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Abstract. This paper focuses on EEG-based visual recognition, aiming
to predict the visual object class observed by a subject based on his/her
EEG signals. One of the main challenges is the large variation between
signals from different subjects. It limits recognition systems to work only
for the subjects involved in model training, which is undesirable for real-
world scenarios where new subjects are frequently added. This limitation
can be alleviated by collecting a large amount of data for each new user,
yet it is costly and sometimes infeasible. To make the task more practical,
we introduce a novel problem setting, namely subject adaptive EEG-based
visual recognition. In this setting, a bunch of pre-recorded data of existing
users (source) is available, while only a little training data from a new
user (target) are provided. At inference time, the model is evaluated
solely on the signals from the target user. This setting is challenging,
especially because training samples from source subjects may not be
helpful when evaluating the model on the data from the target subject.
To tackle the new problem, we design a simple yet effective baseline that
minimizes the discrepancy between feature distributions from different
subjects, which allows the model to extract subject-independent features.
Consequently, our model can learn the common knowledge shared among
subjects, thereby significantly improving the recognition performance for
the target subject. In the experiments, we demonstrate the effectiveness
of our method under various settings. Our code is available at here1.

Keywords: Brain-computer interface · Electroncephalography · Visual
recognition · Subject adaptation · Deep Learning.

1 Introduction

Brain-computer interface (BCI) has been a long-standing research topic for de-
coding human brain activities, playing an important role in reading the human
mind with various applications [44,32,40,21]. For instance, BCI systems enable a
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Fig. 1. An illustration of Subject Adaptive EEG-based Visual Recognition. During the
large-scale EEG recording step, abundant sample images are observed by various sub-
jects (source) and we collect their EEG signals. Afterwards, we record EEG signals
from a new user (target) induced by only k stimuli per class. We train the model on
the EEG signals from the source and the target subject and expect the trained model
to correctly predict the visual classes given unseen EEG signals from the target subject.

user to comfortably control machines without requiring any peripheral muscular
activities [3,27]. In addition, BCI is especially helpful for people suffering from
speech or movement disorders, allowing them to freely communicate and express
their feelings by thinking [4,12,7,24]. It also can be utilized to identify abnormal
states of brains, such as seizure state, sleep disorder, and dementia [43,41,34,33].
Recently, taking it to the next level, numerous works attempt to decode brain
signals for figuring out what audiovisual stimulus is being taken by a person,
providing deeper insight for analyzing human perception [37,26,1,13].

There are different ways to collect brain signals, e.g., electroencephalography
(EEG), magnetoencephalography (MEG), and functional magnetic resonance
imaging (fMRI). Among them, EEG is considered the most favorable one to
analyze human brain activities since it is non-invasive and promptly acquirable.
With its numerous advantages, EEG-based models have been largely explored
by researchers and developed for various research fields such as disorder detec-
tion [2,29], drowsy detection [17,23], emotion recognition [15,14,30], etc.

In this paper, we tackle the task of visual recognition based on EEG signals,
whose goal is to classify visual stimuli taken by subjects. Recently, thanks to
the effectiveness of deep neural networks (DNNs), existing models have shown
impressive recognition performances [15,23,37,36]. However, they suffer from the
large inter-subject variability of EEG signals, which greatly restricts their scal-
ability. Suppose that a model faces a new user not included in the training set
– note that this is a common scenario in the real world. Since the EEG signals
from the user are likely to largely differ from those used for training, the model
would fail to recognize the classes. Therefore, in order to retain the performance,
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it is inevitable to collect EEG signals for training from the new subject, which
requires additional costs proportional to the number of the samples. If we have
sufficient training samples for the new subject, the model would show great
performance, but it is not the case for the real-world scenario.

To handle this limitation and bypass the expensive cost, we introduce a new
practical problem setting, namely subject adaptive EEG-based visual recognition.
In this setting, we have access to abundant EEG signals from various source
subjects, whereas the signals from a new user (target subject) are scarce, i.e.,
only a few samples (k-shot) are allowed for each visual category. At inference,
the model should correctly classify the EEG signals from the target subject.
Fig. 1 provides a graphical illustration of the proposed problem setting.

Naturally, involving the copious samples from source subjects in the model
training would bring about performance gains compared to the baseline using
only signals from the target subject. However, as aforementioned, the signals
obtained from the source and the target subjects are different from each other,
and thus the performance improvements are limited. To maximize the benefits
of pre-acquired data from source subjects, we here provide a simple yet effective
baseline method. Our key idea is to allow the model to learn subject-agnostic
representations for EEG-based visual recognition. Technically, together with the
conventional classification loss, we design a loss to minimize maximum mean
discrepancy (MMD) between feature distributions of EEG signals from different
subjects. On the experiments under a variety of circumstances, our method shows
consistent performance improvements over the vanilla method.

Our contributions can be summarized in three-fold.

– We introduce a new realistic problem setting, namely subject-adaptive EEG-
based visual recognition. Its goal is to improve the recognition performance
for the target subject whose training samples are limited.

– We design a simple baseline method for the proposed problem setting. It
encourages the feature distributions between different subjects to be close
so that the model learns subject-independent representations.

– Through the experiments on the public benchmark, we validate the effec-
tiveness of our model. Specifically, in the extreme 1-shot setting, it achieves
the performance gain of 6.4% upon the vanilla model.

2 Related work

2.1 Brain activity underlying visual perception

Over recent decades, research on visual perception has actively investigated to
reveal the correlation between brain activity and visual stimuli [35,31,9]. Brain
responses induced by visual stimuli come from the occipital cortex that is a
brain region for receiving and interpreting visual signals. In addition, visual in-
formation obtained by the occipital lobe is transmitted to nearby parietal and
temporal lobes to perceive higher-level information. Based on this prior knowl-
edge, researchers have tried to analyze brain activities induced by visual stimuli.
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Eroğlu et al. [8] examine the effect of emotional images with different luminance
levels on EEG signals. They also find that the brightness of visual stimuli can
be represented by the activity power of the brain cortex. Stewart et al. [38] at-
tempt to distinguish the presence of visual stimuli within a single trial in EEG
recordings. It is revealed in their analyses that the individual components of
EEG signals are spatially located in the visual cortex and are effective in clas-
sifying visual states. More recently, Spampinato et al. [37] tackle the problem
of EEG-based visual recognition by learning a discriminative manifold of brain
activities on diverse visual categories. Besides, they build a large-scale EEG
dataset for training deep networks and demonstrate that human visual percep-
tion abilities can be transferred to deep networks. Kavasidis et al. [20] propose
to reconstruct the observed images by decoding EEG signals. They find that
EEG contains some patterns related to visual contents, which can be used to
effectively generate images that are semantically coherent to the visual stimuli.

In line with these works, we build a visual recognition model to decode EEG
signals induced by visual stimuli. In addition, we design and tackle a new prac-
tical problem setting where a limited amount of data is allowed for new users.

2.2 Subject-independent EEG-based classification

Subject-dependent EEG-based classification models have widely been studied,
achieving the noticeable performances [5,19,14,30,16]. However, EEG signal pat-
terns greatly vary among individuals, building a subject-independent model re-
mains an important research topic to be solved. Hwang et al. [15] train a subject-
independent EEG-based emotion recognition model by utilizing an adversarial
learning approach to make the model not able to predict the subject labels.
Zhang et al. [42] propose a convolutional recurrent attention model to classify
movement intentions by focusing on the most discriminative temporal periods
from EEG signals. In [17], an EEG-based drowsy driving detection model is in-
troduced, which is trained in an adversarial manner with gradient reversal layers
in order to encourage feature distribution to be close between subjects.

Besides, to eliminate the expensive calibration process for new users, zero-
training BCI techniques are introduced which does not require the re-training.
Lee et al. [25] try to find the network parameters that generalize well on common
features across subjects. Meanwhile, Grizou et al. [11] propose a zero-training
BCI method that controls virtual and robotic agents in sequential tasks without
requiring calibration steps for new users.

Different from the works above, we tackle the problem of EEG-based visual
recognition. Moreover, we propose a new problem setting to reduce the cost of
acquiring labeled data for new users, as well as introduce a strong baseline.

3 Dataset

Before introducing the proposed method, we first present the dataset details
for experiments. We use the publicly available large-scale EEG dataset collected
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Table 1. The list of object classes utilized for collecting EEG signals with ImageNet [6]
class indices.

n02106662 German shepherd n02951358 Canoe n03445777 Golf ball n03888257 Parachute

n02124075 Egyptian cat n02992529 Cellular telephone n03452741 Grand piano n03982430 Pool table

n02281787 Lycaenid n03063599 Coffee mug n03584829 Iron n04044716 Radio telescope

n02389026 Sorrel n03100240 Convertible n03590841 Jack-o’-lantern n04069434 Reflex camera

n02492035 Capuchin n03180011 Desktop computer n03709823 Mailbag n04086273 Revolver

n02504458 African elephant n03197337 Digital watch n03773504 Missile n04120489 Running shoe

n02510455 Giant panda n03272010 Electric guitar n03775071 Mitten n07753592 Banana

n02607072 Anemone fish n03272562 Electric locomotive n03792782 Mountain bike n07873807 Pizza

n02690373 Airliner n03297495 Espresso maker n03792972 Mountain tent n11939491 Daisy

n02906734 Broom n03376595 Folding chair n03877472 Pajama n13054560 Bolete

by [37] that consists of 128-channel EEG sequences lasting for 440 ms from six
different subjects (five male and one female). The EEG signals are filtered using a
notch filter (49-51 Hz) and a band-pass filter (14-72 Hz) to include two frequency
bands, i.e., Beta and Gamma. The dataset contains 40 easily distinguishable
object categories from ImageNet [6], which are listed in Table 1. The number of
image samples looked at by subjects is 50 for each class, constituting a total of
2,000 samples. We use the official splits, keeping the ratio of training, validation,
and test sets as 4:1:1. The dataset contains a total of 6 splits and we measure the
mean and the standard deviation of performance of 6 runs in the experiments.
We refer readers to the original paper [37] for further details about the dataset.

4 Method

In this section, we first define the proposed problem setting (Sec. 4.1). Then,
we introduce a baseline method with subject-independent learning to tackle
the problem. Its network architecture is illustrated in Sec. 4.2, followed by the
detailed subject-independent learning scheme (Sec. 4.3). An overview of our
method is depicted in Fig. 2.

4.1 Subject Adaptive EEG-based Visual Recognition

We start by providing the formulation of the conventional EEG-based visual
recognition task. Let Ds = {(xsi , ysi )}Ns

i=1 denote the dataset collected from the
s-th subject. Here, xsi ∈ RD×T denotes the i-th EEG sample of subject s with
its channel dimension D and the duration T , while ysi ∈ RK is the corresponding
ground-truth visual category observed by the subject and Ns is the number of
the samples for subject s. In general, the EEG samples are abundant for each
subject, i.e., Ns � 0. To train a deep model, multiple datasets from different
subjects are assembled to build a single training set D = {D1,D2, ...,DS}, where
S is the total number of subjects. At inference, given an EEG sample xs

′
, the

model should predict its category. Here, it is assumed that the input signal at
test time is obtained by one of the subjects whose samples are used during the
training stage, i.e., s′ ∈ [1, S]. However, this conventional setting is impractical
especially for the case where EEG data from new subjects are scarce.
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Fig. 2. An overview of the proposed method. Colors and shapes respectively represent
subject identities and classes. During feature learning, we train the model to accurately
predict the class from the EEG signals. To alleviate the feature discrepancy of source
and target signals, we propose a feature adaptation stage which minimizes the maxi-
mum mean discrepancy. Consequently, both source and target features are projected
on the same manifold, enabling accurate predictions on target signals during inference.

Instead, we propose a more realistic problem setting, named Subject Adaptive
EEG-based Visual Recognition. In this setting, we aim to utilize the knowledge
learned from abundant data of source subjects to classify signals from a target
subject whose samples are rarely accessible. For that purpose, we first divide the
training set into source and target sets, i.e., Dsrc and Dtrg. We choose a subject
and set it to be the target while the rest become the sources. For example, letting
subject S be the target, Dsrc = {D1,D2, ...,DS−1} and Dtrg = D̂S ⊂ DS . Based
on the sparsity constraint, the target dataset contains only a few examples, i.e.,

D̂S = {(xSj , ySj )}N̂S

j=1, where N̂S � NS . In practice, we make the target set have
only k samples with their labels per class (k-shot). Note that we here use the
S-th subject as the target, but any subject can be the target without loss of
generality. After trained on Dsrc and Dtrg, the model is supposed to predict the
class of an unseen input signal xS which is obtained from the target subject S.

4.2 Network Architecture

In this section, we describe the architectural details of the proposed simple base-
line method. Our network is composed of a sequence encoder f , an embedding
layer g, and a classifier h. The sequence encoder f(·) is a single-layer gated recur-
rent unit (GRU), which takes as input an EEG sample and outputs the extracted
feature representation z = f(x) ∈ RDseq , where RDseq is the feature dimension.
Although the encoder produces the hidden representation for every timestamp,
we only use the last feature and discard the others since it encodes the informa-
tion from all timestamps. Afterwards, the feature z is embedded to the semantic
manifold by the embedding layer g(·), i.e., w = g(z) ∈ RDemb , where RDemb is
the dimension of embedded features. The embedding layer g(·) is composed of
a fully-connected (FC) layer with an activation function. As the final step, we
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feed the embedded feature w to the classifier h(·) consisting of a FC layer with
the softmax activation, producing the class probability p(y|x; θ) = h(w) ∈ RK .
Here, θ is a set of the trainable parameters in the overall network. To train our
network for the classification task, we minimize the cross-entropy loss as follows.

Lcls =
−1

|Dsrc|+ |Dtrg|
∑

(xi,yi)∈Dsrc∪Dtrg

yi log p(yi|xi; θ), (1)

where |Dsrc| and |Dtrg| indicate the number of samples in source and target sets.

4.3 Subject-independent Feature Learning

In spite of the learned class-discriminative knowledge, the model might not fully
benefit from the data of source subjects due to the feature discrepancy from
different subjects. To alleviate this issue and better exploit the source set, we
propose a simple yet effective framework, where subject-independent features
are learned by minimizing the divergence between feature distributions of source
and target subjects. Concretely, for the divergence metric, we estimate the multi-
kernel maximum mean discrepancy (MK-MMD) [28] between the feature distri-
butions Zsi and Zsj from two subjects si and sj as follows.

MMD(Zsi , Zsj ) =

∥∥∥∥∥ 1

Nsi

Nsi∑
n=1

φ(zsin )− 1

Nsj

Nsj∑
m=1

φ(zsjm )

∥∥∥∥∥
F

, (2)

where φ(·) : W → F is the mapping function to the reproducing kernel Hilbert
space, while ‖·‖F indicates the Frobenius norm. zsin denotes the n-th feature
from subject si encoded by the sequence encoder f , whereas Nsi and Nsj are
the total numbers of samples from the si-th and the sj-th subjects in the training
set, respectively. In practice, we use the samples in an input batch rather than
the whole training set due to the memory constraint. We note that the embedded
feature wi

n could also be utilized to compute the discrepancy, but we empirically
find that it generally performs inferior to the case of using zin (Sec. 5.3).

Reducing the feature discrepancy between different subjects allows the model
to learn subject-independent features. To make feature distributions from all
subjects close, we compute and minimize the MK-MMD of all possible pairs of
the subjects. Specifically, we design the discrepancy loss that is formulated as:

Ldisc =
2

S(S − 1)

S∑
si=1

∑
∀sj 6=si

MMD(Zsi , Zsj ), (3)

where S is the number of the subjects in the training data including the target.
By minimizing the discrepancy loss, our model could learn subject-independent

features and better utilize the source data to improve the recognition perfor-
mance for the target subject. The overall training loss of our model is a weighted
sum of the losses, which is computed as follows:

Ltotal = Lcls + λLdisc, (4)

where λ is the weighting factor, which is empirically set to 1.
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Table 2. Quantitative comparison of methods by changing the target subject. For
evaluation, we select one subject as a target and set the rest as sources, then compute
the top-k accuracy for the test set from the target subject. Note that only a single
target sample for each class is included in training, i.e., 1-shot setting. We measure the
mean and the standard deviation of a total of 5 runs following the official splits.

Validation set

Subject
top-1 accuracy (%) top-3 accuracy (%)

k-shot Vanilla Ours k-shot Vanilla Ours

#0 13.5±2.1 29.3±1.9 35.7±1.9 22.6±2.8 51.6±3.0 58.1±2.9

#1 12.6±2.1 21.8±2.3 29.0±3.6 22.3±2.5 41.0±5.1 49.5±3.5

#2 17.0±1.6 25.3±0.9 30.8±2.2 29.8±2.2 44.4±2.1 53.1±2.6

#3 27.8±1.7 28.8±2.2 31.9±3.9 41.6±2.1 47.8±4.1 52.6±3.7

#4 16.3±2.8 25.9±1.9 36.2±3.3 25.9±2.3 44.4±2.7 61.0±4.7

#5 9.2±1.4 20.7±2.9 25.8±1.7 16.9±2.5 40.1±3.9 47.5±3.4

Test set

Subject
top-1 accuracy (%) top-3 accuracy (%)

k-shot Vanilla Ours k-shot Vanilla Ours

#0 12.2±2.1 24.3±0.9 29.6±4.9 20.4±2.5 48.3±2.3 56.8±4.1

#1 10.3±2.2 18.1±2.7 25.4±2.4 20.8±2.1 39.0±1.9 49.0±2.4

#2 15.5±2.9 23.9±3.0 29.2±3.7 29.9±3.4 44.3±4.3 54.5±3.1

#3 26.2±3.2 27.4±3.2 32.1±4.3 41.7±3.9 47.9±4.2 53.6±4.0

#4 15.2±1.9 22.7±1.2 35.3±3.6 24.5±2.0 44.8±3.5 60.7±4.9

#5 7.0±1.0 18.9±2.9 21.4±2.6 15.3±1.8 38.4±4.1 45.0±4.1

5 Experiments

5.1 Implementation Details

The input signals for our method contain a total of 128 channels (D = 128) with a
recording unit of 1 ms, each of which lasts for 440 ms. Following [37], we only use
the signals within the interval of 320-480 ms, resulting in the temporal dimension
T = 160. As described in Sec. 4.2, our model consists of a single-layer gated
recurrent unit (GRU) followed by two fully-connected layers respectively for
embedding and classification. For all layers but the classifier, we set their hidden
dimensions to the same one with input signals to preserve the dimensionality, i.e.,
Dseq = Demb = 128. For non-linearity, we put the Leaky ReLU activation after
the embedding layer g with α = 0.2. To estimate multi-kernel maximum mean
discrepancy, we use the radial basis function (RBF) kernel [39] as the mapping
function. For effective learning, we make sure that all the subjects are included
in a single batch. Technically, we randomly pick 200 examples from each source
dataset and take all samples in the target dataset to configure a batch. Our
model is trained in an end-to-end fashion from scratch without pre-training. For
model training, we use the Adam [22] optimizer with a learning rate of 10−3.

5.2 Quantitative Results

To validate the effectiveness of our method, we compare it with two different
competitors: k-shot baseline and the vanilla model. First, the k-shot method is
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Table 3. Quantitative comparison of methods by changing the number of target
samples per class provided during training. The value of k means that only k samples
of the target subject are used for training. We measure the mean and the standard
deviation of a total of 5 runs for all subjects following the official splits.

Validation set

k
top-1 accuracy (%) top-3 accuracy (%)

k-shot Vanilla Ours k-shot Vanilla Ours

1 16.0±0.6 25.3±1.0 31.7±1.5 26.5±0.9 44.9±1.3 53.6±1.9

2 33.2±1.2 41.7±1.9 46.3±1.8 50.1±1.0 65.2±2.0 70.2±1.6

3 49.9±0.4 54.4±1.0 58.9±0.7 68.5±0.7 77.6±0.7 80.8±1.2

4 61.9±2.0 64.6±1.5 67.5±1.2 79.6±1.7 85.1±1.1 86.8±1.2

5 70.0±1.6 72.0±1.3 73.5±1.1 85.6±1.7 89.6±0.9 90.0±1.0

Test set

k
top-1 accuracy (%) top-3 accuracy (%)

k-shot Vanilla Ours k-shot Vanilla Ours

1 14.4±1.6 22.5±0.8 28.8±1.2 25.4±1.8 43.8±1.6 53.3±1.9

2 31.2±1.2 39.9±2.0 43.8±1.4 49.3±2.0 65.1±2.1 69.5±1.4

3 48.2±2.6 52.6±1.7 56.4±1.7 67.2±1.7 77.0±1.5 80.4±1.1

4 60.4±0.9 62.4±1.7 64.7±1.6 79.4±1.1 84.3±0.9 85.9±1.1

5 68.1±1.6 69.5±1.1 70.1±1.0 85.6±1.3 89.0±0.5 89.2±0.5

trained exclusively on the target dataset. As the amount of target data is limited,
the model is expected to poorly perform and it would serve as the baseline for
investigating the benefit of source datasets. Next, the vanilla model is a variant
of our method that discards the discrepancy loss. Its training depends solely on
the classification loss without considering subjects, and thus it can demonstrate
the effect of abundant data from other unrelated subjects.

Comparison in the 1-shot setting. We first explore the most extreme scenario
of our subject adaptive EEG-based visual classification, i.e., the 1-shot setting.
In this setting, only a single example for each visual category is provided for
the target subject. The experimental results are summarized in Table 2. As
expected, the k-shot baseline performs the worst due to the scarcity of training
data. When including the data from source subjects, the vanilla setting improves
the performance to an extent. However, we observe that the performance gain
is limited due to the representation gap between subjects. On the other hand,
our model manages to learn subject-independent information and brings a large
performance boost upon the vanilla method without regard to the choice of the
target subject. Specifically, the top-1 accuracy of subject #1 on the validation
set is improved by 7.2% from the vanilla method. This clearly validates the
effectiveness of our approach.

Comparison with varying k. To investigate the performance in diverse scenarios,
we evaluate the models with varying k for the k-shot setting. Specifically, we
change k from 1 to 5 and the results are provided in Table 3. Obviously, increasing
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Table 4. Ablation on the location of feature adaptation. We compare two variants
that minimize discrepancy after the sequence encoder f and the embedding layer g,
respectively. We measure the mean and the standard deviation of a total of 5 runs for
all subjects.

k
top-1 accuracy (%) top-3 accuracy (%)

after f after g after f after g

1 31.7±1.5 32.4±0.7 53.6±1.9 54.8±1.1

2 46.3±1.8 46.0±1.8 70.2±1.6 69.6±1.9

3 58.9±0.7 58.3±1.3 80.8±1.2 80.4±1.3

4 67.5±1.2 65.6±1.5 86.8±1.2 86.0±0.9

5 73.5±1.1 72.3±1.3 90.0±1.0 89.7±0.7

k leads to performance improvements for all the methods. On the other hand, it
can be also noticed that regardless of the choice of k, our method consistently
outperforms the competitors with non-trivial margins, indicating the efficacy
and the generality of our method. Meanwhile, the performance gaps between
the methods get smaller as k grows, since the benefit of source datasets vanishes
as the volume of the target dataset increases. We note, however, that a large value
of k is impractical and sometimes even unreachable in the real-world setting.

5.3 Analysis on the location of feature adaptation

Our feature adaptation with the discrepancy loss (Eq. 3) can be adopted into any
layer of the model. To analyze the effect of its location, we compare two variants
that minimize the distance of feature distributions after the sequence encoder f
and the embedding layer g, respectively. The results are shown in Table 4, where
the variant “after f” generally shows better performance compared to “after g”
except for the case where k is set to 1. We conjecture that this is because it
is incapable for a single GRU encoder (i.e., f) to align feature distributions
from different subjects well when the amount of the target dataset is too small.
However, with a sufficiently large k, the variant “after f” consistently performs
better with obvious margins. Based on these results, we compute the MK-MMD
on the features after the sequential encoder f by default.

6 Concluding Remarks

In this paper, we introduce a new setting for EEG-based visual recognition,
namely subject adaptive EEG-based visual recognition, where plentiful data from
source subjects and sparse samples from a target subject are provided for train-
ing. This setting is cost-effective and practical in that it is often infeasible to
acquire sufficient samples for a new user in the real-world scenario. Moreover,
to better exploit the abundant source data, we introduce a strong baseline that
minimizes the feature discrepancy between different subjects. In the experiments
with various settings, we clearly verify the effectiveness of our method compared
to the vanilla model. We hope this work would trigger further research under
realistic scenarios with data scarcity, such as subject generalization [10,18].
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