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ABSTRACT 

 In  this  research  paper,  polynomial  time  algorithms  for  graph  isomorphism  problem     ( i.e. 

effectively  deciding  whether  two  graphs  are  isomorphic  ) are  discussed  under  some  

conditions. It  is  reasoned  that  the  cardinality  of  graphs  for  which  the  conditions  hold  are  

much  larger  than  those  for  which  the  conditions  donot  hold.   Thus,  a  probabilistic  

polynomial  time  algorithm  is  designed. The  algorithms  are  essentially  based  on  linear  

algebraic  concepts  related  to  graphs. Also,  some  new  results  in  spectral  graph  theory  are  

discussed. 

1. INTRODUCTION:     

Directed/undirected, weighted/unweighted  graphs  naturally  arise  in  various  

applications.  Such  graphs  are  associated  with  matrices  such  as  weight  matrix,  

incidence  matrix, adjacency  matrix, Laplacian  etc.  Such  matrices  implicitly  specify  

the  number  of  vertices/ edges, adjacency  information  of  vertices (with edge 

connectivity) and other related information (such as edge weights). In  recent years, there 

is explosive interest in capturing networks arising in applications such as social networks, 

transportation networks, bio-informatics related networks (e.g. gene regulatory networks) 

using suitable graphs. Thus, NETWORK SCIENCE led to important problems such as  

community extraction, frequent sub-graph mining etc.  In  many  applications  the 

problem  of  deciding  whether  two  given  graphs  are  isomorphic  (  i.e.  the  two  

graphs  are  essentially  same  upto  relabeling  the  vertices )  naturally  arises.  This 

research  paper  provides one possible  solution  to  such  a  problem. 

            This research paper is organized in the following manner. In section 2, relevant research 

            literature  is briefly   reviewed. In section 3, two  polynomial  time algorithms, to test if  

            two graphs are isomorphic are discussed.  In  section  4,  interesting results related to 

            spectral graph theory are discussed. The research paper concludes in  section 5. 

 

2. REVIEW  OF  RESEARCH  LITERATURE: 

 

            L. Babai recently claimed quasi-polynomial time algorithm for determining if two graphs  

            are isomorphic [1] . This is the most recent contribution to the graph isomorphism  

            problem. Specifically  Babai  showed  that  graph  isomorphism  problem  can  be  

            solved  in ( exp ( (log 𝑛)𝑂(1) )  time  [2].  For  the  problem,  the  previous  known  best 

            bound  was  exp  (𝑜(𝑠𝑞𝑢𝑎𝑟𝑒 𝑟𝑜𝑜𝑡 𝑜𝑓 (𝑛 log 𝑛 ) )),  where  ′𝑛′  is the  number  of   

            vertices ( Luks,  1982, [9] ).There are  other research efforts which provide approximate 

             solutions to the problem  (  i.e.  approximate  algorithms  were  designed ) [3], [4],  



             [5],[6],[9].  Also,  the problem  of  solving  Graph  Isomorphism  has  been  attempted  

             using  the  quadratic  non-negative  matrix  factorization  problem[ 15]. 

 

3.  POLYNOMIAL TIME ALGORITHMS FOR GRAPH  ISOMORPHISM    

PROBLEM  ( UNDER  SOME  CONDITIONS ) : 

 

We  now briefly  review   relevant   results  from  spectral  graph  theory. 

 

3.1 Spectral Graph Theory: Spectral graph theory deals with the study of properties of  

a  graph in relationship to the characteristic  polynomial, eigenvalues and 

eigenvectors of matrices associated with the graph, such as its adjacency matrix or 

Laplacian matrix.  

 

 An undirected graph has a symmetric adjacency matrix A and hence all its 

eigenvalues  are real.  Furthermore, the eigenvectors are orthonormal.  

 

            We have the following definition 

 

            Definition: An undirected graph’s SPECTRUM is the multiset of real eigenvalues of 

            its adjacency   matrix, A. Graphs whose spectrum is same are called co-spectral. 

 

           Remark 1. It is well known that  isomorphic  graphs are co-spectral. But co-spectral 

           graphs need not be isomorphic. Thus spectrum being  same is only a necessary condition 

           for graphs to be isomorphic ( but not sufficient ). Thus, it is  clear that the eigenvectors of 

           adjacency matrices of isomorphic graphs must be constrained in a  suitable manner  

           ( orthonormal basis vectors of the symmetric adjacency matrices are some how  related 

            for isomorphic graphs ). 

 

3.2. Polynomial Time Algorithm to determine cospectral Graphs: 

 

Lemma  1:  The  problem  of  determining  if  two  graphs  are  Co-Spectral  is  in  P  (  i.e.  a  

polynomial  time  algorithm  exists ) 

 

Proof:   Since  the  elements  of  adjacency  matrix  are  ‘0’s  and  ‘1’s,  the characteristic 

polynomial of it  is a polynomial with integer coefficients. Thus, there exists a polynomial time 

algorithm [7] ( LLL algorithm ) to compute the zeroes of such  polynomial i.e. spectrum of 

associated graph. Thus the problem of determining if two graphs are cospectral is in P ( class of 

polynomial time algorithms )………………………………………………………..Q.E.D. 

 

Note: By Perron-Frobenius theorem, the spectral radius of an irreducible adjacency matrix ( 

non-negative matrix ) is real, positive and simple. Thus, to check for the necessary condition on 

isomorphic graphs, a first step is to determine if the spectral radius of two gaphs are exactly 

same. 

 

Definition: Two graphs are isomorphic, if the vertices of one graph are obtained by                

                    relabeling the vertices of another graph. 



 

3.3.  Necessary  and  Sufficient  Conditions:  Isomorphism  of  Graphs: 

 

3.3.1 Necessary Conditions: Isomorphism of Graphs. 

 

• The following necessary conditions for isomorphism of graphs with adjacency matrices A, B 

can be checked before applying the following algorithm 

 

• Check if Trace(A) = Trace(B) and if   Determinant( A ) = Determinant( B ) 

 

• Check if Spectral radius of A, B are same. This can be done using the Jacob’s algorithm for 

computing the largest zero of a polynomial. Since the coefficients of characteristic polynomial 

are integers, we expect the computational complexity of this task to be smaller. If this step 

fails, all other zeroes need not be computed. 

 

We  now  consider   two  separate   Cases ( based  on  the  eigenvalues  of  the  graphs i.e. the  

multiset  of  zeroes  of  characteristics  polynomial  of  the  associated  adjacency  matrices ): 

 

CASE I:  Eigenvalues  of  Adjacency  Matrix   are  all  DISTINCT:  It  should  be noted  that 

there are  several  interesting  graphs  all  of  whose  eigenvalues  are  distinct. In fact, given  a  

fixed   number  of   vertices,  the  number  of  graphs  with  distinct  eigenvalues  are  more  than  

the  graphs  with  repeated  eigenvalues. 

 

To  provide  the  necessary  and  sufficient  conditions  for  graph  isomorphism,  we  need  the  

following  well  know  Lemma   from  Linear  Algebra. 

 

Lemma  2:  Every  symmetric  matrix  has  UNIQUE  spectral   representation   ( Eigen  

Decomposition )  when  all  its  eigenvalues  are  distinct. 

 

Proof:  Refer  Linear  Algebra  book  [11]                                         Q.E.D. 

 

Let the adjacency matrices of two given co-spectral graphs be A, B. Suppose the graphs are 

isomorphic i.e. there exists a permutation matrix P such that  

 

                        𝐵 = 𝑃 𝐴 𝑃𝑇………………….(1) 
But, since A is a symmetric  matrix, we have that  

 

𝐴 = 𝐹 𝐷 𝐹𝑇 
where D is the Diagonal matrix of eigenvalues of A and F is an UNIQUE  orthogonal matrix   

( i.e. 𝐹𝑇 = 𝐹−1 )  𝑤ℎ𝑜𝑠𝑒 columns are right eigenvectors of A. Also, we have that 

 

                    𝐵 =   𝐺 𝐷 𝐺𝑇……………..(2) 
 

Thus, we must have that  

𝐺 = 𝑃 𝐹   𝑜𝑟  𝐺 𝐹𝑇 = 𝑃. 
 



But, we know that a Permutation matrix, P must be  DOUBLY STOCHASTIC and there is 

precisely   one  𝑝𝑖𝑗 = 1  in each row and each column. 

 

Thus, the orthogonal matrices G, F must be related by the above equation i.e. we need to check 

if P is doubly stochastic and if precisely one  𝑝𝑖𝑗 = 1   in each row and each column. 

Therefore, the above condition is necessary and sufficient, when  the  eigenvalues  are  distinct  

real  numbers 

 

Hence,  we  have  proved  the  following  Lemma. 

 

Lemma 3:  Given  the  above  Spectral  Representations of  adjacency  matrices A, B                    

( with  unique G, F )  of  two  graphs,  they  are  isomorphic  if  and  only  if  𝐺 𝐹𝑇 = 𝑃, where P  

is  a  Permutation  matrix. 

 

The computational complexity of   checking the above condition leads to a 

polynomial time algorithm under some conditions. Based on the lemma 3, in  the  

following  sub-section,  we summarize the  steps of the algorithm to determine if  

two graphs are isomorphic,  when  the  eigenvalues  are distinct. 

  

3.3.2  Polynomial Time Algorithm  under  some  conditions:  Algorithmic  Steps:  Proof  

of  Correctness  of  the  Algorithm:  Computational  Complexity: 

 

(0)  Det  ( λ I − A) is  a polynomial with integer coefficients. Also,  

            characteristic  polynomial  of  B  has  integer  coefficients. If the eigenvalues of A, B  are 

            not same, then they are not even cospectral  and the algorithm stops. If they are  

            cospectral, proceed to the following step to determine if  they are isomorphic graphs. 

 

            Computational Complexity: A polynomial time algorithm ( LLL Algorithm ) [7]   exists  

                                                          for this problem. 

 

(1) Compute Spectral representation of adjacency matrices A, B of two given graphs:  

 

𝐴 = 𝐹 𝐷 𝐹𝑇  𝑎𝑛𝑑   𝐵 =   𝐺 𝐷 𝐺𝑇   
 

            where D is the common set of eigenvalues and  F,  G are the unique orthogonal  matrices. 

 

            Computational Complexity: Efficient polynomial time algorithms exist for this problem  

                                                          when the eigenvalues are rational numbers. Effectively,  

                                                           eigenvectors of A, B are computed in polynomial time. 

                                                          Gaussian  Elimination  to  compute  every  eigenvector 

                                                           requires atmost  𝑂(𝑁3) Computation (additions, 

                                                           multiplications).  Thus, in  the worst case, this step requires  

                                                           𝑂(𝑁4) computations (additions, multiplications)  for     

                                                           computing  all  the  eigenvectors. 

 

             Note:  Research  effort  motivated  by  Strassen’s  algorithm  currently  requires 𝑂(𝑁2.4) 



                         Computations. Thus  the  Step  (2)  requires  smaller  number  of  computations. 

 

(2) Determine if 𝐺 𝐹𝑇 = 𝑃 , where P is a Permutation matrix i.e. if  P is doubly stochastic  

and there is precisely one  𝑝𝑖𝑗 = 1  in each row and  each  column. 

 

Computational  Complexity: Efficient polynomial time algorithms  are well known for 

                                               this problem. This step requires  𝑂(𝑁2) comparisions. 

 

Note: If the eigenvalues of A, B are rational numbers, polynomial time algorithm definitely 

exists. Even if the eigenvalues are irrational numbers, it is possible that a polynomial time 

algorithm can be found. 

 

Note: For step 1, Prof. Lovasz informed the author that if we assume that exact real arithmetic 

can be carried out, polynomial time algorithm exists. He also informed that if we can model the 

problem in an approximate computing model, polynomial time algorithm exists [8]. 

   

 Graphs  with  Distinct  Spectra  ( i.e.  eigenvalues of  adjacency  matrix  are  all  

distinct  real  numbers ): 

 

Lemma  4:  For  a  given  number  of  vertices,  the  number  of  graphs  all  of  whose  

eigenvalues  are  distinct  are  larger  than  the  number  of  graphs  for  which some of the  

eigenvalues  are  repeated. 

 

Proof:  In  view of   existence  of  polynomial  time  algorithm  for  determining  graph  

isomorphism  when  the  eigenvalues ( of  adjacency matrix ) are  distinct,  we  would  like  to  

determine  the  ratio  of  polynomials  ( of  a  fixed  degree, N ) with  integer  coefficients  whose  

zeroes  are  distinct  to  those  with  repeated  zeroes.  This  ratio  can  be  readily  determined 

from  the  following   ratio  i.e. 

 
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠  𝑜𝑓  𝑑𝑒𝑔𝑟𝑒𝑒  𝑁 𝑤𝑖𝑡ℎ  𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑  𝑧𝑒𝑟𝑜𝑒𝑠

𝑇𝑜𝑡𝑎𝑙  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠  𝑜𝑓  𝐷𝑒𝑔𝑟𝑒𝑒  𝑁
 . 

(since  the  denominator  is  a  sum  of  numerator  and  polynomials  with  distinct  roots ). 

 It  is  clear  that  the  characteristic  polynomial  of   N x N  adjacency  matrix  (  with  { 0, 1 }  

elements )  i.e.  Det ( λ I − A) = f ( λ)  is  a  polynomial,  all  of  whose  integer  coefficients  are 

bounded  in  absolute  value  by a  constant  ‘𝑛′. 
We  first  determine  the  ratio  for   quadratic  polynomials  i.e. 𝑁 = 2.  It  readily  follows  that  

since  all  the  coefficients  are  bounded, they  can  assume  2 𝑛 + 1   values. Hence  the  above  

ratio  becomes 

2 (2 𝑛 + 1 )2

(2 𝑛 + 1 )3
=

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐𝑠  𝑤𝑖𝑡ℎ  𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑  𝑧𝑒𝑟𝑜𝑒𝑠

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐𝑠
 . 

The  numerator is  determined  from  the  fact  that  the  quadratic  has  repeated  roots  if  and  

only  if  the  discriminant  is  zero.  More  explicitly,  suppose  𝑎 𝑥2 + 𝑏 𝑥 + 𝑐  is  the  quadratic  

polynomial  all  of  whose  coefficients  are  bounded  in  magnitude  by  𝑛.  The  discriminant  is  

zero  if  and  only  if  𝑏2 = 4 𝑎 𝑐.  For  each  possible  pair  of  values  for  integers  { 𝑎, 𝑐 },  there  

are  atmost  2  integer  values  for  𝑏.  Consequently,  there  are  atmost  2 (2 𝑛 + 1 )2  quadratics  

whose  zeroes  are  repeated. 



Now, we generalize  the  above  argument  for  polynomial  of  an  arbitrary  degree N.  In this  

case, the discriminant will form an algebraic surface in (N+1)-dimensional space. Hence, by an 

exactly analogus argument for  N =2,  there  are  atmost  (𝑐)(𝑛𝑁) polynomials  with repeated  

roots. Also,  there  are  a  total  of  (2 𝑛 + 1 )𝑁+1  polynomials  of  degree  N,  all  of  whose  

coefficients  are  bounded  in  magnitude  by  𝑛.  Thus,  the  ratio  becomes 

𝑐 𝑛𝑁

(2 𝑛 + 1 )𝑁+1
 . 

From  this  ratio,  it  readily  follows  that,  the  derived  ratio 

 
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠  𝑜𝑓  𝑑𝑒𝑔𝑟𝑒𝑒  𝑁 𝑤𝑖𝑡ℎ  𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑  𝑧𝑒𝑟𝑜𝑒𝑠

  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠  𝑜𝑓  𝐷𝑒𝑔𝑟𝑒𝑒  𝑁  𝑤𝑖𝑡ℎ  𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡  𝑟𝑜𝑜𝑡𝑠 
 

will  be  strictly  less  than  one.                                                                   

It  is  clear  that  given  the degree of  polynomial  N,  the  bound ′𝑛′  depends on 𝑁. 
Thus,  the  above  two  ratios  are 

𝜃(𝑁, 𝑛 ) =
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠  𝑜𝑓  𝑑𝑒𝑔𝑟𝑒𝑒  𝑁 𝑤𝑖𝑡ℎ  𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑  𝑧𝑒𝑟𝑜𝑒𝑠

𝑇𝑜𝑡𝑎𝑙  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠  𝑜𝑓  𝐷𝑒𝑔𝑟𝑒𝑒  𝑁
   𝑎𝑛𝑑 

𝛽(𝑁, 𝑛)  =  
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠  𝑜𝑓  𝑑𝑒𝑔𝑟𝑒𝑒  𝑁 𝑤𝑖𝑡ℎ  𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑  𝑧𝑒𝑟𝑜𝑒𝑠

  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠  𝑜𝑓  𝐷𝑒𝑔𝑟𝑒𝑒  𝑁  𝑤𝑖𝑡ℎ  𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡  𝑟𝑜𝑜𝑡𝑠 
 . 

It   readily  follows  that 

𝜃(𝑁, 𝑛 ) =
1

1 + 𝛽(𝑁, 𝑛)
 . 

The  following  corollary   readily  follows                                                            𝑄. 𝐸. 𝐷. 
 

Corollary:  

𝑳𝒊𝒎
𝑵 → ∞  
𝒏 → ∞

 𝜃(𝑁, 𝑛 ) = 0   𝑎𝑛𝑑   
𝑳𝒊𝒎

𝑵 → ∞  
𝒏 → ∞

 𝛽(𝑁, 𝑛 ) =  ∞ 

 

Proof:  Using  Binomial  Theorem,  we  have  that 

𝜃(𝑁, 𝑛 ) =  
𝐶  𝑛𝑁

(2𝑛 + 1)𝑁+1
 =    

𝑐

( 2𝑛 + 1 )
  

𝑛𝑁

∑ (
𝑁
𝑗

) (2 𝑛 )𝑗𝑁
𝑗=0

. 

Using  the  fact   that   limit  of  product  of  two  real  sequences  is  the  product  of  limits  of  

them,  we  have  that 
𝑳𝒊𝒎

𝑵 → ∞  
𝒏 → ∞

 𝜃(𝑁, 𝑛 ) = 0   𝑎𝑛𝑑  ℎ𝑒𝑛𝑐𝑒   
𝑳𝒊𝒎

𝑵 → ∞  
𝒏 → ∞

 𝛽(𝑁, 𝑛 ) =  ∞.             𝑄. 𝐸. 𝐷. 

                                                                                    

Note:  More  informally, when  some  of  the  zeroes are  repeated,  the  discriminant  of  the  

characteristic  polynomial  is  zero.  Thus,  since  the  discriminant  is   not  constrained  in  the  

case  of  distinct  eigenvalues,  we   expect  the  number  of  graphs  with  distinct  eigenvalues  to  

be  larger  than  those  graphs  whose  spectra  contain  repeated  eigenvalues. 

 

Note:  Also,  informally, the ratio of  number of polynomials with repeated  zeros divided by the 

number of polynomials with distinct  zeros is less  than  one.  This is because if we look at  at the 

possible coefficients of an 𝑁𝑡ℎ degree polynomial that are bounded in absolute value by B.  Then 

we are looking at lattice points in an 𝑁 + 1 dimensional box of side 2B+1.  The polynomials 



with multiple zeros must have discriminant equal to zero.  This means they must lie on some 

algebraic surface within the box and consequently their number must be of a lower order of 

magnitude.  

 

Note:  In  view  of  the  above  discussion,  given  the  number  of  vertices,  say  M,  the  number  

of   graphs  with  distinct  spectra  (  i.e.  the  adjacency  matrix  has  distinct  eigenvalues )  are  

MUCH  MORE  than  those  graphs  whose  spectra   is  not  distinct.   

 

Note:  In  view  of   the  above  discussion,  given  two  arbitrary  graphs,  a  Probabilistic  

Polynomial  Time  algorithm  ( i.e.  PP  class )  is  designed  to  test  if  the  given  two  graphs  

are  isomorphic. 

           

CASE  II:  Eigenvalues  of   A, B  are  NOT  ALL  DISTINCT  (  some  eigenvalues  are  

repeated ): 

                    We  now  consider the  more  general  problem  when  the  eigenvalues  of  A, B  

                     ( that  are  all  equal )   are  NOT  DISTINCT. 

 

 Quadratic  Non-Negative  Matrix  Factorization: As   discussed  earlier,  from  

equation (1),  the  problem  boils   to  determine  if  a  Permutation matrix  P  

exists  such  that   

𝐵 =   𝑃 𝐴  𝑃𝑇 . 
Such  a  problem  is  already  being  attempted  using  the  approach  based  on  Quadratic    

Non-Negative  Matrix  Factorization [15].  The  results  proposed  for  such  a  problem  readily  

apply  for  determining  isomorphism of  two  graphs. 

 

 Structured  Quadratic  Programming  Problems: There  is  another  interesting  

way  of  looking  at  the  equation (1).  Let  the  unknown  matrix  P  be   given  by  

(  in   terms  of  columns ) 

𝑃 =  [ 𝑃1  𝑃2  … 𝑃𝑁] . 
 

Since  A, B  are { 0, 1 }  matrices,  we have  homogeneous, second  degree  equations  ( 

quadratic  forms )  in  the  elements  of  unknown  matrix P   with  coefficients  being  { 0, 1 }  

and  the  bi-variate   homogeneous  polynomials  being  equated  with  values { 0, 1}. Further  

the  variables  (  i.e.  elements  of  P )  are  constrained  to  be  { 0, 1 }.  Hence,  we  have  

structured  set  of  simultaneous  quadratic  programming  problems. The  problem  boils  down  

to   testing  if the { 0, 1 }  solutions  (  if  they  exist )  lead  to  a  permutation  matrix, P. 

 

 Algebraic  Riccati  Equation:  Symmetric  Permutation  Matrix  P 

                                                  The  quadratic  matrix  equation  ( non-linear ) 

has  resemblance  to  the  Symmetric  Algebraic Riccati  Equation  of  the  

following  form 

                           𝑋 𝐶 𝑋 − 𝐴 𝑋 − 𝑋 𝐴𝑇 + 𝐵 = 0 

( with  compatible  matrices  𝑋, 𝐶, 𝐴, 𝐵 ),  where  𝑡ℎ𝑒  𝑚𝑎𝑡𝑟𝑖𝑐𝑒  𝐵  𝑎𝑛𝑑  𝐶  𝑎𝑟𝑒 

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐  𝑎𝑛𝑑  𝑋  𝑖𝑠  𝑡ℎ𝑒  𝑢𝑛𝑘𝑛𝑜𝑤𝑛  𝑚𝑎𝑡𝑟𝑖𝑥.  As  can  be  readily  seen  the  

matrix  equation  (1)  is  a 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑  𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐  𝐴𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑅𝑖𝑐𝑐𝑎𝑡𝑖  
 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  with 𝑃  𝑏𝑒𝑖𝑛𝑔  𝑎  𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐  𝑢𝑛𝑘𝑛𝑜𝑤𝑛  𝑚𝑎𝑡𝑟𝑖𝑥   𝑎𝑛𝑑 𝐴 ≡ 0. 



                          𝑇ℎ𝑒  𝑘𝑛𝑜𝑤𝑛  𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠  𝑓𝑜𝑟  𝑠𝑜𝑙𝑣𝑖𝑛𝑔  𝑠𝑢𝑐ℎ 𝑎  𝑅𝑖𝑐𝑐𝑎𝑡𝑖  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  𝑚𝑎𝑦 𝑟𝑒𝑎𝑑𝑖𝑙𝑦  
𝑎𝑝𝑝𝑙𝑦  𝑓𝑜𝑟  𝑡𝑒𝑠𝑡𝑖𝑛𝑔  𝑖𝑠𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑜𝑓  𝑡𝑤𝑜  𝑔𝑟𝑎𝑝ℎ𝑠  𝑓𝑜𝑟  𝑤ℎ𝑖𝑐ℎ  𝑃  𝑖𝑠  𝑎  

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐  𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛  𝑚𝑎𝑡𝑟𝑖𝑥.  Specifically,  there  are efforts  to  determine  

the  non-negative  matrix  solutions  of  Riccati  equation [16], [17].  It  should  be  

kept  in  mind   that  the  solution  of  algebraic  Riccati  equation  that  is  of  

interest  to  us   is  a   structured  { 0, 1 }  matrix. 

 

 Explicit  Solution  when  the  Adjacency  Matrices  of  the  graphs  are  non-

singular  and  are   related  through  “Symmetric”  Permutation  Matrix: 

Algorithm 2:  ( If   graphs  are  isomorphic,  the  algorithm  declares  them  

correctly ). 

 

Lemma  5:  Under   the   above  assumptions, two  graphs  with  adjacency  

matrices  { B, C } (  whose  eigenvalues  need  NOT  be  distinct )  are  isomorphic  

if   

𝑋 = [ 𝑀𝑎𝑡𝑟𝑖𝑥 𝑆𝑞𝑢𝑎𝑟𝑒 𝑅𝑜𝑜𝑡 ( 𝐵 𝐶 ) ] 𝐶−1 
 

                         is   a  Permutation  matrix. 

  

       Proof:  We   are  interested  in  the  solution  of  following  

                     MATRIX  EQUATION: 

 

    𝑋 𝐶 𝑋 = 𝐵, 𝑤ℎ𝑒𝑟𝑒  { 𝐶, 𝐵 } 𝑎𝑟𝑒  𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦  𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠  𝑜𝑓 𝑔𝑟𝑎𝑝ℎ𝑠  . 
                     

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑖𝑛𝑔 𝑜𝑛 𝑏𝑜𝑡ℎ  𝑠𝑖𝑑𝑒𝑠  𝑜𝑓  𝑡ℎ𝑒  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  𝑏𝑦  𝐶, 𝑤𝑒  ℎ𝑎𝑣𝑒 𝑡ℎ𝑎𝑡 
 

(𝑋 𝐶)( 𝑋 𝐶 ) =   𝐵 𝐶  .  𝐻𝑒𝑛𝑐𝑒, 𝑖𝑡  𝑟𝑒𝑎𝑑𝑖𝑙𝑦 𝑓𝑜𝑙𝑙𝑙𝑜𝑤𝑠  𝑡ℎ𝑎𝑡 
 

𝑋 𝐶 = 𝑀𝑎𝑡𝑟𝑖𝑥  𝑆𝑞𝑢𝑎𝑟𝑒  𝑅𝑜𝑜𝑡 ( 𝐵 𝐶 ). 
 

𝑁𝑜𝑤, 𝑖𝑓  𝐶  𝑖𝑠  𝑛𝑜𝑛 − 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟, 𝑋  𝑐𝑎𝑛  𝑟𝑒𝑎𝑑𝑖𝑙𝑦 𝑏𝑒  𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑  𝑎𝑠 
 

𝑋 = [ 𝑀𝑎𝑡𝑟𝑖𝑥 𝑆𝑞𝑢𝑎𝑟𝑒 𝑅𝑜𝑜𝑡 ( 𝐵 𝐶 ) ] 𝐶−1 
 

                  The  matrix  square  root  is  unique  only  when  BC  is  a  positive   definite   

                  matrix.  In  the  case  where  the  two  graphs  are  isomorphic  (  with  a  

                  symmetric  permutation  matrix  P  i.e.  𝑃 = 𝑃𝑇  𝑎𝑛𝑑  𝐵 = 𝑃 𝐶 𝑃 ), 𝑖𝑡   
                  readily  follows  that  B C  is  a  positive  definite  matrix  (  with  B  and  C 

                  being  non-singular  matrices  with  the  same  set  of  eigenvalues ).  It  is   

                  possible  that, the  graphs  are  not  isomorphic,  but  BC  is  a  positive   

                  definite  matrix.                                                               Q.E.D. 

 

Remark 2:  In  view  of  the  above  three  equivalent  problems,  the  results  available  for   

                    solution of   one  problem   can  be  utilized  in  the  solution  of  other  problems. 

                    For  instance,  when  eigenvalues  of  A, B  are   equal  and  distinct,  the  algorithm 

                    discussed   for  graph  isomorphism  can  be  utilized  in  other  problems.   



 

 Spectra  of  Graphs:   

                                       Babai   showed  that  in  a  well-defined  sense, Johnson  

graphs  are  the  only  obstructions  to  effective  canonical  partitioning [2]. In  

view  of  such  fact,  we  focused  on  the  spectra  of  Johnson  graphs. 

 

(1)  We  determined  that  the  eigenvalues  of  (  adjacency  matrix )  (3,1) 

Johnson  graph  are  { -1, -1, 2 }.  Hence,  some  of  the  eigenvalues  are  

repeated.  Similarly,  the  eigenvalues  of (4, 2)  Johnson  graph  are   

{ -2,-2,0,0,0, 4 }. Thus,  once  again,  some  of   the  eigenvalues  are repeated. 

In  view  of  such  empirical  evidence, we  are  led  to  the  following  

conjecture. 

 

CONJECTURE:  One or  more  eigenvalues  of  every Johnson graph  are  

always  repeated. 

 

               We  now  provide  an  approach  to  prove  the  above  conjecture: 

 

 The  spectrum  of   a  Johnson  graph  is known  to  be  given  by  the  Eberlein  

polynomial.  Hence,  to  prove  the  above conjecture, it  is sufficient  to  prove  

that  the  DISCRIMINANT  of  the  associated  Eberlein  polynomial  is  always 

zero. 

 

 We  now  determine  the  spectra  of  fully  connected  graphs ( cliques )  without  

self  loops  at  all  the  vertices.  The  adjacency  matrix  (  with  N  vertices )  is  

given  by 

𝐴 =  �̅� �̅�𝑇 − 𝐼, 𝑤ℎ𝑒𝑟𝑒  �̅�  𝑖𝑠  𝑎  𝑐𝑜𝑙𝑢𝑚𝑛  𝑣𝑒𝑐𝑡𝑜𝑟  𝑜𝑓  𝑂𝑁𝐸𝑆. 
Hence, we  have  that,  if  ′𝛼′  is  an  eigenvalue  of  A  and ′𝜇′  is  an  eigenvalue  

of   rank-one  matrix, �̅� �̅�𝑇,  

                                       𝛼 = 𝜇 − 1. 
𝑇ℎ𝑢𝑠  ( 𝑠𝑖𝑛𝑐𝑒  𝑡ℎ𝑒  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠  𝑜𝑓   �̅� �̅�𝑇  𝑎𝑟𝑒  { 𝑁, 0,0, … ,0 )),

𝑡ℎ𝑒  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠  𝑜𝑓  𝐴  𝑎𝑟𝑒   {  (𝑁 − 1), −1, −1, … , −1  }, where  the  

𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒  𝑎𝑡   − ′1′ 𝑖𝑠  𝑜𝑓  𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝑁′ − 1” . 
𝑆𝑖𝑚𝑖𝑙𝑎𝑟  𝑟𝑒𝑠𝑢𝑙𝑡  𝑐𝑎𝑛  𝑏𝑒  𝑑𝑒𝑟𝑖𝑣𝑒𝑑  𝑒𝑣𝑒𝑛  

 𝑤ℎ𝑒𝑛  𝑡ℎ𝑒𝑟𝑒  𝑎𝑟𝑒 𝑠𝑒𝑙𝑓 𝑙𝑜𝑜𝑝𝑠  𝑎𝑡  𝑒𝑣𝑒𝑟𝑦  𝑣𝑒𝑟𝑡𝑒𝑥.    
 

 Known  Theorem:  If 𝐺 is a graph of diameter 𝑑, then the adjacency matrix of 𝐺 

has at least 𝑑+1 distinct eigenvalues  ( Thus,  path graphs have distinct spectra ).   

 

 Graphs with few eigenvalues have been studied quite a bit [18]. 

 

Note: Interesting discussion on how non-isomorphic two graphs are  is included in [10]. 

We now utilize Laplacian matrices of graphs to determine if they are isomorphic.  This  approach  

leads  to  another  algorithm  for  the  problem  which  is  more  efficient. 

 



3.4 Cholesky Decomposition: Another  Algorithm   for Graph Isomorphism: 

 

Let { G1,G2 } be diagonal matrices with vertex degrees of the two graphs. Also, let {A1,A2} be 

the  adjacency matrices of those graphs. Hence, by definition, the Laplacian matrices of the 

graphs { L1,L2 } are given by 

𝐿1 =   𝐺1 − 𝐴1   𝑎𝑛𝑑  𝐿2 = 𝐺2 − 𝐴2 … … … … … … … … … … (3) 
It is well known that the Laplacian matrix of a graph is positive semi-definite. Thus, Cholesky 

Decomposition of Laplacian matrix exists (which is not necessarily unique). Such a 

decomposition  can be computed efficiently. Thus, we have that 

𝐿1 = 𝑁1𝑁1
𝑇    𝑎𝑛𝑑 𝐿2 = 𝑁2𝑁2

𝑇 , … … … … … … … … … … … . . (4) 

where 𝑁1  𝑎𝑛𝑑  𝑁2 are lower triangular matrices. 

If the graphs are isomorphic, we readily have that 

𝐿2 = 𝑃𝐿𝑃𝑇 = 𝑃 𝑁1𝑁1
𝑇  𝑃𝑇 = 𝑁2𝑁2

𝑇 … … … … … … … … . … . (5) 
Hence, it follows that 

𝑁2 = 𝑃𝑁1 … … … … … … … … … … … … … … … … … … … (6) 

Thus, a necessary and sufficient condition for the graphs to be isomorphic is that 

𝑁2𝑁1
−1 =   𝑃 … … … … … … … … … … … … … … … … … . (7) 

where P must be a Permutation matrix which is doubly stochastic and there is precisely  

one  𝑝𝑖𝑗 = 1  in each row and  each  column. 

 

Hence,  we  have  proved  the  following  Lemma. 

 

Lemma 6:  Given  the  Cholesky Decomposition  of   Laplacian  matrices  of two  graphs,  they  

are  isomorphic  if  and  only  if  𝑁2𝑁1
−1 =   𝑃, where P  is  a  Permutation  matrix. 

 

As  in  the case  of  algorithm  in  3.3.2,  the  above  test  for  graph  isomorphism leads  to  

another  algorithm  for  graph  isomorphism.  This  algorithm  is  known  to  be  more  efficient.  

. 

4.  Spectral  Graph  Theory:  Interesting  Proof  of  a  Known  Result: 

 

Fact: While the adjacency matrix depends on the vertex labeling, its spectrum is a  

           graph invariant.   

 

We now  provide an interesting proof of the above fact. In fact, the corollary of Lemma 7 is a 

much  stronger result. We need the following well known theorem. 

 

• Rayleigh’s Theorem: The local optima of the quadratic form associated with a symmetric 

matrix A on the unit Euclidean hypersphere ( i.e.{ 𝑋: 𝑋𝑇𝑋 = 1 }  ) occur at the eigenvectors 

with the corresponding value of the quadratic form being the eigenvalue. 

 

Lemma 7. Eigenvalues of the adjacency matrix of an undirected graph, A are invariant under 

relabeling of the vertices. 

 

Proof: By Rayleigh’s theorm, eigenvalues of A are the local optimum of the associated quadratic 

form evaluated on the unit hypersphere. Thus, we need to reason that the quadratic form remains 

invariant under relabeling of the vertices. We have that 



𝑋𝑇𝐴 𝑋 =  ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 =  𝑥1

𝑁

𝑗=1

𝑁

𝑖=1

(𝑥𝑖1
+ 𝑥𝑖2

+ ⋯ 𝑥𝑖𝑘
) + 𝑥2(𝑥𝑗1

+ 𝑥𝑗2
+ ⋯ 𝑥𝑗𝑙

) 

+ ⋯ + 𝑥𝑁(𝑥𝑁1
+ 𝑥𝑁2

+ ⋯ + 𝑥𝑁𝑚
) 

 

where, for instance, { 𝑖1, 𝑖2, … . 𝑖𝑘} are the vertices connected to the vertex 1 ( one ) ( and 

similarly  other vertices ). 

 

Now, from the above expression, it is clear that the quadratic form remains invariant under 

relabeling of the vertices. Specifically, relabeling just reorders the expressions.Thus, the 

eigenvalues  of A remain invariant under relabeling of vertices Q. E..D 

 

Corollary: Since the quadratic form remains invariant under relabeling of the vertices, the 

local optima of the quadratic form over various constraint sets remain invariant. For instance, the 

stable values ( i.e. local optima of quadratic form associated with a symmetric matrix over the 

unit  hypercube ) remain same under relabeling of the vertices of graph. 

 

Note: Consider a Homogeneous multi-variate polynomial associated with, say, a FULLY 

SYMMETRIC  TENSOR. The local optima of such a homogenous form over various constraint 

sets such as Euclidean Unit Hypersphere, multi-dimensional hypercube remain invariant under 

relabeling of  nodes of a non-planar graph. Effectively relabeling of vertices, reorders the 

monomials (terms in  multivariate polynomial). 

 

4.CONCLUSION: 

 

In this research paper, results in spectral graph theory of structured graphs are discussed.  

Efficient algorithms for testing if two graphs are isomorphic are  discussed. 
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