\mathbf{N P}$ via exactly-1 3SAT (X3SAT). Let $\phi=\bigwedge C_{k}$ be some X3SAT formula. $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$ is a clause denoting an exactly- 1 disjunction \odot of literals $r_{i}, r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\} . C_{k}$ is satisfied iff $\left(r_{i} \wedge \bar{r}_{j} \wedge \bar{r}_{u}\right) \vee\left(\bar{r}_{i} \wedge r_{j} \wedge \bar{r}_{u}\right) \vee\left(\bar{r}_{i} \wedge \bar{r}_{j} \wedge r_{u}\right)$ is satisfied, because any C_{k} contains exactly one true literal by the definition of X3SAT. Let $\phi\left(r_{j}\right):=r_{j} \wedge \phi$. Then, r_{j} leads to reductions due to \odot of any $C_{k}=\left(\bar{x}_{i} \odot r_{j} \odot x_{u}\right)$ into $c_{k}=x_{i} \wedge r_{j} \wedge \bar{x}_{u}$, and any $C_{k}=\left(\bar{r}_{j} \odot r_{u} \odot r_{v}\right)$ into $C_{k^{\prime}}=\left(r_{u} \odot r_{v}\right)$. Thus, $\phi\left(r_{j}\right):=r_{j} \wedge \phi$ transforms into $\phi\left(r_{j}\right)=\psi\left(r_{j}\right) \wedge \phi^{\prime}\left(r_{j}\right)$, unless $\not \models \psi\left(r_{j}\right)$-unless $\psi\left(r_{j}\right)$ involves some contradiction $x_{i} \wedge \bar{x}_{i}$. Then, $\psi\left(r_{j}\right)$ and $\phi^{\prime}\left(r_{j}\right)$ are disjoint, where $\psi\left(r_{j}\right)=\bigwedge\left(c_{k} \wedge C_{k^{\prime}}\right)$ for $\left|C_{k^{\prime}}\right|=1$, and $\phi^{\prime}\left(r_{j}\right)=\bigwedge\left(C_{k} \wedge C_{k^{\prime}}\right)$. Also, it is easy to verify $\not \models \phi\left(r_{j}\right)$, because it is trivial to verify $\not \models \psi\left(r_{j}\right)$, and redundant to verify $\not \models \phi^{\prime}\left(r_{j}\right)$. Proof is sketched as follows. $\psi\left(r_{i}\right)$ is true, and $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid r_{j}\right)$ holds, hence $\psi\left(r_{i} \mid r_{j}\right)$ is true, because any r_{j} such that $\not \models \psi\left(r_{j}\right)$ is removed from ϕ. Then, \bar{r}_{j} consists in ψ to transform ϕ into $\psi \wedge \phi^{\prime}$. If ψ involves $x_{j} \wedge \bar{x}_{j}$, then ϕ is unsatisfiable. Otherwise, ϕ is satisfiable, since $\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \ldots, \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)$ compose ϕ such that each $\psi($.$) is disjoint and satisfied. Then,$ $\psi\left(r_{i}\right)$ is true, ϕ is satisfied, and $\left(r_{i} \wedge \phi\right) \equiv\left(\psi\left(r_{i}\right) \wedge \phi^{\prime}\left(r_{i}\right)\right)$. Thus, $\phi^{\prime}\left(r_{i}\right)$ is satisfied. Consequently, it is redundant to check if $\not \models \phi^{\prime}\left(r_{i}\right)$ to verify if $\not \models \phi\left(r_{i}\right)$. The complexity is $O\left(m n^{3}\right)$. Therefore, $\mathbf{P}=\mathbf{N P}$.

2012 ACM Subject Classification Theory of computation \rightarrow Complexity theory and logic
Keywords and phrases P vs NP, NP-complete, 3SAT, one-in-three SAT, exactly-1 3SAT, X3SAT
Acknowledgements I would like to thank Javier Esparza, Anuj Dawar, Avi Wigderson, Paul Spirakis, and Éva Tardos, as well as anonymous reviewers for their comments and contributions throughout the development of the paper since 2008. I would like to thank Csongor Csehi from the Building Bridges II Conference. I would like to thank the faculty of the Department of Mathematics of Dokuz Eylül University, as well as my colleagues at the Industrial Engineering Department.

1 Introduction: Effectiveness of X3SAT in proving $\mathbf{P}=\mathrm{NP}$

\mathbf{P} vs $\mathbf{N P}$ is the most notorious problem in theoretical computer science. It is well known that $\mathbf{P}=\mathbf{N P}$, if there exists a polynomial time algorithm for any one of NP-complete problems, since algorithmic efficiency of these problems is equivalent. Nevertheless, some NP-complete problem features algorithmic effectiveness, if it incorporates an effective tool to develop an efficient algorithm. That is, a particular problem can be more effective to prove $\mathbf{P}=\mathbf{N P}$.

This paper shows that one-in-three SAT, which is NP-complete [2], features algorithmic effectiveness to prove $\mathbf{P}=\mathbf{N P}$. This problem is also known as exactly-1 3SAT (X3SAT). X3SAT incorporates "exactly-1 disjunction \odot ", the tool used to develop a polynomial time algorithm. It facilitates checking incompatibility of a literal r_{j} for satisfying some formula ϕ. When every r_{j} incompatible is removed, ϕ becomes un/satisfiable. Thus, each r_{i} becomes compatible to participate in some satisfiable assignment. Then, an assignment is constructed.

If $\not \models \phi\left(r_{j}\right)$, that is, $\phi\left(r_{j}\right)$ is unsatisfiable, then r_{j} is incompatible for satisfying ϕ, where $\phi\left(r_{j}\right):=r_{j} \wedge \phi$, and $r_{j} \in\left\{x_{j}, \bar{x}_{j}\right\}$. The ϕ scan algorithm, introduced below, "scans" ϕ by checking compatibility of any r_{i} in satisfying ϕ, and removing each incompatible r_{j} from ϕ.

Let $\phi=C_{1} \wedge \cdots \wedge C_{m}$ be any X3SAT formula such that a clause $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$ is an exactly- 1 disjunction \odot of literals r_{i}, hence satisfied iff exactly one of $\left\{r_{i}, r_{j}, r_{u}\right\}$ is true. Note that a clause $\left(r_{i} \vee r_{j} \vee r_{u}\right)$ in a 3SAT formula is satisfied iff at least one of them is true.

Incompatibility of each r_{j} is checked by a deterministic chain of reductions of clauses C_{k} in $\phi\left(r_{j}\right)$. Let $r_{j}:=x_{j}$. Then, the reductions are initiated by x_{j}, and followed by $\neg \bar{x}_{j}$, because $x_{j} \Rightarrow \neg \bar{x}_{j}$. That is, each $\left(x_{j} \odot \bar{x}_{i} \odot x_{u}\right)$ collapses to $\left(x_{j} \wedge x_{i} \wedge \bar{x}_{u}\right)$ due to $x_{j} \Rightarrow x_{j} \wedge \neg \bar{x}_{i} \wedge \neg x_{u}$, since there is exactly one (negated) variable that is true in any C_{k} by the definition of X3SAT. Also, each $\left(\bar{x}_{j} \odot \bar{x}_{u} \odot x_{v}\right)$ shrinks to $\left(\bar{x}_{u} \odot x_{v}\right)$ due to $\neg \bar{x}_{j}$. As a result, x_{j} transforms ϕ into $\phi\left(x_{j}\right)=x_{j} \wedge x_{i} \wedge \bar{x}_{u} \wedge \phi^{*}$, and $x_{i} \wedge \bar{x}_{u}$ proceeds the reductions in ϕ^{*}, which involves ($\bar{x}_{u} \odot x_{v}$).

The reductions over $\phi_{s}\left(x_{j}\right)$ terminate iff $x_{j} \wedge \phi_{s}$ transforms into $\psi_{s}\left(x_{j}\right) \wedge \phi_{s}^{\prime}\left(x_{j}\right)$ such that $\psi_{s}\left(x_{j}\right)$ and $\phi_{s}^{\prime}\left(x_{j}\right)$ are disjoint, where s denotes the current scan, and $\psi_{s}\left(x_{j}\right)$ is a conjunction of (negated) variables that are true. They are interrupted iff $\psi_{s}\left(x_{j}\right)$ involves some $x_{i} \wedge \bar{x}_{i}$, thus $\not \models \phi_{s}\left(x_{j}\right)$, and x_{j} is incompatible. That is, $\not \models \phi_{s}($.$) is verified solely by \not \models \psi_{s}($.$) (Figure 1).$

The reductions over ϕ terminate iff ϕ transforms into $\psi \wedge \phi^{\prime}$ such that ψ and ϕ^{\prime} are disjoint, where $\psi=\bar{x}_{5} \wedge x_{n} \wedge \cdots \wedge \bar{x}_{2}$ (see Figure 1). Then, ϕ is updated, that is, $\phi \leftarrow \phi^{\prime}$. The ϕ_{s} scan is interrupted iff ψ_{s} involves $x_{i} \wedge \bar{x}_{i}$ for some s and i, thus $\not \models \phi$, that is, ϕ is unsatisfiable.

Figure 1 The ϕ_{s} scan: $\not \models \phi_{s}\left(r_{j}\right)$ is verified solely by $\not \models \psi_{s}\left(r_{j}\right)$, and whether $\not \models \phi_{s}^{\prime}\left(r_{j}\right)$ is ignored
\triangleright Claim 1. It is redundant to check whether or not $\not \models \phi_{s}^{\prime}\left(r_{j}\right)$. That is, $\not \models \phi_{s}\left(r_{j}\right)$ iff $\not \models \psi_{s}\left(r_{j}\right)$ for some s. As a result, $\phi\left(r_{i}\right)$ reduces to $\psi\left(r_{i}\right)$ due to $\phi\left(r_{i}\right)=\psi\left(r_{i}\right) \wedge \phi^{\prime}\left(r_{i}\right)$. Then, $\psi\left(r_{i}\right) \equiv \phi\left(r_{i}\right)$. Therefore, ϕ is satisfiable iff $\psi\left(r_{i}\right)$ is satisfied for any r_{i}, that is, iff the scan terminates.
Sketch of proof. $\psi\left(r_{i}\right) / \psi\left(r_{i} \mid r_{j}\right)$ is constructed over $\phi / \phi^{\prime}\left(r_{j}\right)$, thus $\psi\left(r_{i}\right)$ covers $\psi\left(r_{i} \mid r_{j}\right)$, hence $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid r_{j}\right)$ holds. Because $\psi\left(r_{j}\right)$ and $\phi^{\prime}\left(r_{j}\right)$ are disjoint, $\psi\left(r_{j}\right)$ and $\psi\left(r_{i} \mid r_{j}\right)$ are disjoint (see Figure 2). Therefore, $\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{0}}, r_{i_{1}}\right)$, and $\psi\left(r_{i_{3}} \mid r_{i_{0}}, r_{i_{1}}, r_{i_{2}}\right)$ form disjoint minterms $\psi()=.\bigwedge r_{i}$ over ϕ such that $\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{0}}, r_{i_{1}}\right)$, and $\psi\left(r_{i_{3}} \mid r_{i_{0}}, r_{i_{1}}, r_{i_{2}}\right)$ hold, because $\psi\left(r_{i}\right)$ is true for any r_{i} (the ϕ scan terminates), and $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid\right.$.) holds. Thus, ϕ is composed of $\psi($.$) that are disjoint and satisfied (see Figure 3), hence \phi$ is satisfied. \triangleleft

Figure 2 Since $\psi\left(r_{i}\right)=\bigwedge r_{i}$ is true and $\psi\left(r_{i}\right) \supseteq \psi\left(r_{i} \mid r_{j}\right), \psi\left(r_{i} \mid r_{j}\right)$ is true, hence $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid r_{j}\right)$
A satisfiable assignment α is constructed by composing $\psi($.$) that are disjoint and satisfied.$ For example, $\alpha=\left\{\psi, \psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{0}}, r_{i_{1}}\right), \psi\left(r_{i_{3}} \mid r_{i_{0}}, r_{i_{1}}, r_{i_{2}}\right)\right\}$ (see Figure 3).

Figure $3 \psi\left(r_{i_{1}}\right) \vDash \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}}\right) \vDash \psi\left(r_{i_{2}} \mid r_{i_{0}}, r_{i_{1}}\right)$, and $\psi\left(r_{i_{3}}\right) \vDash \psi\left(r_{i_{3}} \mid r_{i_{0}}, r_{i_{1}}, r_{i_{2}}\right)$

2 Basic Definitions

A literal r_{i} is a variable x_{i} or its negation \bar{x}_{i}, i.e., $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. A clause $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$ denotes an exactly- 1 disjunction \odot of literals. Then, either $x_{i}=\mathbf{T}$ or $\bar{x}_{i}=\mathbf{T}$ holds in C_{k}.

- Definition 2 (Minterm). $c_{k}=\bigwedge r_{i}$, and any r_{i} in c_{k}, called a conjunct, is true, thus $c_{k}=\mathbf{T}$.
- Definition 3 (X3SAT formula). $\varphi=\psi \wedge \phi$ such that $\psi=\bigwedge c_{k}$ and $\phi=\bigwedge C_{k}$.

Where appropriate, C_{k}, as well as ψ, is denoted by a set. Thus, $\varphi=\psi \wedge \phi$ the formula, that is, $\varphi=\psi \wedge C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$, is denoted by $\varphi=\left\{\psi, C_{1}, C_{2}, \ldots, C_{m}\right\}$ the family of sets.

- Definition 4. $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$ is satisfied iff $\left(r_{i} \wedge \bar{r}_{j} \wedge \bar{r}_{u}\right) \vee\left(\bar{r}_{i} \wedge r_{j} \wedge \bar{r}_{u}\right) \vee\left(\bar{r}_{i} \wedge \bar{r}_{j} \wedge r_{u}\right)$ is satisfied, since any clause C_{k} contains exactly one true literal by the definition of X3SAT.
- Definition 5 (Incompatibility). r_{i} in some C_{k} is incompatible, denoted by $\neg r_{i}$, iff r_{i} leads to a contradiction $x_{j} \wedge \bar{x}_{j}$, that is, $r_{i} \wedge \varphi$ is unsatisfiable, hence r_{i} is removed from every C_{k} in ϕ.
- Remark. Each x_{i} and \bar{x}_{i} in ϕ is assumed to be compatible, thus no C_{k} contains $\neg x_{i}$, or $\neg \bar{x}_{i}$, while any r_{i} in ψ is necessarily true by Definition $2 / 3$, thus denotes a conjunct, to satisfy φ.
- Note 6. If $r_{i} \in \psi$, then $r_{i} \Rightarrow \neg \bar{r}_{i}$, that is, \bar{r}_{i} becomes incompatible, and is removed from ϕ. If $r_{i} \Rightarrow x_{j} \wedge \bar{x}_{j}$, hence $\neg x_{j} \vee \neg \bar{x}_{j} \Rightarrow \neg r_{i}$, then $\neg r_{i} \Rightarrow \bar{r}_{i}$, that is, \bar{r}_{i} becomes a conjunct ($\bar{r}_{i} \in \psi$).
- Definition 7. $\mathfrak{L}=\{1,2, \ldots, n\}$ denotes the index set of the literals $r_{i}, \mathfrak{C}=\{1,2, \ldots, m\}$ denotes the index set of the clauses C_{k}, and $\mathfrak{C}^{r_{i}}=\left\{k \in \mathfrak{C} \mid r_{i} \in C_{k}\right\}$ denotes C_{k} containing r_{i}.
- Example 8. Let $\hat{\varphi}=\left(x_{11} \odot \bar{x}_{31}\right) \wedge\left(x_{12} \odot \bar{x}_{22} \odot x_{32}\right) \wedge\left(x_{23} \odot \bar{x}_{33} \odot \bar{x}_{43}\right) \wedge \bar{x}_{4}$. Note that $C_{3}=\left(x_{2} \odot \bar{x}_{3} \odot \bar{x}_{4}\right)$, and that \bar{x}_{4} is a conjunct (necessarily true) for satisfying $\hat{\varphi}$. Also, $\mathfrak{C}=\{1,2,3\}, \mathfrak{C}^{x_{1}}=\{1,2\}$, and $\mathfrak{C}^{\bar{x}_{4}}=\{3\}$. Let $\varphi=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{4} \odot x_{2}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right) \wedge x_{4}$. Then, $\mathfrak{C}^{x_{4}}=\emptyset$, and $C_{1}=\left\{x_{1}, \bar{x}_{3}\right\}, C_{2}=\left\{x_{1}, \bar{x}_{4}, x_{2}\right\}$ and $C_{3}=\left\{x_{2}, \bar{x}_{3}\right\}$, while $\psi=\left\{x_{4}\right\}$ in φ.
- Definition 9 (Collapse). A clause $C_{k}=\left(r_{i} \odot x_{j} \odot \bar{x}_{u}\right)$ is said to collapse to the minterm $c_{k}=\left(r_{i} \wedge \bar{x}_{j} \wedge x_{u}\right)$, thus $r_{i} \notin C_{k}$, if r_{i} is necessary, denoted by $\left(r_{i} \odot x_{j} \odot \bar{x}_{u}\right) \searrow\left(r_{i} \wedge \bar{x}_{j} \wedge x_{u}\right)$.
- Definition 10 (Shrinkage). A clause $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$ is said to shrink to another clause $C_{k^{\prime}}=\left(r_{j} \odot r_{u}\right)$, if $\neg r_{i}\left(r_{i}\right.$ the incompatible is removed), denoted by $\left(r_{i} \odot r_{j} \odot r_{u}\right) \mapsto\left(r_{j} \odot r_{u}\right)$.
- Definition 11 (Truth/Compatibility of r_{i} over $\left.\phi\right) . \phi\left(r_{i}\right)=r_{i} \wedge \phi$ for any $r_{i} \in C_{k}$ and $C_{k} \in \phi$.
- Note 12 (Reduction). The collapse or shrinkage denotes a reduction of C_{k}. If $r_{i} \in \psi$, then r_{i} leads to reductions over ϕ, which reduces $\varphi, \varphi \rightarrow \varphi^{\prime}$. Hence, $\varphi \rightarrow \varphi^{\prime}$ iff $C_{k} \searrow c_{k}$ or $C_{k} \rightharpoondown C_{k^{\prime}}$. Since r_{i} is necessary for $\phi\left(r_{i}\right)$, it leads to reductions over $\phi\left(r_{i}\right)$. Thus, $\left(\bar{r}_{i} \odot r_{v} \odot r_{y}\right) \mapsto\left(r_{v} \odot r_{y}\right)$ and $\left(r_{i} \odot x_{j} \odot \bar{x}_{u}\right) \searrow\left(r_{i} \wedge \bar{x}_{j} \wedge x_{u}\right)$, because $r_{i} \Rightarrow \neg \bar{r}_{i}$ such that $r_{i} \Rightarrow r_{i} \wedge \bar{x}_{j} \wedge x_{u}$ holds over any $C_{k}=\left(r_{i} \odot x_{j} \odot \bar{x}_{u}\right)$, since $r_{i} \Rightarrow \neg x_{j} \wedge \neg \bar{x}_{u}$, thus $\neg x_{j} \Rightarrow \bar{x}_{j}$ and $\neg \bar{x}_{u} \Rightarrow x_{u}$ (see Definition 4/5).
- Definition 13. ϕ denotes a general formula if $\left\{x_{i}, \bar{x}_{i}\right\} \nsubseteq C_{k}$ for any $i \in \mathfrak{L}$ and $k \in \mathfrak{C}$, hence $\mathfrak{C}^{x_{i}} \cap \mathfrak{C}^{\bar{x}_{i}}=\emptyset . \phi$ denotes a special formula if $\left\{x_{i}, \bar{x}_{i}\right\} \subseteq C_{k}$ for some k, hence $\mathfrak{C}^{x_{i}} \cap \mathfrak{C}^{\bar{x}_{i}}=\{k\}$.
- Lemma 14 (Conversion of a special formula). Each clause $C_{k}=\left(r_{j} \odot x_{i} \odot \bar{x}_{i}\right)$ is replaced by the conjunct \bar{r}_{j} so that $\mathfrak{C}^{x_{i}} \cap \mathfrak{C}^{\bar{x}_{i}}=\emptyset$ for any $i \in \mathfrak{L}$, if $\phi=\bigwedge C_{k}$ is a special formula.
Proof. ϕ is unsatisfiable due to $r_{j} \Rightarrow \bar{x}_{i} \wedge x_{i}$. Then, $x_{i} \vee \bar{x}_{i} \Rightarrow \bar{r}_{j}$. That is, \bar{r}_{j} is necessary for satisfying $C_{k}=\left(r_{j} \odot x_{i} \odot \bar{x}_{i}\right)$, which is sufficient also, thus \bar{r}_{j} is equivalent to C_{k}. Therefore, each clause $C_{k}=\left(r_{j} \odot x_{i} \odot \bar{x}_{i}\right)$ is replaced by the conjunct \bar{r}_{j} so that $\mathfrak{C}^{x_{i}} \cap \mathfrak{C}^{\bar{x}_{i}}=\emptyset$.

Example 15. $\phi=\left(x_{1} \odot \bar{x}_{2} \odot x_{2}\right) \wedge\left(x_{1} \odot \bar{x}_{3} \odot x_{4}\right) \wedge\left(x_{2} \odot \bar{x}_{1}\right)$ is a special formula due to $C_{1}=\left\{x_{1}, \bar{x}_{2}, x_{2}\right\}$. Note that $\mathfrak{C}^{\bar{x}_{2}} \cap \mathfrak{C}^{x_{2}}=\{1\}$. Then, ϕ is converted by replacing the clause C_{1} with the conjunct \bar{x}_{1}. As a result, $\phi \leftarrow \bar{x}_{1} \wedge\left(x_{1} \odot \bar{x}_{3} \odot x_{4}\right) \wedge\left(x_{2} \odot \bar{x}_{1}\right)$. Likewise, if $\phi=$ $\left(x_{3} \odot \bar{x}_{4} \odot x_{4}\right) \wedge\left(\bar{x}_{3} \odot x_{2} \odot \bar{x}_{2}\right) \wedge\left(x_{2} \odot \bar{x}_{1}\right)$, then $\phi \leftarrow \bar{x}_{3} \wedge x_{3} \wedge\left(x_{2} \odot \bar{x}_{1}\right)$, which is unsatisfiable.

3 The φ Scan

This section addresses the φ scan. Section 3.2 introduces the core algorithms. Section 3.3 tackles satisfiability of φ, and Section 3.4 tackles construction of a satisfiable assignment.
φ_{s} for $s \geqslant 2$ denotes the current formula at the $s^{\text {th }}$ scan/step such that $\varphi:=\varphi_{1}$, after $\neg r_{j}$ holds in ϕ_{s-1} (see Definition 5). Then, $\phi_{s}^{r_{i}}=\left(r_{i k_{1}} \odot r_{u_{1} k_{1}} \odot r_{u_{2} k_{1}}\right) \wedge \cdots \wedge\left(r_{i k_{r}} \odot r_{v_{1} k_{r}} \odot r_{v_{2} k_{r}}\right)$ denotes the formula over clauses $C_{k} \ni r_{i}$ in ϕ_{s}, where $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. Hence, $\mathfrak{C}_{s}^{r_{i}}=\left\{k_{1}, \ldots, k_{r}\right\}$. $\vDash_{\alpha} \varphi$ denotes that the assignment $\alpha=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ satisfies φ, and $\not \models \varphi$ denotes φ is unsatisfiable, while $\psi \vDash \psi^{\prime}$ denotes ψ^{\prime} is the logical consequence of $\psi-$ as $\psi=\mathbf{T}, \psi^{\prime}=\mathbf{T}$.
$\tilde{\psi}_{s}\left(r_{i}\right)$ is called the local effect of r_{i} and $\tilde{\phi}_{s}\left(\neg r_{i}\right)$ is the effect of $\neg r_{i}$. $\tilde{\varphi}_{s}\left(r_{i}\right)$ denotes its overall effect such that $\tilde{\varphi}_{s}\left(r_{i}\right)=\tilde{\psi}_{s}\left(r_{i}\right) \wedge \tilde{\phi}_{s}\left(\neg \bar{r}_{i}\right)$, specified below. Also, $\tilde{\psi}_{s}\left(r_{i}\right)=\wedge\left(c_{k} \wedge C_{k}\right)$ such that $\left|C_{k}\right|=1$. Moreover, $\tilde{\phi}_{s}\left(\neg r_{i}\right)=\bigwedge C_{k}$ such that $\left|C_{k}\right|>1$, or $\tilde{\phi}_{s}\left(\neg r_{i}\right)$ is empty.

3.1 Introduction: Incompatibility and Reductions

Example 16 (17) introduces incompatibility (reductions over ϕ), which drive the φ scan.

- Example 16. Consider $\phi\left(x_{1}\right)$ over $\varphi=\phi=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$. Thus, x_{1} is necessary for $\phi\left(x_{1}\right)$, hence $x_{1} \vDash \tilde{\psi}\left(x_{1}\right)$ such that $\tilde{\psi}\left(x_{1}\right)=\left(x_{1} \wedge x_{3}\right) \wedge\left(x_{1} \wedge x_{2} \wedge \bar{x}_{3}\right)$. That is, $x_{1} \Rightarrow \neg \bar{x}_{3}$ holds over $C_{1}=\left(x_{1} \odot \bar{x}_{3}\right)$, hence $\neg \bar{x}_{3} \Rightarrow x_{3}$. Likewise, $x_{1} \Rightarrow \neg \bar{x}_{2} \wedge \neg x_{3}$ holds over $\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right)$, hence $\neg \bar{x}_{2} \Rightarrow x_{2}$ and $\neg x_{3} \Rightarrow \bar{x}_{3}$ (see Note 12). Thus, $\tilde{\varphi}\left(x_{1}\right)=\tilde{\psi}\left(x_{1}\right) \wedge \tilde{\phi}\left(\neg \bar{x}_{1}\right)$ becomes the overall effect, where $\tilde{\phi}\left(\neg \bar{x}_{1}\right)$ is empty. Then, the reductions initiated by x_{1} over $\phi\left(x_{1}\right)$ are to proceed due to x_{2}. Nevertheless, they are interrupted by $x_{3} \wedge \bar{x}_{3}$ due to $\tilde{\psi}\left(x_{1}\right)$. Hence, $\phi\left(x_{1}\right)=\tilde{\varphi}\left(x_{1}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$ is unsatisfiable, thus x_{1} is incompatible for φ, i.e, $\neg x_{1} \Rightarrow \bar{x}_{1}$.
- Example 17. \bar{x}_{1} initiates reductions over ϕ (Note 12). Then, $\tilde{\psi}\left(\bar{x}_{1}\right)=\bar{x}_{1} \wedge \bar{x}_{3}, \tilde{\phi}\left(\neg x_{1}\right)=$ $\left(\bar{x}_{2} \odot x_{3}\right)$, and $\tilde{\varphi}\left(\bar{x}_{1}\right)=\tilde{\psi}\left(\bar{x}_{1}\right) \wedge \tilde{\phi}\left(\neg x_{1}\right)$ to construct $\varphi_{2}=\tilde{\varphi}\left(\bar{x}_{1}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$. Note that $\left(x_{2} \odot \bar{x}_{3}\right)$ is beyond $\tilde{\varphi}\left(\bar{x}_{1}\right)$ the overall effect. Note also that $\left\{\bar{x}_{3}\right\} \notin \tilde{\phi}\left(\neg x_{1}\right)$, while $\bar{x}_{3} \in \tilde{\psi}\left(\bar{x}_{1}\right)$, because $C_{1} \longmapsto c_{1}$, since $\tilde{\phi}\left(\neg x_{1}\right)$ contains no singleton. Then, φ_{2} is the current formula due to the first reduction by \bar{x}_{1} over ϕ. Thus, $\varphi \rightarrow \varphi_{2}$ due to $\left(x_{1} \odot \bar{x}_{3}\right) \mapsto\left(\bar{x}_{3}\right)$ and $\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right) \mapsto\left(\bar{x}_{2} \odot x_{3}\right)$. As a result, $\varphi_{2}=\bar{x}_{1} \wedge \bar{x}_{3} \wedge\left(\bar{x}_{2} \odot x_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$, in which $\psi_{2}=\left\{\bar{x}_{1}, \bar{x}_{3}\right\}$ denotes the conjuncts, and $C_{1}=\left\{\bar{x}_{2}, x_{3}\right\}$ and $C_{2}=\left\{x_{2}, \bar{x}_{3}\right\}$ denote the clauses. Note that $\mathfrak{C}_{\sim_{\sim}^{x}}^{x_{3}}=\{1\}$ and $\mathfrak{C}_{2}^{\bar{x}_{3}}=\{2\}$. Then, \bar{x}_{3} leads to the next reduction over $\phi_{2}: \tilde{\psi}_{2}\left(\bar{x}_{3}\right)=\left(\bar{x}_{2} \wedge \bar{x}_{3}\right), \tilde{\phi}_{2}\left(\neg x_{3}\right)$ is empty, and $\tilde{\varphi}_{2}\left(\bar{x}_{3}\right)=\tilde{\psi}_{2}\left(\bar{x}_{3}\right) \wedge \tilde{\phi}_{2}\left(\neg x_{3}\right)$. Thus, $\varphi_{2} \rightarrow \varphi_{3}$ due to $\left(x_{2} \odot \bar{x}_{3}\right) \searrow\left(\bar{x}_{2} \wedge \bar{x}_{3}\right)$ and $\left(\bar{x}_{2} \odot x_{3}\right) \mapsto\left(\bar{x}_{2}\right)$. Then, $\varphi_{3}=\tilde{\varphi}\left(\bar{x}_{1}\right) \wedge \tilde{\varphi}_{2}\left(\bar{x}_{3}\right)=\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}$, which denotes the cumulative effects of \bar{x}_{1} and \bar{x}_{3}.

3.2 The Core Algorithms: Scope and Scan

This section specifies Scope and Scan, which incorporate the overall effect $\tilde{\varphi}_{s}\left(r_{j}\right)$, defined below. Recall that \bar{r}_{j} is removed, if r_{j} is necessary for satisfying some formula, i.e., $r_{j} \Rightarrow \neg \bar{r}_{j}$. Note that $\phi_{s}^{r_{j}}=\left(r_{j k_{1}} \odot r_{i_{1} k_{1}} \odot r_{i_{2} k_{1}}\right) \wedge \cdots \wedge\left(r_{j k_{r}} \odot r_{u_{1} k_{r}} \odot r_{u_{2} k_{r}}\right)$ for Lemma 18 and 19 below. - Lemma 18. $r_{j} \vDash \tilde{\psi}_{s}\left(r_{j}\right)$ such that $\tilde{\psi}_{s}\left(r_{j}\right)=r_{j} \wedge \bar{r}_{i_{1}} \wedge \bar{r}_{i_{2}} \wedge \cdots \wedge \bar{r}_{u_{1}} \wedge \bar{r}_{u_{2}}$, unless $\not \vDash \mathcal{\psi}_{s}\left(r_{j}\right)$.

Proof. Follows from Definition 9. That is, $r_{j} \Rightarrow\left(r_{j} \wedge \bar{r}_{i_{1}} \wedge \bar{r}_{i_{2}}\right) \wedge \cdots \wedge\left(r_{j} \wedge \bar{r}_{u_{1}} \wedge \bar{r}_{u_{2}}\right)$. Hence, $r_{j} \Rightarrow r_{j} \wedge \bar{r}_{i_{1}} \wedge \bar{r}_{i_{2}} \wedge \cdots \wedge \bar{r}_{u_{1}} \wedge \bar{r}_{u_{2}}$.

- Lemma 19. If $\neg r_{j}$, then $\tilde{\phi}_{s}\left(\neg r_{j}\right)$ holds such that $\tilde{\phi}_{s}\left(\neg r_{j}\right)=\left(r_{i_{1}} \odot r_{i_{2}}\right) \wedge \cdots \wedge\left(r_{u_{1}} \odot r_{u_{2}}\right)$.

Proof. Follows from Definition 10. $\tilde{\phi}_{s}\left(\neg r_{j}\right)=\{\{ \}\}$, or $\left|C_{k}\right|>1$ for any C_{k} in $\tilde{\phi}_{s}\left(\neg r_{j}\right)$.

- Lemma 20 (Overall effect of r_{j} over ϕ_{s}). $\tilde{\varphi}_{s}\left(r_{j}\right)=\tilde{\psi}_{s}\left(r_{j}\right) \wedge \tilde{\phi}_{s}\left(\neg \bar{r}_{j}\right)$.

Proof. Follows from $r_{j} \vDash r_{j} \wedge \neg \bar{r}_{j}$, as well as from Lemma 18, and Lemma 19 via $\phi_{s}^{\bar{r}_{j}}$.

The algorithm OvrlEft $\left(r_{j}, \phi_{*}\right)$ below constructs the overall effect $\tilde{\varphi}_{*}\left(r_{j}\right)$ by means of the local effect $\tilde{\psi}_{*}\left(r_{j}\right)$ (see Lines 1-6, or L:1-6), as well as of the local effect $\tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)$ (L:7-10).

```
Algorithm 1 OvrlEft \(\left(r_{j}, \phi_{*}\right) \quad \triangleright\) Construction of the overall effect \(\tilde{\varphi}_{*}\left(r_{j}\right)\) due to Lemma 20
    for all \(k \in \mathfrak{C}_{*}^{r_{j}}\) over \(\phi_{*}\) do \(\triangleright\) Construction of the local effect \(\tilde{\psi}_{*}\left(r_{j}\right)\) due to \(r_{j}\) (Lemma 18)
        for all \(r_{i} \in\left(C_{k}-\left\{r_{j}\right\}\right)\) do \(\triangleright \tilde{\psi}_{*}\left(r_{j}\right)\) gets \(r_{j}\) via \(r_{e}\) (see Scope L:4), or via \(\bar{r}_{j}\) (Remove L:2)
            \(c_{k} \leftarrow c_{k} \cup\left\{\bar{r}_{i}\right\} ; \triangleright\left(r_{j k} \odot r_{i_{1} k} \odot r_{i_{2} k}\right) \searrow\left(\bar{r}_{i_{1} k} \wedge \bar{r}_{i_{2} k}\right)\). That is, \(C_{k} \searrow c_{k}\) (see Definition 2/9)
        end for
        \(\tilde{\psi}_{*}\left(r_{j}\right) \leftarrow \tilde{\psi}_{*}\left(r_{j}\right) \cup c_{k} ; \quad \triangleright c_{k}\) consists in \(\psi_{s}\left(r_{j}\right)\) (see Scope L:4), or in \(\psi_{s}\) (see Remove L:2)
    end for \(\triangleright\) L:1-6 are independent from L:7-10, since \(\mathfrak{C}_{*}^{r_{j}} \cap \mathfrak{C}_{*}^{\bar{r}_{j}}=\emptyset\), i.e., \(\mathfrak{C}_{*}^{x_{j}} \cap \mathfrak{C}_{*}^{\bar{x}_{j}}=\emptyset\) (Lemma 14)
    for all \(k \in \mathfrak{C}_{*}^{\bar{r}_{j}}\) over \(\phi_{*}\) do \(\triangleright\) Construction of the local effect \(\tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)\) due to \(\neg \bar{r}_{j}\) (Lemma 19)
        \(C_{k} \leftarrow C_{k}-\left\{\bar{r}_{j}\right\} ; \triangleright\left(\bar{r}_{j k} \odot r_{u_{1} k} \odot r_{u_{2} k}\right) \longmapsto\left(r_{u_{1} k} \odot r_{u_{2} k}\right)\) or \(\left(\bar{r}_{j k} \odot r_{u k}\right) \multimap\left(r_{u k}\right)\) (Definition 10)
        if \(\left|C_{k}\right|=1\) then \(\tilde{\psi}_{*}\left(r_{j}\right) \leftarrow \tilde{\psi}_{*}\left(r_{j}\right) \cup C_{k} ; C_{k} \leftarrow \emptyset ; \triangleright \tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)\) contains no singleton, \(C_{k} \mapsto c_{k}\)
    end for \(\triangleright 3 \backslash 2\)-literal \(C_{k}\) in \(\phi_{*}^{\bar{r}_{j}}\) shrinks due to \(\neg \bar{r}_{j}\) to 2 -literal \(C_{k}\) in \(\phi_{*}^{\bar{r}_{j}} \backslash\) to conjunct \(r_{u}\) in \(\tilde{\psi}_{*}\left(r_{j}\right)\)
    return \(\tilde{\psi}_{*}\left(r_{j}\right) \& \tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right) \leftarrow \phi_{*}^{\bar{r}_{j}} ; \triangleright \tilde{\psi}_{*}\left(r_{j}\right)=\bigwedge\left(c_{k} \wedge C_{k}\right),\left|C_{k}\right|=1 \& \tilde{\phi}_{*}\left(\neg \bar{r}_{j}\right)=\bigwedge C_{k},\left|C_{k}\right|>1\)
```

Lemma 21 (Scope of r_{j}). $r_{j} \vDash \psi_{s}\left(r_{j}\right)$, if r_{j} transforms ϕ_{s} into $\phi_{s}\left(r_{j}\right)=\psi_{s}\left(r_{j}\right) \wedge \phi_{s}^{\prime}\left(r_{j}\right)$ such that $\psi_{s}\left(r_{j}\right)=\bigwedge r_{j}$ is a conjunction of literals that are true, which is called the scope, and that $\phi_{s}^{\prime}\left(r_{j}\right)=\bigwedge C_{k}$ is an X3SAT formula, called beyond the scope. Otherwise, $\not \models \phi_{s}\left(r_{j}\right)$.

Proof. $\phi_{s}\left(r_{j}\right)=r_{j} \wedge \phi_{s}$ by Definition 11. Then, r_{j} initiates a deterministic chain of reductions (see Note 12). As a result, $r_{j} \Rightarrow r_{j} \wedge x_{i} \wedge \bar{x}_{u}$ holds over each $C_{k}=\left(r_{j} \odot \bar{x}_{i} \odot x_{u}\right)$ containing r_{j}, and $\neg \bar{r}_{j} \Rightarrow\left(\bar{x}_{u} \odot x_{v}\right)$ holds over each $C_{k}=\left(\bar{r}_{j} \odot \bar{x}_{u} \odot x_{v}\right)$ containing \bar{r}_{j}. These reductions thus proceed, as long as new conjuncts r_{e} emerge in $\phi_{s}\left(r_{j}\right)$ (see Scope L:2-4). If the reductions are interrupted, then r_{j} is incompatible (L:5). If they terminate, then the scope $\psi_{s}\left(r_{j}\right)$ and beyond the scope $\phi_{s}^{\prime}\left(r_{j}\right)$ are constructed (L:9), where $\psi_{s}\left(r_{j}\right)=\bigwedge r_{j}$ and $\phi_{s}^{\prime}\left(r_{j}\right)=\bigwedge C_{k}$.

```
Algorithm \(2 \operatorname{Scope}\left(r_{j}, \phi_{s}\right) \triangleright\) Construction of \(\psi_{s}\left(r_{j}\right)\) and \(\phi_{s}^{\prime}\left(r_{j}\right)\) due to \(r_{j}\) over \(\phi_{s} ; \varphi_{s}=\psi_{s} \wedge \phi_{s}\)
    \(\psi_{s}\left(r_{j}\right) \leftarrow\left\{r_{j}\right\} ; \phi_{*} \leftarrow \phi_{s} ; \quad \triangleright \phi_{s}\left(r_{j}\right):=r_{j} \wedge \phi_{s} . \psi_{s}\) and \(\phi_{s}\) are disjoint due to Scan L:1-3
    for all \(r_{e} \in\left(\psi_{s}\left(r_{j}\right)-R\right)\) do \(\triangleright\) Reductions of \(C_{k}\) initiated by \(r_{j}\) over \(\phi_{s}\) start off
        OvrlEft \(\left(r_{e}, \phi_{*}\right)\); \(\triangleright\) It returns \(\tilde{\psi}_{*}\left(r_{e}\right)\) for L:4 \& \(\tilde{\phi}_{*}\left(\neg \bar{r}_{e}\right)\) for L: 6
        \(\psi_{s}\left(r_{j}\right) \leftarrow \psi_{s}\left(r_{j}\right) \cup\left\{r_{e}\right\} \cup \tilde{\psi}_{*}\left(r_{e}\right) ; \triangleright \tilde{\psi}_{*}\left(r_{e}\right)\) due to OvrlEft L:5,9 consists in the scope \(\psi_{s}\left(r_{j}\right)\)
        if \(\psi_{s}\left(r_{j}\right) \supseteq\left\{x_{i}, \bar{x}_{i}\right\}\) then return NULL; \(\triangleright r_{j} \Rightarrow x_{i} \wedge \bar{x}_{i}, i \in \mathfrak{L}^{\phi}\). \(\not \models \psi_{s}\left(r_{j}\right)\), thus \(\not \models \phi_{s}\left(r_{j}\right)\)
        \(\tilde{\phi}_{*}(\neg r) \leftarrow \tilde{\phi}_{*}(\neg r) \cup \tilde{\phi}_{*}\left(\neg \bar{r}_{e}\right) ; \triangleright \tilde{\phi}_{*}(\neg r)=\{\{ \}\}\) or \(\tilde{\phi}_{*}(\neg r)=\bigcup C_{k},\left|C_{k}\right|>1\) (OvrlEft L:8-11)
        \(\phi_{*} \leftarrow \tilde{\phi}_{*}(\neg r) \wedge \phi_{*}^{\prime} ; R \leftarrow R \cup\left\{r_{e}\right\} ; \quad \triangleright \tilde{\phi}_{*}(\neg r)\) and \(\phi_{*}^{\prime}\) consist in beyond the scope \(\phi_{s}^{\prime}\left(r_{j}\right)\)
        \(\triangleright \phi_{*}^{\prime}=\bigwedge C_{k}\) for \(k \in \mathfrak{C}_{*}^{\prime}\), where \(\mathfrak{C}_{*}^{\prime}=\mathfrak{C}_{*}-\left(\mathfrak{C}_{*}^{x_{e}} \cup \mathfrak{C}_{*}^{\bar{x}_{e}}\right)\), and \(\mathfrak{C}_{*}^{x_{e}} \cap \mathfrak{C}_{*}^{\bar{x}_{e}}=\emptyset\) due to Lemma 14
    end for \(\triangleright\) The reductions terminate if \(\psi_{s}\left(r_{j}\right)=R\), which denotes conjuncts already reduced \(C_{k}\)
    return \(\psi_{s}\left(r_{j}\right) \& \phi_{s}^{\prime}\left(r_{j}\right) \leftarrow \phi_{*} ; \quad \triangleright \phi_{s}\left(r_{j}\right)=\psi_{s}\left(r_{j}\right) \wedge \phi_{s}^{\prime}\left(r_{j}\right) . \psi_{s}\left(r_{j}\right)=\bigwedge r_{j}\) and \(\phi_{s}^{\prime}\left(r_{j}\right)=\bigwedge C_{k}\)
```

- Note 22. $\mathfrak{L}_{s}\left(r_{j}\right)$ being an index set of $\psi_{s}\left(r_{j}\right), \mathfrak{L}_{s}\left(r_{j}\right) \cap \mathfrak{L}_{s}^{\prime}\left(r_{j}\right)=\emptyset$ and $\mathfrak{L}_{s}\left(r_{j}\right) \cup \mathfrak{L}_{s}^{\prime}\left(r_{j}\right)=\mathfrak{L}^{\phi}$, if Scope $\left(r_{j}, \phi_{s}\right)$ terminates. Thus, $\psi_{s}\left(r_{j}\right)$ and $\phi_{s}^{\prime}\left(r_{j}\right)$ are disjoint, where $\phi_{s}^{\prime}\left(r_{j}\right)$ can be empty.
- Example 23. Consider $\psi\left(x_{1}\right)$, $\operatorname{Scope}\left(x_{1}, \phi\right)$, for $\phi=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$. $\psi\left(x_{1}\right) \leftarrow\left\{x_{1}\right\}$ and $\phi_{*} \leftarrow \phi(\mathrm{~L}: 1)$. Then, $\phi_{*}^{\bar{x}_{1}}$ is empty, and $\phi_{*}^{x_{1}}=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right)$ due to OvrlEft $\left(x_{1}, \phi_{*}\right)$. Also, $\mathfrak{C}_{*}^{x_{1}}=\{1,2\}$, thus $c_{1} \leftarrow\left\{x_{3}\right\}$ and $\tilde{\psi}_{*}\left(x_{1}\right) \leftarrow \tilde{\psi}_{*}\left(x_{1}\right) \cup c_{1}$, as well as $c_{2} \leftarrow\left\{x_{2}, \bar{x}_{3}\right\}$ and $\tilde{\psi}_{*}\left(x_{1}\right) \leftarrow \tilde{\psi}_{*}\left(x_{1}\right) \cup c_{2}$ (see OvrlEft L:1-6). Then, $\tilde{\psi}_{*}\left(x_{1}\right)=\left\{x_{3}, x_{2}, \bar{x}_{3}\right\}$ $\& \tilde{\phi}_{*}\left(\neg \bar{x}_{1}\right) \leftarrow \phi_{*}^{\bar{x}_{1}}$ (OvrlEft L:11). As a result, $\psi\left(x_{1}\right) \leftarrow \psi\left(x_{1}\right) \cup\left\{x_{1}\right\} \cup \tilde{\psi}_{*}\left(x_{1}\right)$ (Scope L:4), and $\psi\left(x_{1}\right) \supseteq\left\{x_{3}, \bar{x}_{3}\right\}$ (L:5), that is, $x_{1} \Rightarrow x_{3} \wedge \bar{x}_{3}$, hence x_{1} is incompatible in the first scan.
- Definition 24. $\mathfrak{L}^{\psi}=\left\{i \in \mathfrak{L} \mid r_{i} \in \psi_{s}\right\}$ and $\mathfrak{L}^{\phi}=\left\{i \in \mathfrak{L} \mid r_{i} \in C_{k}\right.$ in $\left.\phi_{s}\right\}$ due to $\varphi_{s}=\psi_{s} \wedge \phi_{s}$.
$\operatorname{Scan}\left(\varphi_{s}\right)$ decomposes ϕ_{s} into $\psi_{s}\left(x_{1}\right), \psi_{s}\left(\bar{x}_{1}\right), \ldots, \psi_{s}\left(\bar{x}_{n}\right)$, when ψ_{s} and ϕ_{s} are disjoint. If $\not \models \psi_{s-1}\left(r_{i}\right)$, then \bar{r}_{i} consists in ψ_{s}, and x_{i} and \bar{x}_{i} are removed from ϕ_{s}. For example, $\not \models \psi_{s-2}\left(\bar{x}_{1}\right)$ and $\not \models \psi_{s-1}\left(x_{3}\right)$ hold in Figure 4, where $\psi_{s}=x_{1} \wedge \bar{x}_{3}$ and $\phi_{s}=\left(x_{4} \odot \bar{x}_{2} \odot x_{n}\right) \wedge \cdots \wedge\left(x_{2} \odot \bar{x}_{n}\right)$.

$$
\varphi_{s}=\underbrace{x_{1} \wedge \bar{x}_{3}}_{\psi_{s}} \wedge \underbrace{(\underbrace{\left.x_{4} \odot \bar{x}_{2} \odot x_{n}\right)}_{C_{1}} \wedge \cdots \wedge \bar{x}_{6})=\bar{x}_{6} \wedge \bar{x}_{8} \wedge x_{9} \wedge \bar{x}_{4} \wedge x_{7}}_{\phi_{s}} \begin{gathered}
\left(\bar{x}_{6} \odot x_{8}\right) \wedge\left(\bar{x}_{6} \odot \bar{x}_{9} \odot x_{4}\right) \wedge\left(x_{7} \odot x_{8}\right) \wedge \cdots \wedge \underbrace{\left(x_{2} \odot \bar{x}_{n}\right)}_{C_{m}}
\end{gathered}
$$

Figure $4 \operatorname{Scan}\left(\varphi_{s}\right)$ decomposes ϕ_{s} into $\psi_{s}\left(x_{1}\right), \psi_{s}\left(\bar{x}_{1}\right), \ldots, \psi_{s}\left(x_{n}\right), \psi_{s}\left(\bar{x}_{n}\right)$, unless $\psi_{s}(.) \nsupseteq\left\{x_{i}, \bar{x}_{i}\right\}$
If $\bar{r}_{i} \in \psi_{s}$, then \bar{r}_{i} is necessary, thus $r_{i} \in C_{k}$ is incompatible trivially for each C_{k} in ϕ_{s} (see Scan L:1-2). For example, if $x_{1} \wedge\left(x_{1} \odot x_{2} \odot \bar{x}_{3}\right)$ holds, then \bar{x}_{1} becomes incompatible trivially. Note that $1 \in \mathfrak{L}^{\phi}$ and $x_{1} \in \psi_{s}$, and that $\bar{x}_{1} \Rightarrow \bar{x}_{1} \wedge x_{1}$. If $r_{i} \Rightarrow x_{j} \wedge \bar{x}_{j}$, then r_{i} is incompatible nontrivially (L:6). See also Note 6/25. If $\operatorname{Scan}\left(\varphi_{s}\right)$ is interrupted by Remove L:3, then φ is unsatisfiable. If it terminates (L:9), then a satisfiable assignment is determined (Section 3.4).

- Note 25. It is obvious that $\not \models \varphi_{s}\left(r_{j}\right)$ if $\not \models\left(\psi_{s} \wedge r_{j}\right)$ or $\not \models\left(r_{j} \wedge \phi_{s}\right)$ due to $\varphi_{s}\left(r_{j}\right)=\psi_{s} \wedge r_{j} \wedge \phi_{s}$ by Definition 3/11, in which $r_{j} \wedge \phi_{s}=\phi_{s}\left(r_{j}\right)$, and that $\not \models \varphi_{s}\left(r_{j}\right)$ iff $\neg r_{j}$ holds by Definition 5 .

```
Algorithm \(3 \operatorname{Scan}\left(\varphi_{s}\right) \triangleright \varphi_{s}=\psi_{s} \wedge \phi_{s}, \psi_{s}=\bigwedge r_{i}\) and \(\phi_{s}=\bigwedge C_{k}\). Checks if \(\not \models \varphi_{s}\left(r_{i}\right)\) for all \(i \in \mathfrak{Z} \phi\)
    for all \(i \in \mathfrak{L}^{\phi}\) and \(\bar{r}_{i} \in \psi_{s}\) do \(\quad \triangleright \varphi_{s}\left(r_{i}\right)=\psi_{s} \wedge r_{i} \wedge \phi_{s}\), thus \(\not \models\left(\psi_{s} \wedge r_{i}\right)\), that is, \(r_{i} \Rightarrow x_{i} \wedge \bar{x}_{i}\)
        Remove \(\left(r_{i}, \phi_{s}\right) ; \quad \triangleright \bar{r}_{i}\) is necessary, thus \(r_{i}\) is incompatible trivially, hence \(\bar{r}_{i} \Rightarrow \neg r_{i}\)
    end for \(\triangleright\) If \(i \in \mathfrak{L}^{\psi}, r_{i}\) has been already removed, hence \(\bar{r}_{i} \in \psi_{s}\) and \(\bar{r}_{i} \notin C_{k} \forall k \in \mathfrak{C}_{s}\), i.e., \(i \notin \mathfrak{L}^{\phi}\)
    for all \(i \in \mathfrak{L}^{\phi}\) do \(\triangleright \mathfrak{L}^{\psi} \cap \mathfrak{L}^{\phi}=\emptyset\) due to L:1-3. Hence, \(i \in \mathfrak{L}^{\psi}\) iff \(r_{i}=x_{i}\) is fixed or \(r_{i}=\bar{x}_{i}\) is fixed
        for all \(r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}\) do \(\triangleright\) Each and every \(x_{i}\) and \(\bar{x}_{i}\) assumed compatible is to be verified
            if Scope \(\left(r_{i}, \phi_{s}\right)\) is NULL then Remove \(\left(r_{i}, \phi_{s}\right) ; \triangleright \not \models \phi_{s}\left(r_{i}\right)\), incompatible nontrivially
        end for \(\triangleright\) If \(r_{i} \Rightarrow x_{j} \wedge \bar{x}_{j}\), hence \(\neg x_{j} \vee \neg \bar{x}_{j} \Rightarrow \neg r_{i}\), then \(\neg r_{i} \Rightarrow \bar{r}_{i}\), where \(i \neq j\) due to L:1-3
    end for \(\triangleright \neg r_{i}\) iff \(\bar{r}_{i}\), since \(\neg r_{i} \Rightarrow \bar{r}_{i}\) due to nontrivial, and \(\neg r_{i} \Leftarrow \bar{r}_{i}\) due to trivial incompatibility
    return \(\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}\), and \(\psi\left(r_{i}\right) \& \phi^{\prime}\left(r_{i}\right)\) for all \(i \in \mathfrak{L}^{\phi} ; \triangleright \hat{\psi} \leftarrow \psi_{\hat{s}}\) and \(\hat{\phi} \leftarrow \phi_{\hat{s}}\). See also Note 27
```

- Note 26. \mathfrak{L}^{ψ} and \mathfrak{L}^{ϕ} form a partition of \mathfrak{L} due to Definition 24 and Scan L:1-3.
- Note 27. When Scan terminates, $\hat{\psi}$ and $\hat{\phi}$ become disjoint, and $\hat{\phi} \equiv \bigwedge_{i \in \mathfrak{L}}\left(\psi\left(x_{i}\right) \oplus \psi\left(\bar{x}_{i}\right)\right)$, where $\mathfrak{L} \leftarrow \mathfrak{L} \hat{\phi}$. Also, $\hat{\psi}=\bigwedge r_{i}$ and $\hat{\phi}=\bigwedge C_{k}$ such that $\left|C_{k}\right|>1$, because each $C_{k}=\left\{r_{i}\right\}$ in ϕ_{s} for any s transforms into r_{i} in $\hat{\psi}$. That is, $C_{k}=\left(r_{i} \odot r_{j}\right)$ or $C_{k}=\left(r_{i} \odot r_{j} \odot r_{u}\right)$ in $\hat{\phi}$.

Remove $\left(r_{j}, \phi_{s}\right)$ leads to reductions of any $C_{k} \ni \bar{r}_{j}$ due to \bar{r}_{j}, which consists in ψ_{s+1} (see L:1-2), as well as of any $C_{k} \ni r_{j}$ due to $\neg r_{j}$, which consists in ϕ_{s+1} (see L:1,5).

```
Algorithm 4 Remove \(\left(r_{j}, \phi_{s}\right) \quad \triangleright r_{j}\) is incompatible/removed iff \(\bar{r}_{j}\) is necessary, i.e., \(\neg r_{j}\) iff \(\bar{r}_{j}\)
    OvrlEft \(\left(\bar{r}_{j}, \phi_{s}\right) ; \triangleright\) OvrlEft is defined over \(\phi_{s}=\bigwedge C_{k},\left|C_{k}\right|>1\), and returns \(\tilde{\psi}_{s}\left(\bar{r}_{j}\right) \& \tilde{\phi}_{s}\left(\neg r_{j}\right)\)
    \(\psi_{s+1} \leftarrow \psi_{s} \cup\left\{\bar{r}_{j}\right\} \cup \tilde{\psi}_{s}\left(\bar{r}_{j}\right) ; \quad \triangleright \psi_{s+1}=\bigwedge r_{i}\) is true by definition, unless \(\psi_{s+1}\) involves \(x_{i} \wedge \bar{x}_{i}\)
    if \(\psi_{s+1} \supseteq\left\{x_{i}, \bar{x}_{i}\right\}\) for some \(i\) then return \(\varphi\) is unsatisfiable; \(\quad \triangleright \varphi_{s}=\psi_{s} \wedge \phi_{s}\)
    \(\mathfrak{L}^{\phi} \leftarrow \mathfrak{L}^{\phi}-\{j\} ; \mathfrak{L}^{\psi} \leftarrow \mathfrak{L}^{\psi} \cup\{j\} ;\)
    \(\phi_{s+1} \leftarrow \tilde{\phi}_{s}\left(\neg r_{j}\right) \wedge \phi_{s}^{\prime}\); Update \(\left\{C_{k}\right\}\) over \(\phi_{s+1} ; \triangleright \phi_{s}^{\prime}\) denotes clauses beyond the entire \(\psi_{s}\) effect
        \(\triangleright \phi_{s}^{\prime}=\bigwedge C_{k}\) for \(k \in \mathfrak{C}_{s}^{\prime}\), where \(\mathfrak{C}_{s}^{\prime}=\mathfrak{C}_{s}-\left(\mathfrak{C}_{s}^{\bar{x}_{j}} \cup \mathfrak{C}_{s}^{x_{j}}\right)\), and \(\mathfrak{C}_{s}^{\bar{x}_{j}} \cap \mathfrak{C}_{s}^{x_{j}}=\emptyset\) due to Lemma 14
    Scan \(\left(\varphi_{s+1}\right) ; \triangleright r_{i}\) verified compatible for \(\check{s} \leqslant s\) can be incompatible for \(\tilde{s}>s\) due to \(\neg r_{j}\) in \(\phi_{s}\)
```


3.3 Satisfiability of the Formula φ vs Satisfiability of the Scope $\psi\left(r_{i}\right)$

This section shows that φ is satisfiable iff $\psi\left(r_{i}\right)$ is satisfied for all $i \in \mathfrak{L}$, and any $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. Recall that r_{j} is removed from ϕ if $\psi\left(r_{j}\right)$ is unsatisfied, which is trivial to check (Scope L:5).

- Proposition 28 (Nontrivial incompatibility). $\not \models \phi_{s}\left(r_{j}\right)$ iff $\not \models \psi_{s}\left(r_{j}\right)$ or $\not \models \phi_{s}^{\prime}\left(r_{j}\right)$ for any s.

Proof. Proof is obvious due to $\phi_{s}\left(r_{j}\right)=\psi_{s}\left(r_{j}\right) \wedge \phi_{s}^{\prime}\left(r_{j}\right)$ by Lemma 21.

- Note 29 (Assumption). $\not \models \phi_{s}\left(r_{j}\right)$ is verified solely via $\not \models \psi_{s}\left(r_{j}\right)$ for some s, which is sufficient for incompatibility, that is, whether or not $\not \models \phi_{s}^{\prime}\left(r_{j}\right)$ is ignored for any s.

The following introduces the tools to justify this assumption that facilitates the φ scan.

- Definition 30. $\mathfrak{L}_{s}\left(r_{i}\right)=\mathfrak{L}\left(\psi_{s}\left(r_{i}\right)\right)$ denotes the index set of $\psi_{s}\left(r_{i}\right)$, and $\mathfrak{L}_{s}^{\prime}\left(r_{i}\right)=\mathfrak{L}\left(\phi_{s}^{\prime}\left(r_{i}\right)\right)$.
- Definition 31. $\psi_{s}\left(r_{i} \mid r_{j}\right)$ is called the conditional scope, and $\phi_{s}^{\prime}\left(r_{i} \mid r_{j}\right)$ is conditional beyond the scope, which are defined over $\phi_{s}^{\prime}\left(r_{j}\right)$ for $j \neq i$, that is, constructed by Scope $\left(r_{i}, \phi_{s}^{\prime}\left(r_{j}\right)\right)$.
- Lemma 32 (No conjunct exists in beyond the scope). $\mathfrak{L}_{s}\left(r_{j}\right) \cap \mathfrak{L}_{s}^{\prime}\left(r_{j}\right)=\emptyset$ for any $j \in \mathfrak{L}^{\phi}$.

Proof. $\phi_{s}^{\prime}\left(r_{j}\right)=\bigwedge C_{k}$ due to Lemma 21. Let r_{i} the conjunct be in $C_{k}, i \in\left(\mathfrak{L}_{s}\left(r_{j}\right) \cap \mathfrak{L}_{s}^{\prime}\left(r_{j}\right)\right)$. Then, for any $C_{k} \ni r_{i},\left(r_{i} \odot x_{j} \odot \bar{x}_{u}\right) \searrow\left(r_{i} \wedge \bar{x}_{j} \wedge x_{u}\right)$, thus $r_{i} \notin C_{k}$. Moreover, for any $C_{k} \ni \bar{r}_{i}$, $\left(\bar{r}_{i} \odot r_{v} \odot r_{y}\right) \mapsto\left(r_{v} \odot r_{y}\right)$, thus $\bar{r}_{i} \notin C_{k}$. See Definition 9/10. Hence, $i \notin\left(\mathfrak{L}_{s}\left(r_{j}\right) \cap \mathfrak{L}_{s}^{\prime}\left(r_{j}\right)\right)$.

- Lemma 33. \mathfrak{L}^{ϕ} is partitioned into $\mathfrak{L}_{s}\left(r_{j}\right), \mathfrak{L}_{s}\left(r_{j_{1}} \mid r_{j}\right), \ldots, \mathfrak{L}_{s}\left(r_{j_{n}} \mid r_{j_{m}}\right)$ by means of Scope.
- Lemma 34. $\phi_{s}\left(r_{j}\right)$ is decomposed into disjoint $\psi_{s}\left(r_{j}\right), \psi_{s}\left(r_{j_{1}} \mid r_{j}\right), \ldots, \psi_{s}\left(r_{j_{n}} \mid r_{j_{m}}\right)$.

Proof. Scope $\left(r_{j}, \phi_{s}\right)$ partitions \mathfrak{L}^{ϕ} into $\mathfrak{L}_{s}\left(r_{j}\right)$ and $\mathfrak{L}_{s}^{\prime}\left(r_{j}\right)$ for any $j \in \mathfrak{L}^{\phi}$ (see also Lemma 32). Thus, $\phi_{s}\left(r_{j}\right)$ is decomposed into disjoint $\psi_{s}\left(r_{j}\right)$ and $\phi_{s}^{\prime}\left(r_{j}\right)$. Scope $\left(r_{j_{1}}, \phi_{s}^{\prime}\left(r_{j}\right)\right)$ partitions $\mathfrak{L}_{s}^{\prime}\left(r_{j}\right)$ into $\mathfrak{L}_{s}\left(r_{j_{1}} \mid r_{j}\right)$ and $\mathfrak{L}_{s}^{\prime}\left(r_{j_{1}} \mid r_{j}\right)$ for any $j_{1} \in \mathfrak{L}_{s}^{\prime}\left(r_{j}\right)$. Thus, $\phi_{s}^{\prime}\left(r_{j}\right)$ is decomposed into disjoint $\psi_{s}\left(r_{j_{1}} \mid r_{j}\right)$ and $\phi_{s}^{\prime}\left(r_{j_{1}} \mid r_{j}\right)$. Finally, $\phi_{s}^{\prime}\left(r_{j_{m}} \mid r_{j_{l}}\right)$ is decomposed into disjoint $\psi_{s}\left(r_{j_{n}} \mid r_{j_{m}}\right)$ and $\phi_{s}^{\prime}\left(r_{j_{n}} \mid r_{j_{m}}\right)$ for any $j_{n} \in \mathfrak{L}_{s}^{\prime}\left(r_{j_{m}} \mid r_{j_{l}}\right)$ such that $\mathfrak{L}_{s}^{\prime}\left(r_{j_{n}} \mid r_{j_{m}}\right)=\emptyset$ (see also Note 22).

The following properties hold if Scan terminates (L:9). Then, $\psi \wedge \phi$ transforms into $\hat{\psi} \wedge \hat{\phi}$. Let $\phi \leftarrow \hat{\phi}$, thus $\mathfrak{L} \leftarrow \mathfrak{L} \phi$. Then, $\psi\left(r_{i}\right)$ is true, $\psi\left(r_{i}\right)=\mathbf{T}$, for every $i \in \mathfrak{L}$ and $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$.

- Lemma 35. $\phi^{\prime}\left(r_{j}\right)$ is decomposed into disjoint $\psi\left(r_{j_{1}} \mid r_{j}\right), \psi\left(r_{j_{2}} \mid r_{j_{1}}\right), \ldots, \psi\left(r_{j_{n}} \mid r_{j_{m}}\right)$.

Proof. Follows from Lemma 34, and from $\phi\left(r_{j}\right)=\psi\left(r_{j}\right) \wedge \phi^{\prime}\left(r_{j}\right)$ due to Lemma 21.

- Lemma 36. $\phi \supseteq \phi^{\prime}\left(r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{2}} \mid r_{j_{1}}\right) \supseteq \cdots \supseteq \phi^{\prime}\left(r_{j_{n}} \mid r_{j_{m}}\right)$, after it terminates.

Proof. Some C_{k} in ϕ collapse to some c_{k} in $\psi\left(r_{j}\right)$ due to $\operatorname{Scope}\left(r_{j}, \phi\right)$ (see Lemma 21). As a result, the number of C_{k} in ϕ is greater than or equal to that of C_{k} in $\phi^{\prime}\left(r_{j}\right)$, hence $|\mathfrak{C}| \geqslant\left|\mathfrak{C}^{\prime}\right|$, where \mathfrak{C} denotes an index set of C_{k} in ϕ. Also, some C_{k} in ϕ shrink to some $C_{k^{\prime}}$ in $\phi^{\prime}\left(r_{j}\right)$, hence $\forall k^{\prime} \in \mathfrak{C}^{\prime} \exists k \in \mathfrak{C}\left[C_{k} \supseteq C_{k^{\prime}}\right]$. Thus, $\phi \supseteq \phi^{\prime}\left(r_{j}\right)$. Likewise, $\phi^{\prime}\left(r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right)$, since $\phi^{\prime}\left(r_{j}\right)$ is decomposed into $\psi\left(r_{j_{1}} \mid r_{j}\right)$ and $\phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right)$ via Scope $\left(r_{j_{1}}, \phi^{\prime}\left(r_{j}\right)\right)$. Therefore, $\phi \supseteq \phi^{\prime}\left(r_{j}\right) \supseteq$ $\phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{2}} \mid r_{j_{1}}\right) \supseteq \cdots \supseteq \phi^{\prime}\left(r_{j_{n}} \mid r_{j_{m}}\right)$, where $\phi^{\prime}\left(r_{j_{n}} \mid r_{j_{m}}\right)=\phi^{\prime}\left(r_{j_{n}} \mid r_{j}, r_{j_{1}}, \ldots, r_{j_{m}}\right)$.

- Lemma 37. $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid r_{j}\right)$, as well as $\psi\left(r_{i}\right) \vdash \psi\left(r_{i} \mid r_{j}\right)$, after the scan terminates.

Proof. $\phi \supseteq \phi^{\prime}\left(r_{j}\right)$ due to Lemma 36. Scope $\left(r_{i}, \phi\right)$ constructs $\psi\left(r_{i}\right)$, while Scope $\left(r_{i}, \phi^{\prime}\left(r_{j}\right)\right)$ constructs $\psi\left(r_{i} \mid r_{j}\right)$. Therefore, $\psi\left(r_{i}\right) \supseteq \psi\left(r_{i} \mid r_{j}\right)$. Because $\psi\left(r_{i}\right)=\mathbf{T}, \psi\left(r_{i} \mid r_{j}\right)=\mathbf{T}$, hence $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid r_{j}\right)$ (see Figure 2), that is, $\psi\left(r_{i}\right)$ entails $\psi\left(r_{i} \mid r_{j}\right)$, where $\psi\left(r_{i}\right)=r_{i} \wedge r_{j} \wedge \cdots \wedge r_{v}$ and $\psi\left(r_{i} \mid r_{j}\right)=r_{i} \wedge \cdots \wedge r_{v}$. Note that $r_{j} \notin \psi\left(r_{i} \mid r_{j}\right)$, because $r_{j} \notin C_{k}$ for any $C_{k} \in \phi^{\prime}\left(r_{j}\right)$, as $j \notin \mathfrak{L}^{\prime}\left(r_{j}\right)$ and $j \in \mathfrak{L}\left(r_{j}\right)$ due to Lemma 32. Moreover, $r_{i} \vdash \psi\left(r_{i}\right)$ follows from $r_{i} \vDash \psi\left(r_{i}\right)$ (see Lemma 21), hence $\psi\left(r_{i}\right) \vdash \psi\left(r_{i} \mid r_{j}\right)$ from $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid r_{j}\right)$, that is, $\psi\left(r_{i}\right)$ proves $\psi\left(r_{i} \mid r_{j}\right)$.

- Lemma 38. $\psi\left(r_{i} \mid r_{j}\right), \psi\left(r_{i} \mid r_{j}, r_{j_{1}}\right), \ldots, \psi\left(r_{i} \mid r_{j}, r_{j_{1}}, \ldots, r_{j_{m}}\right)$ holds for every $j \in \mathfrak{L}$, and for every $i \in \mathfrak{L}^{\prime}\left(r_{j}\right), i \in \mathfrak{L}^{\prime}\left(r_{j_{1}} \mid r_{j}\right), \ldots, i \in \mathfrak{L}^{\prime}\left(r_{j_{m}} \mid r_{j}, r_{j_{1}}, \ldots, r_{j_{l}}\right)$, after the scan terminates.

Proof. Recall that $\operatorname{Scan}\left(\varphi_{\hat{s}}\right)$ terminates. As a result, $\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}$. Let $\phi:=\hat{\phi}$, that is, $\mathfrak{L}:=\mathfrak{L}^{\bar{\alpha}}$ (see also Note 27). Then, the scope $\psi\left(r_{i}\right)$ holds for every $i \in \mathfrak{L}$ and $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. Moreover, $\phi \supseteq \phi^{\prime}\left(r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right) \supseteq \phi^{\prime}\left(r_{j_{2}} \mid r_{j_{1}}\right) \supseteq \cdots \supseteq \phi^{\prime}\left(r_{j_{n}} \mid r_{j_{m}}\right)$ due to Lemma 36 for any $j \in \mathfrak{L}$, and $j_{1} \in \mathfrak{L}^{\prime}\left(r_{j}\right), \ldots, j_{n} \in \mathfrak{L}^{\prime}\left(r_{j_{m}} \mid r_{j_{l}}\right)$. Thus, $\psi\left(r_{i}\right) \supseteq \psi\left(r_{i} \mid r_{j}\right), \ldots, \psi\left(r_{i}\right) \supseteq \psi\left(r_{i} \mid r_{j}, \ldots, r_{j_{m}}\right)$. Note that $\psi\left(r_{i}\right) \supseteq \psi\left(r_{i} \mid r_{j}, r_{j_{1}}\right)$ due to Scope $\left(r_{i}, \phi^{\prime}\left(r_{j_{1}} \mid r_{j}\right)\right)$, hence $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid r_{j}, r_{j_{1}}\right)$. Therefore, any $\psi\left(r_{i} \mid r_{j}\right), \psi\left(r_{i} \mid r_{j}, r_{j_{1}}\right), \ldots, \psi\left(r_{i} \mid r_{j}, r_{j_{1}}, \ldots, r_{j_{m}}\right)$ holds, which generalizes Lemma 37.

- Theorem 39 (Unsatisfiability). r_{j} is incompatible due to $\not \models \phi\left(r_{j}\right)$ iff $\not \models \psi_{s}\left(r_{j}\right)$ for some s.
- Corollary 40 (Satisfiability). $\vDash_{\alpha} \phi$ iff the scope $\psi\left(r_{i}\right)$ holds for every $i \in \mathfrak{L}$ and $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$.

Proof. $\psi\left(r_{j_{1}} \mid r_{j}\right), \psi\left(r_{j_{2}} \mid r_{j_{1}}\right), \ldots, \psi\left(r_{j_{n}} \mid r_{j_{m}}\right)$ defined over $\phi^{\prime}\left(r_{j}\right)$ are disjoint due to Lemma 35 such that $\psi\left(r_{j_{1}} \mid r_{j}\right), \psi\left(r_{j_{2}} \mid r_{j_{1}}\right), \ldots, \psi\left(r_{j_{n}} \mid r_{j_{m}}\right)$ hold by Lemma 38 for any $j \in \mathfrak{L}, j_{1} \in \mathfrak{L}^{\prime}\left(r_{j}\right)$, $j_{2} \in \mathfrak{L}^{\prime}\left(r_{j_{1}} \mid r_{j}\right), \ldots, j_{n} \in \mathfrak{L}^{\prime}\left(r_{j_{m}} \mid r_{j_{l}}\right)$. As a result, $\phi^{\prime}\left(r_{j}\right)$ is composed of $\psi($.$) both disjoint and$ satisfied, thus $\phi^{\prime}\left(r_{j}\right)$ is satisfied, hence unsatisfiability of $\phi_{s}^{\prime}\left(r_{j}\right)$ is ignored to verify $\not \models \phi_{s}\left(r_{j}\right)$. Therefore, Theorem 39 holds (see Proposition 28 and Note 29). Then, $\psi\left(r_{i}\right) \equiv \phi\left(r_{i}\right)$ due to $\phi^{\prime}\left(r_{i}\right)$ satisfied in $\phi\left(r_{i}\right)=\psi\left(r_{i}\right) \wedge \phi^{\prime}\left(r_{i}\right)$. Thus, Corollary 40 holds (see also Appendix A).

- Theorem 41. If $\not \models \varphi_{\tilde{s}}\left(r_{j}\right)$ for some \tilde{s}, then $\not \models \varphi_{s}\left(r_{j}\right)$ for all $s>\tilde{s}$, even if $\neg r_{i}$ holds, $i \neq j$.

Proof. See Note $25 / 26$. $\not \models \varphi_{s}\left(r_{j}\right)$ iff $\not \models\left(\psi_{s} \wedge r_{j}\right)$ or $\not \models \phi_{s}\left(r_{j}\right)$. Let $\not \models\left(\psi_{\tilde{s}} \wedge r_{j}\right)$ for some \tilde{s}. Then, $\not \models\left(\psi_{s} \wedge r_{j}\right)$ for all $s>\tilde{s}$, as $\psi_{\tilde{s}} \subseteq \psi_{s}$ (Remove L:2). Let $\not \models \phi_{\tilde{s}}\left(r_{j}\right)$ by $x_{i} \wedge \bar{x}_{i}$. Then, $\bar{x}_{i} \vee x_{i} \Rightarrow \bar{r}_{j}$, thus $\bar{r}_{j} \in \psi_{s}$ for $s>\tilde{s}$. Hence, $\not \models\left(\psi_{s} \wedge r_{j}\right)$ for all $s>\tilde{s}$. Let $\neg r_{i}$ by $\not \models \varphi_{\check{s}}\left(r_{i}\right)$ for $\check{s} \leqslant \tilde{s}$. Then, $\psi_{\check{s}} \subseteq \psi_{\tilde{s}} \subseteq \psi_{s}$, and $\neg r_{i} \Rightarrow \bar{r}_{i}$ and $\bar{r}_{i} \Rightarrow \bar{r}_{j}$, thus $\left\{\bar{r}_{i}, \bar{r}_{j}\right\} \subseteq \psi_{s}$ for $s>\tilde{s}$. Hence, $\not \models\left(\psi_{s} \wedge r_{i} \wedge r_{j}\right)$ for all $s>\tilde{s}$. Let $\neg r_{i}$ by $\not \models \varphi_{s}\left(r_{i}\right)$ for $s>\tilde{s}$. Hence, $\not \models\left(\psi_{s} \wedge r_{j} \wedge r_{i}\right)$ for all $s>\tilde{s}$.

- Proposition 42. The time complexity of Scan is $O\left(m n^{3}\right)$.

Proof. OvrlEft, and Remove, takes $4 m$ steps by $\left(\left|\mathfrak{C}_{*}^{r_{j}}\right| \times\left|C_{k}\right|\right)+\left|\mathfrak{C}_{*}^{\bar{r}_{j}}\right|=3 m+m$. Scope takes $n 4 m$ steps by $\left|\psi_{s}\left(r_{j}\right)\right| \times 4 m$. Then, Scan takes $n^{2} 4 m$ steps due to L:1-3 by $\left|\mathfrak{L}^{\phi}\right| \times\left|\psi_{s}\right| \times 4 m$, as well as $8 n^{2} m+8 n m$ steps due to L:4-8 by $2\left|\mathfrak{L}^{\phi}\right| \times(4 n m+4 m)$. Also, the number of the scans is $\hat{s} \leqslant\left|\mathfrak{L}^{\phi}\right|$ due to Remove L:6. Therefore, the time complexity of Scan is $O\left(n^{3} m\right)$.

- Example 43. Let $\varphi=\left\{\left\{x_{3}, x_{4}, \bar{x}_{5}\right\},\left\{x_{3}, x_{6}, \bar{x}_{7}\right\},\left\{x_{4}, x_{6}, \bar{x}_{7}\right\}\right\}$. Let Scope $\left(x_{3}, \phi\right)$ execute first in the first scan, which leads to the reductions below over ϕ due to x_{3}. Note that $\psi=\emptyset$.

$$
\begin{aligned}
& \phi\left(x_{3}\right)=\left(x_{3} \odot x_{4} \odot \bar{x}_{5}\right) \wedge\left(x_{3} \odot x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \wedge x_{3} \\
& x_{3} \Rightarrow\left(x_{3} \wedge \bar{x}_{4} \wedge x_{5}\right) \wedge\left(x_{3} \wedge \bar{x}_{6} \wedge x_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \wedge x_{3} \\
& \bar{x}_{4} \Rightarrow\left(x_{3} \wedge \bar{x}_{4} \wedge x_{5}\right) \wedge\left(x_{3} \wedge \bar{x}_{6} \wedge x_{7}\right) \wedge\left(\quad x_{6} \odot \bar{x}_{7}\right) \wedge x_{3} \\
& \bar{x}_{6} \Rightarrow\left(x_{3} \wedge \bar{x}_{4} \wedge x_{5}\right) \wedge\left(x_{3} \wedge \bar{x}_{6} \wedge x_{7}\right) \wedge\left(\quad \bar{x}_{7}\right) \wedge x_{3}
\end{aligned}
$$

Because $\not \models\left(\psi\left(x_{3}\right)=x_{3} \wedge \bar{x}_{4} \wedge x_{5} \wedge \bar{x}_{6} \wedge x_{7} \wedge \bar{x}_{7}\right), x_{3}$ is incompatible, hence \bar{x}_{3} is necessary, i.e., $\neg x_{3} \Rightarrow \bar{x}_{3}$. Thus, $\varphi \rightarrow \varphi_{2}$ by $\left(x_{3} \odot x_{4} \odot \bar{x}_{5}\right) \mapsto\left(x_{4} \odot \bar{x}_{5}\right)$ and $\left(x_{3} \odot x_{6} \odot \bar{x}_{7}\right) \mapsto\left(x_{6} \odot \bar{x}_{7}\right)$. As a result, $\varphi_{2}=\left(x_{4} \odot \bar{x}_{5}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \wedge \bar{x}_{3}$. Let Scope $\left(x_{5}, \phi_{2}\right)$ execute next.

$$
\begin{aligned}
& \phi_{2}\left(x_{5}\right)=\left(\quad x_{4} \odot \bar{x}_{5}\right) \wedge\left(\quad x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \wedge x_{5} \\
& x_{5} \Rightarrow\left(\quad x_{4}\right) \wedge\left(\quad x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \wedge x_{5} \\
& x_{4} \Rightarrow\left(\quad x_{4}\right) \wedge\left(\quad x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \wedge \bar{x}_{6} \wedge x_{7}\right) \wedge x_{5} \\
& \bar{x}_{6} \Rightarrow\left(\quad x_{4}\right) \wedge\left(\quad \bar{x}_{7}\right) \wedge\left(x_{4} \wedge \bar{x}_{6} \wedge x_{7}\right) \wedge x_{5}
\end{aligned}
$$

Because $\not \models\left(\psi_{2}\left(x_{5}\right)=x_{4} \wedge \bar{x}_{7} \wedge \bar{x}_{6} \wedge x_{7} \wedge \bar{x}_{3} \wedge x_{5}\right), x_{5}$ is removed from ϕ_{2}, i.e., $\neg x_{5} \Rightarrow \bar{x}_{5}$. Thus, $\varphi_{2} \rightarrow \varphi_{3}$ by $\left(x_{4} \odot \bar{x}_{5}\right) \searrow\left(\bar{x}_{4} \wedge \bar{x}_{5}\right)$, where $\varphi_{3}=\left(\bar{x}_{4} \wedge \bar{x}_{5}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \wedge \bar{x}_{3}$, and \bar{x}_{4} leads to the next reduction by $\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right) \mapsto\left(x_{6} \odot \bar{x}_{7}\right)$. Then, $\operatorname{Scan}\left(\varphi_{4}\right)$ terminates, and $\varphi_{4}=\bar{x}_{3} \wedge \bar{x}_{4} \wedge \bar{x}_{5} \wedge\left(x_{6} \odot \bar{x}_{7}\right)$, that is, $\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}$, and $\hat{\psi}=\left\{\bar{x}_{3}, \bar{x}_{4}, \bar{x}_{5}\right\}$ and $\hat{\phi}=\left\{\left\{x_{6}, \bar{x}_{7}\right\}\right\}$.

In Example 43, if Scope $\left(x_{5}, \phi\right)$ executes first, then $\psi\left(x_{5}\right)=x_{5}$ becomes the scope, and $\phi^{\prime}\left(x_{5}\right)=\left(x_{3} \odot x_{4}\right) \wedge\left(x_{3} \odot x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right)$ becomes beyond the scope of x_{5} over ϕ. Then, x_{5} is compatible (in ϕ) due to Theorem 39, since $\psi\left(x_{5}\right)$ holds, while it is incompatible due to Proposition 28, since $\not \models \phi^{\prime}\left(x_{5}\right)$ holds. On the other hand, the fact that $\not \models \phi^{\prime}\left(x_{5}\right)$ holds is verified indirectly. That is, incompatibility of x_{5} is checked by means of $\psi_{s}\left(x_{5}\right)$ for some s. Then, x_{5} becomes incompatible (in ϕ_{2}), because $\not \models \psi_{2}\left(x_{5}\right)$ holds, after $\varphi \rightarrow \varphi_{2}$ by removing x_{3} from ϕ due to $\not \models \psi\left(x_{3}\right)$. As a result, $\not \models \phi^{\prime}\left(x_{5}\right)$ holds due to $\neg x_{3}$. Thus, there exists no r_{j} such that $\not \models \phi^{\prime}\left(r_{j}\right)$, when the scan terminates, because $\psi\left(r_{i}\right)$ holds for all r_{i} in ϕ, hence $\psi\left(r_{i} \mid r_{j}\right)$ holds for all r_{i} in $\phi^{\prime}\left(r_{j}\right)$, after each r_{j} is removed if $\not \models \psi_{s}\left(r_{j}\right)$ (see also Figures 1-4).

3.4 Construction of a satisfiable assignment by composing scopes

$\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}$, when $\operatorname{Scan}\left(\varphi_{\hat{s}}\right)$ terminates. Let $\psi:=\hat{\psi}$ and $\phi:=\hat{\phi}$, i.e., $\mathfrak{L}:=\mathfrak{L} \hat{\phi}$. Then, $\vDash_{\alpha} \phi$ holds by Corollary 40, where α is a satisfiable assignment, and constructed by Algorithm 5 through any $\left(i_{0}, i_{1}, i_{2}, \ldots, i_{m}, i_{n}\right)$ over \mathfrak{L} such that $\alpha=\left\{\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{1}}\right), \ldots, \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)\right\}$. Thus, φ is decomposed into disjoint scopes $\psi, \psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{1}}\right), \ldots, \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)$ (see Note 26, and Lemmas 33-34). Recall that any scope $\psi($.$) denotes a minterm by Definition$ $2 / 3$, and that Scope $\left(r_{i}, \phi\right)$ constructs $\psi\left(r_{i}\right)$ and $\phi^{\prime}\left(r_{i}\right)$ to determine a satisfiable assignment, unless φ collapses to a unique assignment, that is, unless $\hat{\varphi}=\alpha=\hat{\psi}$. See also Appendix A to determine a satisfiable assignment without constructing $\psi\left(r_{i} \mid.\right)$ by Scope $\left(r_{i}, \phi^{\prime}().\right)$.

```
Algorithm 5 \(\triangleright\) Construction of a satisfiable assignment \(\alpha\) over \(\phi, \mathfrak{L}:=\mathfrak{L}^{\hat{\phi}}\) and \(\phi:=\hat{\phi}\)
    Pick \(j \in \mathfrak{L} ; \quad \triangleright\) The scope \(\psi\left(r_{i}\right)\) and beyond the scope \(\phi^{\prime}\left(r_{i}\right)\) for all \(i \in \mathfrak{L}\) are available initially
    \(\alpha \leftarrow \psi\left(r_{j}\right) ; \mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(r_{j}\right) ; \phi \leftarrow \phi^{\prime}\left(r_{j}\right) ;\)
    repeat
        Pick \(i \in \mathfrak{L}\); Scope \(\left(r_{i}, \phi\right) ; \quad \triangleright\) It constructs \(\psi\left(r_{i} \mid r_{j}\right)\) and \(\phi^{\prime}\left(r_{i} \mid r_{j}\right)\) with respect to \(\phi^{\prime}\left(r_{j}\right)\)
        \(\alpha \leftarrow \alpha \cup \psi\left(r_{i}\right) ; \triangleright \psi\left(r_{i}\right):=\psi\left(r_{i} \mid r_{j}\right)\), because \(\psi\left(r_{i}\right)\) is unconditional with respect to \(\phi\) updated
        \(\mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(r_{i}\right) ; \quad \triangleright \mathfrak{L} \leftarrow \mathfrak{L}^{\prime}\left(r_{i} \mid r_{j}\right)\) due to the partition \(\left\{\mathfrak{L}\left(r_{j}\right), \mathfrak{L}\left(r_{i} \mid r_{j}\right), \mathfrak{L}^{\prime}\left(r_{i} \mid r_{j}\right)\right\}\) over \(\mathfrak{L}\)
        \(\phi \leftarrow \phi^{\prime}\left(r_{i}\right) ; \triangleright \phi^{\prime}\left(r_{i}\right):=\phi^{\prime}\left(r_{i} \mid r_{j}\right)\), because \(\phi^{\prime}\left(r_{i}\right)\) is unconditional with respect to \(\phi\) updated
    until \(\mathfrak{L}=\emptyset\)
    return \(\alpha ; \quad \triangleright \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)=\psi\left(r_{i_{n}} \mid r_{j}, r_{i_{1}}, \ldots, r_{i_{m}}\right)\) (see also Appendix A)
```

- Definition 44. Let $\left\langle\left\langle r_{i_{1}, 1}, r_{i_{2}, 1}, r_{i_{3}, 1}\right\rangle,\left\langle r_{j_{1}, 2}, r_{j_{2}, 2}, r_{j_{3}, 2}\right\rangle, \ldots,\left\langle r_{u_{1}, m}, r_{u_{2}, m}, r_{u_{3}, m}\right\rangle\right\rangle$ be in ascending order with respect to the index set \mathfrak{L}. If $\imath_{3}<\jmath_{1}$ for any $\left\langle r_{i_{1}, k}, r_{i_{2}, k}, r_{\imath_{3}, k}\right\rangle$ and any $\left\langle r_{\jmath_{1}, k+1}, r_{\jmath_{2}, k+1}, r_{\jmath_{3}, k+1}\right\rangle$, then ${ }^{\imath} \phi \cup^{\jmath} \phi=\phi$ and ${ }^{\imath} \phi \cap^{3} \phi=\emptyset$ such that $C_{k} \in{ }^{2} \phi$ and $C_{k+1} \in{ }^{J} \phi$.
- Note. ${ }^{i} \phi$ and ${ }^{j} \phi$ form a partition of ϕ, hence their satisfiability check can be independent.
- Example 45. Let ${ }^{1} \phi=\left(x_{1} \odot \bar{x}_{2} \odot x_{6}\right) \wedge\left(x_{3} \odot x_{4} \odot \bar{x}_{5}\right) \wedge\left(x_{3} \odot x_{6} \odot \bar{x}_{7}\right) \wedge\left(x_{4} \odot x_{6} \odot \bar{x}_{7}\right)$, ${ }^{2} \phi=\left(x_{8} \odot x_{9} \odot \bar{x}_{10}\right)$, and ${ }^{3} \phi=\left(x_{11} \odot \bar{x}_{12} \odot x_{13}\right)$ to form $\varphi={ }^{1} \phi \wedge{ }^{2} \phi \wedge^{3} \phi$ (see Definition 44). Then, $\operatorname{Scan}\left(\varphi_{4}\right)$ returns φ is satisfiable. Therefore, $\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}$, where $\psi:=\hat{\psi}=\bar{x}_{3} \wedge \bar{x}_{4} \wedge \bar{x}_{5}$ and $\phi:=\hat{\phi}=\left(x_{1} \odot \bar{x}_{2} \odot x_{6}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge^{2} \phi \wedge^{3} \phi$ (see Example 43). Then, α is constructed by composing $\psi($.$) based on \phi^{\prime}($.$) below, where \mathfrak{L}^{\psi}=\{3,4,5\}$ and $\mathfrak{L}:=\mathfrak{L} \hat{\phi}=\{1,2, \ldots, 13\}-\mathfrak{L}^{\psi}$.

$$
\begin{array}{rlrlrl}
\psi\left(x_{1}\right) & =x_{1} \wedge x_{2} \wedge \bar{x}_{6} \wedge \bar{x}_{7} & \& & \phi^{\prime}\left(x_{1}\right) & ={ }^{2} \phi \wedge{ }^{3} \phi \\
\psi\left(x_{2}\right) & =x_{2} & \& & \phi^{\prime}\left(x_{2}\right) & =\left(x_{1} \odot x_{6}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge^{2} \phi \wedge^{3} \phi \\
\psi\left(\bar{x}_{2}\right) & =\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{6} \wedge \bar{x}_{7} & \& & \phi^{\prime}\left(\bar{x}_{2}\right) & ={ }^{2} \phi \wedge^{3} \phi \\
\psi\left(x_{6}\right)=\psi\left(x_{7}\right) & =\bar{x}_{1} \wedge x_{2} \wedge x_{6} \wedge x_{7} & \& & \phi^{\prime}\left(x_{6}\right)= & \phi^{\prime}\left(x_{7}\right) & ={ }^{2} \phi \wedge^{3} \phi \\
\psi\left(\bar{x}_{6}\right)=\psi\left(\bar{x}_{7}\right) & =\bar{x}_{6} \wedge \bar{x}_{7} & \& & \phi^{\prime}\left(\bar{x}_{6}\right)=\phi^{\prime}\left(\bar{x}_{7}\right) & =\left(x_{1} \odot \bar{x}_{2}\right) \wedge^{2} \phi \wedge^{3} \phi \\
\psi\left(x_{8}\right) & =x_{8} \wedge \bar{x}_{9} \wedge x_{10} & \& & \phi^{\prime}\left(x_{8}\right) & =\left(x_{1} \odot \bar{x}_{2} \odot x_{6}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge^{3} \phi \\
\psi\left(x_{11}\right) & =x_{11} \wedge x_{12} \wedge \bar{x}_{13} & \& & \phi^{\prime}\left(x_{11}\right) & =\left(x_{1} \odot \bar{x}_{2} \odot x_{6}\right) \wedge\left(x_{6} \odot \bar{x}_{7}\right) \wedge^{2} \phi
\end{array}
$$

- Example 46. A satisfiable assignment α is constructed by an order of indices over $\mathfrak{L}, \mathfrak{L}=$ $\{1, \ldots, 13\}-\mathfrak{L}^{\psi}$ (Example 45), such that $r_{i}:=x_{i}$ for any $\psi\left(r_{i}\right)$ throughout the construction. First, pick $6 \in \mathfrak{L}$. As a result, $\alpha \leftarrow \psi\left(x_{6}\right)$ and $\mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(x_{6}\right)$, where $\psi\left(x_{6}\right)=\left\{\bar{x}_{1}, x_{2}, x_{6}, x_{7}\right\}$, $\mathfrak{L}\left(x_{6}\right)=\{1,2,6,7\}$, and $\mathfrak{L} \leftarrow\{8,9,10,11,12,13\}$. Then, pick 8, hence $\alpha \leftarrow \alpha \cup \psi\left(x_{8} \mid x_{6}\right)$, where $\psi\left(x_{8} \mid x_{6}\right)=\left\{x_{8}, \bar{x}_{9}, x_{10}\right\}$. Also, $\mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(x_{8} \mid x_{6}\right)$, where $\mathfrak{L}\left(x_{8} \mid x_{6}\right)=\{8,9,10\}$, hence $\mathfrak{L} \leftarrow\{11,12,13\}$. Finally, pick 11. Therefore, $\alpha \leftarrow \alpha \cup \psi\left(x_{11} \mid x_{6}, x_{8}\right)$ such that $\mathfrak{L} \leftarrow \emptyset$, which indicates its termination. Note that Scope $\left(x_{11}, \phi^{\prime}\left(x_{8} \mid x_{6}\right)\right)$ constructs $\psi\left(x_{11} \mid x_{6}, x_{8}\right)$, in which $\phi^{\prime}\left(x_{8} \mid x_{6}\right)={ }^{3} \phi$, and that $\phi^{\prime}\left(x_{11} \mid x_{6}, x_{8}\right)=\emptyset$ iff $\mathfrak{L} \leftarrow \emptyset$. Note also that $\psi\left(x_{8} \mid x_{6}\right)=\psi\left(x_{8}\right)$ and $\psi\left(x_{11} \mid x_{6}, x_{8}\right)=\psi\left(x_{11}\right)$, since ${ }^{1} \phi,{ }^{2} \phi$ and ${ }^{3} \phi$ are disjoint (see Definition 44). Consequently, Algorithm 5 constructs $\alpha=\left\{\psi\left(x_{6}\right), \psi\left(x_{8} \mid x_{6}\right), \psi\left(x_{11} \mid x_{6}, x_{8}\right)\right\}$. Note that φ is decomposed into $\psi, \psi\left(x_{6}\right), \psi\left(x_{8} \mid x_{6}\right)$, and $\psi\left(x_{11} \mid x_{6}, x_{8}\right)$, which are disjoint (see also Note 27 and Lemma 34).
- Example 47. Let $(2,1,8,11)$ be another order of indices in Example 45. This order leads to the assignment $\left\{\psi, \psi\left(x_{2}\right), \psi\left(x_{1} \mid x_{2}\right), \psi\left(x_{8} \mid x_{2}, x_{1}\right), \psi\left(x_{11} \mid x_{2}, x_{1}, x_{8}\right)\right\}$ for φ. This assignment corresponds to the partition $\left\{\mathfrak{L}^{\psi},\{2\},\{1,6,7\},\{8,9,10\},\{11,12,13\}\right\}$, where $\mathfrak{L}^{\psi}=\{3,4,5\}$ (see also Note 26 and Lemma 33). Note that the scope $\psi\left(x_{1}\right)$ is constructed over ϕ, and the conditional scope $\psi\left(x_{1} \mid x_{2}\right)$ is constructed over $\phi^{\prime}\left(x_{2}\right)$, where $\phi \supseteq \phi^{\prime}\left(x_{2}\right)$. Recall that $\phi:=\hat{\phi}$. Hence, $\psi\left(x_{1}\right) \vDash \psi\left(x_{1} \mid x_{2}\right)$, in which $\psi\left(x_{1}\right)=x_{1} \wedge x_{2} \wedge \bar{x}_{6} \wedge \bar{x}_{7}$, while $\psi\left(x_{1} \mid x_{2}\right)=x_{1} \wedge \bar{x}_{6} \wedge \bar{x}_{7}$. Moreover, $\psi\left(x_{8}\right) \vDash \psi\left(x_{8} \mid x_{2}, x_{1}\right)$ due to $\phi \supseteq \phi^{\prime}\left(x_{1} \mid x_{2}\right)$, and $\psi\left(x_{11}\right) \vDash \psi\left(x_{11} \mid x_{2}, x_{1}, x_{8}\right)$ due to $\phi \supseteq \phi^{\prime}\left(x_{8} \mid x_{2}, x_{1}\right)$, where $\phi^{\prime}\left(x_{1} \mid x_{2}\right)={ }^{2} \phi \wedge{ }^{3} \phi$ and $\phi^{\prime}\left(x_{8} \mid x_{2}, x_{1}\right)={ }^{3} \phi$ (see Lemmas 36-38).

3.5 An Illustrative Example

This section illustrates Scan $\left(\varphi_{s}\right)$. Let $\varphi=\phi=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$, which is adapted from Esparza [1], and denotes a general formula by Definition 13. Note that $C_{1}=$ $\left\{x_{1}, \bar{x}_{3}\right\}, C_{2}=\left\{x_{1}, \bar{x}_{2}, x_{3}\right\}$, and $C_{3}=\left\{x_{2}, \bar{x}_{3}\right\}$. Hence, $\mathfrak{C}=\{1,2,3\}$, and $\mathfrak{L}=\mathfrak{L}^{\phi}=\{1,2,3\}$.
$\operatorname{Scan}(\varphi)$: There exists no conjunct in (the initial formula) φ. That is, ψ is empty (L:1). Recall that $\varphi:=\varphi_{1}$, and that $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. Recall also that nontrivial incompatibility of r_{i} is checked (L:4-8) via Scope $\left(r_{i}, \phi\right)$. Moreover, the order of incompatibility check is arbitrary (incompatibility is monotonic) by Theorem 41. Let Scope $\left(x_{1}, \phi\right)$ execute due to Scan L:6.

Scope $\left(x_{1}, \phi\right)$: Since $\psi\left(x_{1}\right) \supseteq\left\{x_{3}, \bar{x}_{3}\right\}, x_{1}$ is incompatible nontrivially (see Example 23). Thus, \bar{x}_{1} becomes necessary (a conjunct). Then, Remove $\left(x_{1}, \phi\right)$ executes due to Scan L:6.

Remove $\left(x_{1}, \phi\right): \mathfrak{C}^{\bar{x}_{1}}=\emptyset$ by OvrlEft L:1. $\mathfrak{C}^{x_{1}}=\{1,2\}$, thus $\phi^{x_{1}}=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right)$ by OvrlEft L:7. As a result, $\tilde{\psi}\left(\bar{x}_{1}\right)=\left\{\bar{x}_{3}\right\} \& \tilde{\phi}\left(\neg x_{1}\right)=\left\{\{ \},\left\{\bar{x}_{2}, x_{3}\right\}\right\}$, the effects of \bar{x}_{1} and $\neg x_{1}$. Note that $C_{1} \leftarrow \emptyset$. Then, $\psi_{2} \leftarrow \psi \cup\left\{\bar{x}_{1}\right\} \cup \tilde{\psi}\left(\bar{x}_{1}\right)$ (Remove L:2), and $\mathfrak{L}^{\phi} \leftarrow \mathfrak{L}^{\phi}-\{1\}$ and $\mathfrak{L}^{\psi} \leftarrow \mathfrak{L}^{\psi} \cup\{1\}(\mathrm{L}: 4)$. Also, $\phi_{2} \leftarrow \tilde{\phi}\left(\neg x_{1}\right) \wedge \phi^{\prime}$, where $\tilde{\phi}\left(\neg x_{1}\right)=\left(\bar{x}_{2} \odot x_{3}\right)$ and $\phi^{\prime}=\left(x_{2} \odot \bar{x}_{3}\right)$ (L:5). As a result, $\psi_{2}=\bar{x}_{1} \wedge \bar{x}_{3}$, and $\phi_{2}=\left(\bar{x}_{2} \odot x_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$. Note that $C_{1}=\left\{\bar{x}_{2}, x_{3}\right\}$ and $C_{2}=\left\{x_{2}, \bar{x}_{3}\right\}$. Consequently, $\varphi_{2}=\psi_{2} \wedge \phi_{2}$, and $\operatorname{Scan}\left(\varphi_{2}\right)$ executes due to Remove L:6.
$\operatorname{Scan}\left(\varphi_{2}\right): \mathfrak{C}_{2}=\{1,2\}$ and $\mathfrak{L}^{\phi}=\{2,3\}$ hold in ϕ_{2}. Then, $\left\{x_{2}, \bar{x}_{2}\right\} \cap \psi_{2}=\emptyset$ for $2 \in \mathfrak{L}^{\phi}$, while $\bar{x}_{3} \in \psi_{2}$ for $3 \in \mathfrak{L}^{\phi}$ (L:1). As a result, \bar{x}_{3} is necessary for satisfying φ_{2}, hence $\bar{x}_{3} \Rightarrow \neg x_{3}$, that is, x_{3} is incompatible trivially. Then, Remove $\left(x_{3}, \phi_{2}\right)$ executes due to Scan L:2.

Remove $\left(x_{3}, \phi_{2}\right): \mathfrak{C}_{2}^{\bar{x}_{3}}=\{2\}$, thus $\phi_{2}^{\bar{x}_{3}}=\left(x_{2} \odot \bar{x}_{3}\right)$, and $\mathfrak{C}_{2}^{x_{3}}=\{1\}$, thus $\phi_{2}^{x_{3}}=\left(\bar{x}_{2} \odot x_{3}\right)$. As a result, $\tilde{\psi}_{2}\left(\bar{x}_{3}\right)=\left\{\bar{x}_{2}\right\} \cup\left\{\bar{x}_{2}\right\} \& \tilde{\phi}_{2}\left(\neg x_{3}\right)=\{\{ \}\}$, because $C_{1}=\left\{\bar{x}_{2}\right\}$ consists in $\tilde{\psi}_{2}\left(\bar{x}_{3}\right)$, rather than in $\tilde{\phi}_{2}\left(\neg x_{3}\right)$ (see OvrlEft L:9). Hence, $\psi_{3} \leftarrow \psi_{2} \cup\left\{\bar{x}_{3}\right\} \cup \tilde{\psi}_{2}\left(\bar{x}_{3}\right)$, $\mathfrak{L}^{\phi} \leftarrow \mathfrak{L}^{\phi}-\{3\}$, and $\mathfrak{L}^{\psi} \leftarrow \mathfrak{L}^{\psi} \cup\{3\}$, i.e., $\mathfrak{L}^{\phi}=\{2\}$. Therefore, $\phi_{3}=\{\{ \}\}$, thus $\mathfrak{C}_{3}=\emptyset$, and $\psi_{3}=\bar{x}_{1} \wedge \bar{x}_{3} \wedge \bar{x}_{2}$.
$\operatorname{Scan}\left(\varphi_{3}\right): \bar{x}_{2} \in \psi_{3}$ for $2 \in \mathfrak{L}^{\phi}$ over ϕ_{3}. Then, Remove $\left(x_{2}, \phi_{3}\right)$ executes due to Scan L:2.
Remove $\left(x_{2}, \phi_{3}\right): \tilde{\psi}_{3}\left(\bar{x}_{2}\right)=\emptyset \& \tilde{\phi}_{3}\left(\neg x_{2}\right)=\{\{ \}\}$ due to $\operatorname{OvrlEft}\left(\bar{x}_{2}, \phi_{3}\right)$, because $\mathfrak{C}_{3}^{\bar{x}_{2}}=\emptyset$ and $\mathfrak{C}_{3}^{x_{2}}=\emptyset$, since $\mathfrak{C}_{3}=\emptyset$. Hence, $\mathfrak{L}^{\phi} \leftarrow\{2\}-\{2\}$ and $\phi_{4} \leftarrow \phi_{3}$. Then, $\operatorname{Scan}\left(\varphi_{4}\right)$ executes.

Scan $\left(\varphi_{4}\right)$ terminates: $\hat{\varphi}=\hat{\psi}=\bar{x}_{1} \wedge \bar{x}_{3} \wedge \bar{x}_{2}$ (L:9), and φ collapses to a unique assignment.

Let Scope $\left(x_{3}, \phi\right)$ execute before Scope $\left(x_{1}, \phi\right)$ due to Scan L:6 (see Theorem 41).
Scope $\left(x_{3}, \phi\right): \psi\left(x_{3}\right) \leftarrow\left\{x_{3}\right\}$ and $\phi_{*} \leftarrow \phi\left(\right.$ L:1). Then, $\mathfrak{C}_{*}^{x_{3}}=\{2\}$ due to $\operatorname{OvrlEft}\left(x_{3}, \phi_{*}\right)$ $\mathrm{L}: 1$, hence $\phi_{*}^{x_{3}}=\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right)$. As a result, $c_{2} \leftarrow\left\{\bar{x}_{1}, x_{2}\right\}$ and $\tilde{\psi}_{*}\left(x_{3}\right) \leftarrow \tilde{\psi}_{*}\left(x_{3}\right) \cup c_{2}$ (L:3,5). Moreover, $\mathfrak{C}_{*}^{\bar{x}_{3}}=\{1,3\}$ (L:7), hence $\phi_{*}^{\bar{x}_{3}}=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$. Then, $C_{1} \leftarrow\left\{x_{1}, \bar{x}_{3}\right\}-\left\{\bar{x}_{3}\right\}$, $\tilde{\psi}_{*}\left(x_{3}\right) \leftarrow \tilde{\psi}_{*}\left(x_{3}\right) \cup C_{1}$, and $C_{1} \leftarrow \emptyset$. Likewise, $C_{3} \leftarrow\left\{x_{2}, \bar{x}_{3}\right\}-\left\{\bar{x}_{3}\right\}, \tilde{\psi}_{*}\left(x_{3}\right) \leftarrow \tilde{\psi}_{*}\left(x_{3}\right) \cup C_{3}$, and $C_{3} \leftarrow \emptyset\left(\right.$ OvrlEft L:8-9). Consequently, $\tilde{\psi}_{*}\left(x_{3}\right) \leftarrow\left\{\bar{x}_{1}, x_{2}, x_{1}\right\} \& \tilde{\phi}_{*}\left(\neg \bar{x}_{3}\right) \leftarrow \phi_{*}^{\bar{x}_{3}}$ (L:11). Note that $\phi_{*}^{\bar{x}_{3}}=\{\{ \},\{ \}\}$, since $C_{1}=C_{3}=\emptyset$. Then, $\psi\left(x_{3}\right) \leftarrow \psi\left(x_{3}\right) \cup\left\{x_{3}\right\} \cup \tilde{\psi}_{*}\left(x_{3}\right)$ due to Scope L:4, hence $\psi\left(x_{3}\right)=\left\{x_{3}, \bar{x}_{1}, x_{2}, x_{1}\right\}$. Since $\psi\left(x_{3}\right) \supseteq\left\{\bar{x}_{1}, x_{1}\right\}$ (L:5), x_{3} is incompatible nontrivially, i.e., $x_{3} \Rightarrow \bar{x}_{1} \wedge x_{1}$ and $\neg x_{3} \Rightarrow \bar{x}_{3}$. Then, Remove (x_{3}, ϕ) executes due to Scan L:6.

Remove $\left(x_{3}, \phi\right): \phi^{\bar{x}_{3}}=\left(x_{1} \odot \bar{x}_{3}\right) \wedge\left(x_{2} \odot \bar{x}_{3}\right)$ due to $\mathfrak{C}^{\bar{x}_{3}}=\{1,3\}$, and $\phi^{x_{3}}=\left(x_{1} \odot \bar{x}_{2} \odot x_{3}\right)$ due to $\mathfrak{C}^{x_{3}}=\{2\}$. Then, OvrlEft $\left(\bar{x}_{3}, \phi\right)$ returns $\tilde{\psi}\left(\bar{x}_{3}\right)=\left\{\bar{x}_{1}, \bar{x}_{2}\right\} \& \tilde{\phi}\left(\neg x_{3}\right)=\left\{\left\{x_{1}, \bar{x}_{2}\right\}\right\}$ (Remove L:1), $\psi_{2} \leftarrow \psi \cup\left\{\bar{x}_{3}\right\} \cup \tilde{\psi}\left(\bar{x}_{3}\right)$ (L:2), and $\mathfrak{L}^{\phi} \leftarrow \mathfrak{L}^{\phi}-\{3\}$ and $\mathfrak{L}^{\psi} \leftarrow \mathfrak{L}^{\psi} \cup\{3\}$ (L:4). As a result, $\psi_{2}=\bar{x}_{3} \wedge \bar{x}_{1} \wedge \bar{x}_{2}$. Moreover, $\phi_{2} \leftarrow \tilde{\phi}\left(\neg x_{3}\right) \wedge \phi^{\prime}($ L:5 $)$, in which $\tilde{\phi}\left(\neg x_{3}\right)=\left(x_{1} \odot \bar{x}_{2}\right)$ and ϕ^{\prime} is empty. Therefore, $\varphi_{2}=\psi_{2} \wedge \phi_{2}$. Note that $C_{1}=\left\{x_{1}, \bar{x}_{2}\right\}$, hence $\mathfrak{C}_{2}=\{1\}$. Recall that $\mathfrak{L}^{\phi}=\{1,2\}$, and that $\mathfrak{L}^{\psi}=\{3\}$. Then, $\operatorname{Scan}\left(\varphi_{2}\right)$ executes due to Remove $\left(x_{3}, \phi\right)$ L: 6 .
$\operatorname{Scan}\left(\varphi_{2}\right): \mathfrak{L}^{\phi}=\{1,2\}$ such that $\bar{x}_{2} \in \psi_{2}$ and $\bar{x}_{1} \in \psi_{2}$. Thus, \bar{x}_{2} and \bar{x}_{1} are necessary, hence x_{2} and x_{1} are incompatible trivially. Then, $\operatorname{Remove}\left(x_{1}, \phi_{2}\right)$ and $\operatorname{Remove}\left(x_{2}, \phi_{2}\right)$ execute.

The fact that the order of incompatibility check is arbitrary (Theorem 41) is illustrated as follows. Scope $\left(x_{3}, \phi\right)$ returns x_{3} is incompatible nontrivially, since $x_{3} \Rightarrow \bar{x}_{1} \wedge x_{1}$. Therefore, $\neg \bar{x}_{1} \vee \neg x_{1} \Rightarrow \neg x_{3}$, hence $x_{1} \vee \bar{x}_{1} \Rightarrow \bar{x}_{3}$. Then, $\bar{x}_{3} \Rightarrow \bar{x}_{1}$ due to $C_{1}=\left(x_{1} \odot \bar{x}_{3}\right)$, and $\bar{x}_{1} \Rightarrow \neg x_{1}$. Thus, x_{1} is still incompatible, but trivially (cf. Scope $\left(x_{1}, \phi\right)$), even if $\neg x_{3}$ holds. That is, x_{1} the nontrivial incompatible in ϕ due to $x_{1} \Rightarrow \bar{x}_{3} \wedge x_{3}$, i.e., $\neg \bar{x}_{3} \vee \neg x_{3} \Rightarrow \neg x_{1}$, is incompatible trivially in ψ_{2} due to $\bar{x}_{1} \Rightarrow \neg x_{1}$. See Scan $\left(\varphi_{2}\right)$ above. Also, since $x_{3} \notin C_{k}$ and $\bar{x}_{3} \notin C_{k}$ in ϕ_{s} for any $s \geqslant 2$, $\not \models \varphi_{s}\left(x_{3}\right)$ for all $s \geqslant 2$, even if any r_{i} is removed from some C_{k} in $\phi_{s}, s \geqslant 2$.

4 Conclusion

X3SAT has proved to be effective to show $\mathbf{P}=\mathbf{N P}$. A polynomial time algorithm checks unsatisfiability of $\phi\left(r_{i}\right)$ such that $\not \models \phi\left(r_{i}\right)$ iff $\psi_{s}\left(r_{i}\right)$ involves $x_{j} \wedge \bar{x}_{j}$ for some s. Thus, $\phi\left(r_{i}\right)$ reduces to $\psi\left(r_{i}\right) . \psi\left(r_{i}\right)$ denotes a conjunction of literals that are true, since each r_{j} such that $\not \models \psi_{s}\left(r_{j}\right)$ is removed from ϕ. Hence, ϕ is satisfiable iff $\psi\left(r_{i}\right)$ is satisfied for any $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. Thus, it is easy to verify satisfiability of ϕ via satisfiability of $\psi\left(x_{1}\right), \psi\left(\bar{x}_{1}\right), \ldots, \psi\left(x_{n}\right), \psi\left(\bar{x}_{n}\right)$.
_— References
1 Javier Esparza. Decidability and complexity of Petri net problems - an introduction. In Wolfgang Reisig and Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Basic Models, volume 1491 of LNCS, pages 374-428. Springer Berlin Heidelberg, 1998.
2 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC '78, pages 216-226, New York, NY, USA, 1978. ACM. URL: http://doi.acm.org/10.1145/800133.804350.

A Proof of Theorem 39/40

This section gives a rigorous proof of Theorem 39/40. Recall that the φ_{s} scan is interrupted iff ψ_{s} involves $x_{i} \wedge \bar{x}_{i}$ for some i and s, that is, φ is unsatisfiable, which is trivial to verify. Recall also that the $\varphi_{\hat{s}}$ scan terminates iff $\psi_{\hat{s}}\left(r_{i}\right)=\mathbf{T}$ for any $i \in \mathfrak{L} \hat{\phi}, r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$. Moreover, $\hat{\varphi}=\hat{\psi} \wedge \hat{\phi}$ such that $\hat{\psi}=\mathbf{T}$ (see Scan L:9 and Note 27). Therefore, when the scan terminates, satisfiability of $\hat{\phi}$ is to be proved, which is addressed in this section. Let $\phi:=\hat{\phi}$, i.e., $\mathfrak{L}:=\mathfrak{L} \hat{\phi}$.

- Theorem 48 (cf. 39-40/Claim 1). These statements are equivalent: a) $\not \models \phi\left(r_{j}\right)$ iff $\not \models \psi_{s}\left(r_{j}\right)$ for some s. b) $\psi\left(r_{i}\right)=\mathbf{T}$ for any $i \in \mathfrak{L}$. c) $\vDash_{\alpha} \phi$ by $\alpha=\left\{\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \ldots, \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)\right\}$.

Proof. We will show $a \Rightarrow b, b \Rightarrow c$, and $c \Rightarrow a$ (see Kenneth H. Rosen, Discrete Mathematics and its Applications, 7E, pg. 88). Firstly, $a \Rightarrow b$ holds, because a holds by assumption (see Note 29 and Scope L:5), and b holds by definition (see Scan L:9). Moreover, $\psi\left(r_{i}\right) \vDash \psi\left(r_{i} \mid r_{j}\right)$ due to Lemma $37 / 38$ for every $r_{i} \in\left\{x_{i}, \bar{x}_{i}\right\}$ and $i \in \mathfrak{L}$. Next, we will show $b \Rightarrow c$. We do this by showing that satisfiability of ϕ is preserved throughout the assignment α construction, $\alpha=\left\{\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \ldots, \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)\right\}$, because a partial assignment $\psi\left(r_{i} \mid r_{j}\right)$ is constructed arbitrarily through consecutive steps having the Markov property. Thus, construction of $\psi\left(r_{i} \mid r_{j}\right)$ in the next step is independent from the preceding steps, and depends only upon $\psi\left(r_{j} \mid r_{k}\right)$ in the present step (see also Lemma 33/34). The construction process is as follows.

Step 0 : Pick any $r_{i_{0}}$ in ϕ. The reductions due to $r_{i_{0}}$ partition \mathfrak{L} into $\mathfrak{L}\left(r_{i_{0}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{0}}\right)$. Note that $i_{0} \in \mathfrak{L}$ and $i_{0} \in \mathfrak{L}\left(r_{i_{0}}\right)$. Hence, $i_{0} \notin \mathfrak{L}^{\prime}\left(r_{i_{0}}\right)$ by Lemma 32. Moreover, $\psi\left(r_{i_{0}}\right)$ holds such that $\phi\left(r_{i_{0}}\right)=\psi\left(r_{i_{0}}\right) \wedge \phi^{\prime}\left(r_{i_{0}}\right)$ in Step 0 . Then, pick an arbitrary $r_{i_{1}}$ in $\phi^{\prime}\left(r_{i_{0}}\right)$ for Step 1.

Step 1: $\mathfrak{L}\left(r_{i_{0}}\right) \cap \mathfrak{L}^{\prime}\left(r_{i_{0}}\right)=\emptyset$ in Step 0, and the reductions due to $r_{i_{1}}$ over $\phi^{\prime}\left(r_{i_{0}}\right)$ partition $\mathfrak{L}^{\prime}\left(r_{i_{0}}\right)$ into $\mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$. Thus, $\mathfrak{L}\left(r_{i_{0}}\right) \cap \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)=\emptyset$, since $\mathfrak{L}^{\prime}\left(r_{i_{0}}\right) \supseteq \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)$. As a result, \mathfrak{L} is partitioned into $\mathfrak{L}\left(r_{i_{0}}\right), \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)$, and $\mathfrak{L}^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$ due to $r_{i_{0}}$ and $r_{i_{1}}$. Moreover, $\psi\left(r_{i_{1}} \mid r_{i_{0}}\right)$ holds due to Lemma 37/38. Thus, $\psi\left(r_{i_{0}}\right)$ and $\psi\left(r_{i_{1}} \mid r_{i_{0}}\right)$ are disjoint, as well as true. Therefore, $\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right)=\mathbf{T}$, and $\phi\left(r_{i_{0}}, r_{i_{1}}\right)=\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right) \wedge \phi^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$.

Step 2: The preceding steps have partitioned \mathfrak{L} into $\mathfrak{L}\left(r_{i_{0}}\right) \cup \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$, and $r_{i_{2}}$ in $\phi^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$ partitions $\mathfrak{L}^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right)$ into $\mathfrak{L}\left(r_{i_{2}} \mid r_{i_{1}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{2}} \mid r_{i_{1}}\right)$, i.e., $\mathfrak{L}^{\prime}\left(r_{i_{1}} \mid r_{i_{0}}\right) \supseteq \mathfrak{L}\left(r_{i_{2}} \mid r_{i_{1}}\right)$. Then, $\left(\mathfrak{L}\left(r_{i_{0}}\right) \cup \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right)\right) \cap \mathfrak{L}\left(r_{i_{2}} \mid r_{i_{1}}\right)=\emptyset$. Thus, $\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right)$ and $\psi\left(r_{i_{2}} \mid r_{i_{1}}\right)$ are disjoint, as well as true. Therefore, $\phi\left(r_{i_{0}}, r_{i_{1}}, r_{i_{2}}\right)=\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right) \wedge \psi\left(r_{i_{2}} \mid r_{i_{1}}\right) \wedge \phi^{\prime}\left(r_{i_{2}} \mid r_{i_{1}}\right)$, in which $\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right) \wedge \psi\left(r_{i_{2}} \mid r_{i_{1}}\right)=\mathbf{T}$. Note that $\alpha \supseteq\left\{\psi\left(r_{i_{0}}\right), \psi\left(r_{i_{1}} \mid r_{i_{0}}\right), \psi\left(r_{i_{2}} \mid r_{i_{1}}\right)\right\}$, and that \mathfrak{L} is partitioned into $\mathfrak{L}\left(r_{i_{0}}\right), \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right), \mathfrak{L}\left(r_{i_{2}} \mid r_{i_{1}}\right)$, and $\mathfrak{L}^{\prime}\left(r_{i_{2}} \mid r_{i_{1}}\right)$ such that $\mathfrak{L}^{\prime}\left(r_{i_{2}} \mid r_{i_{1}}\right) \neq \emptyset$.

Step n : $r_{i_{n}}$ partitions $\mathfrak{L}^{\prime}\left(r_{i_{m}} \mid r_{i_{l}}\right)$ into $\mathfrak{L}\left(r_{i_{n}} \mid r_{i_{m}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{n}} \mid r_{i_{m}}\right)$ such that $\mathfrak{L}^{\prime}\left(r_{i_{n}} \mid r_{i_{m}}\right)=\emptyset$. Then, $\mathfrak{L}\left(r_{i_{0}}\right) \cup \mathfrak{L}\left(r_{i_{1}} \mid r_{i_{0}}\right) \cup \cdots \cup \mathfrak{L}\left(r_{i_{m}} \mid r_{i_{l}}\right)$ and $\mathfrak{L}^{\prime}\left(r_{i_{m}} \mid r_{i_{l}}\right)$, hence $\mathfrak{L}\left(r_{i_{n}} \mid r_{i_{m}}\right)$, form a partition of \mathfrak{L}. Therefore, $\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right) \wedge \cdots \wedge \psi\left(r_{i_{m}} \mid r_{i_{l}}\right)$ and $\psi\left(r_{i_{n}} \mid r_{i_{m}}\right)$ are disjoint, as well as true. Thus, $\alpha=\phi\left(r_{i_{0}}, \ldots, r_{i_{n}}\right)=\psi\left(r_{i_{0}}\right) \wedge \psi\left(r_{i_{1}} \mid r_{i_{0}}\right) \wedge \cdots \wedge \psi\left(r_{i_{m}} \mid r_{i_{l}}\right) \wedge \psi\left(r_{i_{n}} \mid r_{i_{m}}\right)$ is satisfied.

Consequently, ϕ is composed of $\psi($.$) disjoint and satisfied, thus \vDash_{\alpha} \phi$, hence $b \Rightarrow c$ holds. Finally, we show $c \Rightarrow a . r_{i} \wedge \phi$ transforms into $\psi\left(r_{i}\right) \wedge \phi^{\prime}\left(r_{i}\right)$, thus $\left(r_{i} \wedge \phi\right) \equiv\left(\psi\left(r_{i}\right) \wedge \phi^{\prime}\left(r_{i}\right)\right)$. Since ϕ, and $\psi\left(r_{i}\right)$ for any r_{i} are satisfied, $\phi^{\prime}\left(r_{i}\right)$ for any r_{i} is satisfied. Hence, unsatisfiability of $\psi_{s}\left(r_{i}\right)$ for some s is necessary and sufficient for the unsatisfiability of $\phi_{s}\left(r_{i}\right)$ for any s.

- Note. The assignment α construction is driven by partitioning the set $\mathfrak{L}^{\prime}($.$) such that$ $\mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(r_{i_{0}}\right)$ in Step 1 , and $\mathfrak{L} \leftarrow \mathfrak{L}-\mathfrak{L}\left(r_{i_{n-1}} \mid r_{i_{n-2}}\right)$ for $i_{n} \in \mathfrak{L}^{\prime}\left(r_{i_{n-1}} \mid r_{i_{n-2}}\right)$ in Step $n \geqslant 2$.
- Note. $\psi\left(r_{i}\right) \equiv \phi\left(r_{i}\right)$ by Theorem 48. Thus, the formula $\phi=\bigwedge_{k \in \mathfrak{C}} C_{k}$ transforms into the formula $\phi^{\prime}=\bigwedge_{i \in \mathfrak{L}} \mathcal{C}_{i}$, where $C_{k}=\left(r_{i} \odot r_{j} \odot r_{v}\right)$ and $\mathcal{C}_{i}=\left(\psi\left(x_{i}\right) \oplus \psi\left(\bar{x}_{i}\right)\right)$. See also Note 27 .
- Note (Construction of α). In order to form a partition over the set ϕ, α is constructed such that $\psi\left(r_{i_{1}} \mid r_{i_{0}}\right)=\psi\left(r_{i_{1}}\right)-\psi\left(r_{i_{0}}\right)$, and $\psi\left(r_{i_{n}} \mid r_{i_{n-1}}\right)=\psi\left(r_{n}\right)-\left(\psi\left(r_{i_{0}}\right) \cup \cdots \cup \psi\left(r_{i_{n-1}} \mid r_{i_{n-2}}\right)\right)$ for $n \geqslant 2$. On the other hand, if the construction involves no set partition, then $\alpha=\bigcup \psi\left(r_{i}\right)$ for $i=\left(i_{0}, i_{1}, \ldots, i_{n}\right)$, where $i_{0} \in \mathfrak{L}, i_{1} \in \mathfrak{L}^{\prime}\left(r_{i_{0}}\right), \ldots, i_{n} \in \mathfrak{L}^{\prime}\left(r_{i_{m}} \mid r_{i_{l}}\right)$, thus $r_{i_{0}} \prec r_{i_{1}} \prec \cdots \prec r_{i_{n}}$. Note that there is no need to construct $\phi^{\prime}\left(r_{i}\right)$ in Scan/Scope L:9 (cf. Algorithm 5).

For instance, if Example 45 involves no set partition, then $\alpha=\left\{\psi\left(\bar{x}_{7}\right), \psi\left(x_{2}\right), \psi\left(x_{1}\right)\right\}$, in which $\psi\left(\bar{x}_{7}\right)=\left\{\bar{x}_{7}, \bar{x}_{6}\right\}, \psi\left(x_{2}\right)=\left\{x_{2}\right\}$, and $\psi\left(x_{1}\right)=\left\{x_{1}, x_{2}, \bar{x}_{7}, \bar{x}_{6}\right\}$. Also, $\bar{x}_{7} \prec x_{2} \prec x_{1}$ due to $x_{2} \in \phi^{\prime}\left(\bar{x}_{7}\right)$ and $x_{1} \in \phi^{\prime}\left(x_{2} \mid \bar{x}_{7}\right)$. Moreover, $\psi\left(\bar{x}_{7}\right), \psi\left(x_{2} \mid \bar{x}_{7}\right)$, and $\psi\left(x_{1} \mid x_{2}\right)$ form a partition over the set ϕ, where $\psi\left(x_{2} \mid \bar{x}_{7}\right)=\psi\left(x_{2}\right)-\psi\left(\bar{x}_{7}\right)$ and $\psi\left(x_{1} \mid x_{2}\right)=\psi\left(x_{1}\right)-\left(\psi\left(x_{2} \mid \bar{x}_{7}\right) \cup \psi\left(\bar{x}_{7}\right)\right)$. As a result, $\alpha=\phi\left(\bar{x}_{7}, x_{2}, x_{1}\right)=\left\{\bar{x}_{7}, \bar{x}_{6}\right\} \cup\left\{x_{2}\right\} \cup\left\{x_{1}\right\}$ such that $\left\{\bar{x}_{7}, \bar{x}_{6}\right\} \cap\left\{x_{2}\right\} \cap\left\{x_{1}\right\}=\emptyset$.

