
EasyChair Preprint
№ 11561

Cypher: a New Application Level Internet Protocol

Kushal Sultania and V Sakthivel

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 17, 2023

Cypher : A New Application Level Internet

Protocol

Kushal Sultania
School of Computer Science and Engineering,

Vellore Institute of Technology,

Chennai,

600127,

Tamilnadu,

India

Email: kushalsultania2@gmail.com

Sakthivel V
School of Computer Science and Engineering,

Vellore Institute of Technology,

Chennai,

600127,

Tamilnadu,

India

Email: sakthivel.v@vit.ac.in

(Corresponding author)

Abstract : The Internet Protocol (IP) is a critical component of
computer networks, playing a crucial role in data exchange
between computers. Despite the development of several IP
protocols, these protocols have limitations such as asynchronous
implementation, a lack of connection stabilization features, and
rigid request and response structures. This research paper aims
to introduce a new IP protocol that addresses these limitations by
creating and implementing an open and semi-rigid stateful
protocol. The goal is to provide improved performance, ease of
use, and flexibility in data exchange over networks. This work
involves researching and analyzing existing IP protocols,
designing and testing the new protocol, and evaluating its
performance and functionality. The results of this research will
contribute to the advancement of computer networks and data
exchange technology.

Index Terms—stateful, stateless, Web 4, efficient protocols, high
speed data transfer, internet protocol, Cypher, multithreaded
server

I. INTRODUCTION

We all know the importance of the internet in our daily

lives. The whole idea about how the internet develops our

capabilities and how it helps everyone is well documented

in [1] [2]. This happening is well understood that only the

internet has provided that much accessibility to everyone that

no one was able to provide. This does not mean that life of

each person became easy, some people struggled to design the

internet over the seas to create a generic working, stable and

secure model that works for everyone and everywhere. In the

1960’s the very first working model of the internet was made

by Advanced Research Projects Agency Network(ARPANET).

ARPANET allowed students and researchers to share research

papers and development resources. Earlier it didn’t have

any standards of information exchange like a protocol and

a schema or structure for safety compliance and stability

and it also didn’t have any reliability. Then in 1980’s it

was made using the Transmission Control Protocol/Internet

Protocol (TCP/IP) protocol suite, TCP/IP started to become

standards of ARPANET. The implementation stack for TCP/IP

for 8 bit architectures can be studied from [1] [3]. User

Datagram Protocol was not used for the purpose as it does

not provide any control over data packets, packets get lost if

any unusual event occurs. If packet loss occurs, the listener

of the message was on its own, also the UDP was very

insecure due to its limitations. Request for Comments (RFC)

defines the compliance of all networking or hardware level

protocols so that integrity of all devices on the internet can

be maintained and it defines the standard of all the protocols

and everyone must comply with it. UDP documentation by

RFC is available at [1] [4]. Detailed documentation of TCP/IP

compliance is available at [1] [5]. These were the protocols

that were at transport level. Transport level protocols are

responsible for managing structures of packets and ensuring

the communication between the peers and making sure that

the messages reach the destination.

As years passed, demand for connectivity increased and the

need for applications was high. Thus the need for protocols at a

higher level led to development of application level protocols.

Hypertext Transfer Protocol/HTTP Secure (HTTP/HTTPS) are

part of application level protocols as they don’t need to care

about lower level parts such as hardware level and network

level protocols that are implemented so that hardware works

fine and there is no collision in their network. The problem

was these protocols were still not efficient as they could be,

they were stateless and very much bloated. Stateless protocols

do not stay connected for a long time, as the request is served

they close automatically.

So, each time a request is made and served :

• Socket is created.

• Connection is established

• Request is made

• Request is served by a response

• Response is received

• Connection is closed

• Socket is deleted

So, for making n requests we need to execute/do these seven

steps each time which sums up to 7n repetitive tasks. This is

a very big overhead for computers and networks. This thing

needs to be reduced.

mailto:kushalsultania2@gmail.com
mailto:sakthivel.v@vit.ac.in
mailto:el.v@vit.ac.in

•

•

•

•

This paper focus to implement prototype of an application

level internet protocol that solves the following problems :

• Security

• Connection Stabilization

• Stateful connections

• Reducing network traffic

• Enable high speed data transfers over networks

• Multithreaded implementation

• Efficient data transfers

Improving the request terminating characters or request

delimiters

II. TCP/IP THE LEGACY

TCP/IP suite is the most used internet protocol suite under

the hood without knowing it, even if we use any custom

protocol like HTTP/HTTPS, File Transfer Protocol (FTP),

Simple Mail Transfer Protocol (SMTP) or any other known

protocol it uses sockets. Sockets are gateways to computer

networks through which data comes in or goes out to the target

specified. Sockets have many attributes associated with it, the

most common are : sender IP, target IP, timeout limit, receive

buffer size, transmission buffer size. It establishes connection

between peers by a 3-way handshake discussed in [3] [2] and

detailed research and info is available at [1] [6]. Also the

data is not transmitted as a whole, it is done in small chunks

called packets, each packet having its own attributes discussed

in [3] [3]. The properties of the packet are responsible for the

packet reaching its destination before its lifetime finishes. It

also defines the lifetime of the packet and what to do after

lifetime exceeds.

A. 3-way Handshake

The TCP 3-way handshake is a process used in a Transmis-

sion Control Protocol (TCP) network to establish a reliable

connection between two devices before data transmission can

begin. Complete reference for 3-way handshake is available

at [1] [4]. Handshake involves three steps :

SYN (Synchronize): The initiating device, also known

as the client, sends a synchronization request (SYN) to the

receiving device, also known as the server. This request

includes the initial sequence number (ISN) that the client will

use for the data transmission. The ISN is a random number

chosen by the client to identify the individual segments of data

that it will send to the server.

SYN-ACK (Synchronize-Acknowledgment): The server

responds to the client’s SYN request with a SYN-ACK mes-

sage, which includes its own ISN. The SYN-ACK message

acknowledges that the server has received the client’s SYN

request and is prepared to receive data.

ACK (Acknowledgment): The client then sends an ac-

knowledgment (ACK) message to the server to confirm that

it has received the SYN-ACK and that the connection is

established. The ACK message includes the client’s ISN +

1, indicating that it has received the server’s Initial Sequence

Number (ISN) and is ready to receive the first segment of data.

Refer Fig 2.1 for visualization of SYN/ACK

More details about TCP/IP is available in [1] [6].TCP/IP

also ensures that the connection is established in an efficient

manner and it also prevents the existence of half open connec-

tions. Open connections come into existence if peer A requests

for connection to peer B and b does not accept that request and

peer A don’t close the connection on its own or if two peers

are fully connected but on of the peer coles the connection

but the other peer do not know about it and stay half alive

without knowing it. This was addressed by TCP/IP by using

3-way handshake, it prevents half open connections by half

open connection detection and then closing it.

B. TCP/IP Packets

Data is always transmitted in very small units called packets.

A TCP packet is a unit of data that is transmitted between

two devices over a network using the TCP protocol. It is

responsible for ensuring that data is transmitted reliably and

efficiently between the devices. TCP packet consists of two

parts: a header and the data. The header contains information

about the data and the transmission, while the data is the actual

information being transmitted. Refer Fig 2.2 for TCP/IP packet

structure.

Packets are in general kept very small for minimizing packet

loss penalty; the complete specification is given in [1] [5].

Effect of the packet loss penalty can be studied from [1] [7].

In short, if a large packet is lost then regenerating that packet is

very costly as compared to regenerating a smaller packet and

sending, regenerating a large packet is time consuming and it

increases network ping. Also it can lead to network congestion

and congestion at the particular node which is regenerating the

packet. The header of a TCP packet includes the following

information :

• Source and destination port numbers: These identify the

applications on the sending and receiving devices that are

transmitting and receiving the data.

• Sequence number and acknowledgment number: The se-

quence number is used to keep track of the order of the

data segments, while the acknowledgment number is used

to confirm the receipt of data by the receiving device.

• Flags: These indicate specific actions, such as the SYN

or ACK flags in the 3-way handshake.

• Window size: This field specifies the amount of data that

the receiver is willing to accept from the sender.

• Checksum: This is used to verify the integrity of the data

in the packet.

All these things together guide the path of packet, nature and

time to live (TTL). TTL is based on the timeout of the other

socket to which one socket is connected.

III. APPLICATION LEVEL PROTOCOLS

The evolution of application level protocols has been shaped

by the development of the Internet and the increasing number

of connected devices. As new types of applications were

developed and new technologies emerged, the need for new

application level protocols emerged.

The demands that led to development of application are :

Fig. 1. Message Sharing and 3-way Handshake using SYN/ACK

• The growth of the Internet

• The need for standardization

• The need for security

• The need for new functionality

These requirements were led by the obsession of being

connected to the internet every time. A new term Internet

of Things (IoT) was introduced in 1999 by Kevin Ashton,

this revolutionary idea was one of the technologies that was

demanding all four of these requirements, so indirectly we

can say that IoT led to massive development of the internet

and protocols. How IoT is affected by choice of protocols

and how IoT is still not standardized due to lack of standard

protocols can be studied in [1] [6]. One reason for IoT not

being stabilized is because of choice of stateless protocol

for implementation. Since most applications of IoT relies on

continuous being connected to the data source or the control

source and high speed continuous or discrete data sharing and

for that connection being stateless is not efficient, it needs to

be stateful so that making new connections and sharing the

context do not waste time.There is no purpose of a protocol if

it is not being used for any application else it should not exist.

On top of the transport layer there comes application level,

the level which programmers in general use to interact with

other machines. As this level is on top of the transport layer,

programmers need not to worry about packet level interactions

and how the connections are made and how the data will reach

or has the data reached. For every networking task we rely on

application level protocols and each application has its own

specific demands and requirements, they can have their own

custom or specific communication protocol to interact with

other machines or they can use the generic application which

is now being used everywhere which is HTTP/HTTPS. For

visualization of layers of internet protocols refer Fig 3.1

A. Example of Application Level Protocol : HTTP/HTTPS

An application protocol developed by Tim Berners-Lee and

his team between 1989-1991. It was one of the first stable

protocols which was then adapted to create the internet. The

compliance specifications for HTTP are available at [1] [8].

Since there were only few options available at the moment

http was chosen as standard protocol for data exchange for

everything (data stored in memory). After some years, HTTP

Secure was invented as a logical extension of HTTP, the main

concern of HTTPS was to wrap the data being shared to protect

the data being intercepted by someone else. Compliance with

HTTPS is available at [1] [9]. The idea behind HTTPS is to

wrap the HTTP socket with a Transport Level Security(TLS)

encryption layer. The detailed research over SSL can be seen

at [1] [1]. The idea behind TLS is to encrypt the data using a

seed value which is in general a large sequence of characters,

this key is shared to the client by the server every time a

connection is made, and then the client also sends the key

to the server to establish the two way encrypted connection,

this process is called key exchange. Key exchange takes place

in three steps: the server sends a certificate to the client and

this certificate includes the server’s public key. Then the client

generates a random key and sends it to the server by encrypting

it using the server’s public key. Then the server decrypts the

message using its private key. As this process completes, the

socket is wrapped by a security layer, no one can intercept the

data being shared, but if someone intercepts the connection

while it was exchanging the keys, then there is a possibility

of the connection being intercepted. Detailed Research on

comparisons of exchange algorithm performance is available

at [1] [10].

IV. PROBLEMS WITH HTTP AND ITS LOGICAL

EXTENSIONS

All the protocols have some virtues and deficiencies, no

one is perfect, and the definition of perfect just changes with

time. But the problem is HTTP hasn’t overcome its one of

deficiencies with the time and evolution of computers, some

of them are :

On one hand HTTP solved many problems but on the other

side it also started to get more buggy as the time passed,

this is well researched in [1] [11]. Http was very slow and it

was increasing latency, also Google deployed one temporary

protocol that was like HTTP it was called SPDY, their aim was

to reduce latency. One reason for HTTP becoming slow was

high bloatedness. At that time and now also there is much data

that HTTP response carries which is not even required. Google

researched and then figured out how to reduce redundant

data being sent in HTTP response, they reduced it and then

it became fine, but with increasing demand of services and

growth of the internet we need to further reduce it.

HTTP/HTTPS never provide any security mechanism for

ensuring that the message reaches the other node when there

occurs some network error or there is some error in net-

work speed. Most existing protocols just leave everything

to the user/programmer. This is a major issue which makes

HTTP/HTTPS even more frustrating. There can be very heavy

consequences which can occur if the correct response does not

reach on the correct time.

Another problem of HTTP is its ambiguous End of

File(EOF)/End of Request(EOR) character. HTTP uses \r\n

as end of request as specified in [1] [8]. This seems not to be

proper it is not appropriate to keep a combination of characters

as end of a request the 0th character ie chr(0) of American

Standard Code for Information Interchange(ASCII) is a more

appropriate EOR character as it is also treated as EOF for

files on the computers and also end of string in programs (C

programs).

One problem is that it is stateless, each request is treated as

a different request from another entity. This is because HTTP

creates a new connection each time we make a request. It is

like creating a new road each time we go to a place and then

destroying it when we come back, this is a highly unoptimised

approach and this also increases network load as a new request

is made and all the key exchanges take place again and again

which leads to network congestion. Thus this makes HTTP

not suitable for high speed data streaming purposes.

One major problem with HTTP is its implementation, nowa-

days multi core CPUs are available but majority HTTP imple-

mentations are still using the single threaded asynchronous

approach. This prevents the software from using the true

potential of the machine. As a result the latency also increases.

As the statelessness makes the connection unstable, the pro-

tocol becomes more vulnerable to cyber attacks like Man-in-

the-Middle (MitM) attacks, more vulnerabilities about HTTP

can be studied in [1] [12]. A MitM attack is when an attacker

intercepts communication between two parties, acting as a

relay and eavesdropping on the communication.

There is a limited number of status codes, it doesn’t allow

programmers to create new custom application specific status

codes for easy debugging and convenience. Programmes must

have more freedom, if we would be able to create new status

codes, it would allow us to create more complex applications

and error handling in them easier.

HTTP/HTTPS and most of the remaining protocols lack

plug and play implementations. The only thing it provides is

a RFC for defining the packet and buffer for standardization,

developers have to follow this implementation for integrity

of application worldwide. No internal features are provided

by the paradigm itself, we need built in features to reduce

developer overhead of implementing each and every feature

externally, also each feature should be implemented as exten-

sion in plug and play manner just like vim extensions and

allow the user to create new features and include them during

runtime.

A. Compliance with Web-4 Concept

From the time the internet was invented (1991), we have

evolved at a rigorous rate. We have seen the concept of Intranet

(the one only ARPANET) evolved into the Internet. From this

transition to till date we have seen generations of the internet.

We are currently between the 2nd and 3rd generation of it, yet

we are not changing old methods of data exchanges even in

the case of exponential growth of number of users in the past

few years.

The generations of Internet are listed below :

Generation-1 (Web1.X) : The first generation was the first

one that provided connectivity between places, it was mainly

used for research and laboratory works, it was none other than

ARPANET. Detailed study on arpanet evolution is available

at [1] [13]. When the Internet was born, only static pages

were hosted on a server and those pages were nothing except

static html files into which all data was written. This form of

internet was called Web1.0.

Generation-2 (Web2.X) : The demand of users increased,

the demand of storing data on remote machines and then

accessing it from anywhere was shaking the internet and

developers. Then the internet pages with dynamic functionality

and server-client to and from date transfers were implemented.

The databases were designed to store client’s data that enabled

the transition from Web1.X to Web2.0. These days we are

majorly using Web2.X in our daily life but Web3.X also exists

parallelly. Study more at [1] [14].

Generation-3 (Web3.X) : This thing is something which

not everyone knows, it existed in a type of parallel internet. It

extends the concept of Web2.0 to the next level for ensuring

data integrity and data security. Instead of storing data on

a single centralized database, it distributes data on many

distributed databases, all data units are stored in a ledger. A

ledger has 3 parts : address - stores the unique identifier for

the legger and is permanently associated with the ledger and

the data stored on that ledger at the instance; data - the data;

pointer to next ledger - this is the part that makes it so secure

and decentralized, if the data in the the ledger is changed the

address of the same ledger changes and the ledger chain breaks

if any unauthorized transaction or operation takes place. Hence

at the broken point of the chain we can detect the problem by

checking the logs. This is mainly used in transaction systems.

Study more at [1] [14].

Generation-4 (Web4.x) : This is the future of the web, it

is an upcoming web, currently it does not exist but making

transitions in small steps. It is still in a concept and visual-

ization stage. Read more about Web4 at [1] [15]. One of the

concepts of Web4 is high connectivity and totally cloud based

computation. In this web version all computers/machines are

stored in server/cloud and we can access our computer from

anywhere we want to. Each single file, each single os directory,

each single user info and login credentials will be stored in that

machine only, we would only have a mini chip attached with

I/O devices and the chip will be continuously in connection

with our computer through the server. In the present there is

an option in the computer boot menu for network booting, that

allows to run Operating System (OS) stored on the server on

the current machine and the machine directly communicates to

the server and every action is reflected in the server in realtime.

This type of OS is called server OS, server OS is the good to

go option for features if we want to become totally digitized

and want all things online. Web 4.0 and server OS also aim

to make computers reachable to everyone, using server OS

we can use high performance hardware on a normal computer

virtually only the I/O is provided and received to the user

computer. All the keystrokes will be sent to the server and

each pixel rendered by the server will be received parallelly.

For this a high connectivity devices and paradigms will be

required. Read details in [1] [14].

Since the Web4.0 concept is so reliant on network tech-

nologies, we need to create new paradigms for making this

beautiful technology come to existence. We need to have mul-

tithreaded server implementations instead of single threaded

and asynchronous as they wont be able to serve millions of

requests requesting live and parallel data. Second, they will

need an implementation to be completely stateful which means

the server has full context of the connection made by the client

for serving the client efficiently without any undesirable delay

in delivery and picking up of responses. Thus we need new

protocols to be implemented for the future technologies.

V. PROPOSED SYSTEM

In this section, we will discuss Cypher’s workflow, im-

plementation, algorithms and major components with their

functionalities. If anyone wants to contribute or wants to

collaborate, the source code is available at https://github.co

m/P-Y-R-O-B-O-T/CYPHER_PROTOCOL .

A. Overview

Cypher’s main workflow and functionality depends on cre-

ating a new connection, encrypting and decrypting message

to avoid interception from an outsider (currently this feature

made temporary just to server on local network, instead we

can wrap socket using SSL/TLS support provided by the

language libraries that will enable more dynamic encryption),

connection stabilization that provides relaxation to program-

mer because now the programmer is set free from managing

connections, whenever a request is made it ensures that

the request reaches the destination without any compromise,

minimisation of errors : Cypher handles all the errors on its

own the mechanism is that much capable that it can handle

almost all of the errors that occur on itself internally.

B. Implementation

Cypher utilizes encryption algorithms to encrypt and de-

crypt the message at nodes so that they are not intercepted in

between the nodes or in the path that they follow to reach the

destination. Currently for a temporary basis it uses Advanced

Encryption Standard (AES)-128 bit algorithm for the security

purposes which is hard coded into its server and client and can

be changed by the user. AES is one of the strongest encryption

algorithms and is used as a standard in many mechanisms

that require high security. Detailed study on AES algorithms

can be seen in [1] [16]. Average time required to crack an

AES 128 bit message or password is roughly around 1 billion

years using brute force where we check all the combinations

of keys. Here we are using AES 128 bit encryption on both

sides (server and client), there are 2 passwords on both client

and server one is for encryption and one for the decryption.

The encryption key in the server is the decryption key in the

client, and the decryption key in the server is the encryption

key in the client. Hence there is 2 way encryption AES-128

+ AES-128 which still is not equivalent to AES 256 but still

very close to AES-256 bit.

Cypher gives connection stabilization and to ensure efficient

data transfers. It uses sockets in a stateful manner, the sockets

are provided with a timeout limit, that limit defines the time

up to which the connection is required to be stateful. If that

limit is crossed in the server the client is disconnected or the

connection/socket is closed. If the timeout on the client side

is reached then the connection from the client side is closed

resulting in the server also closing the connection from the

other side as implemented in TCP/IP mechanism by default

as discussed in [3] [2], after that if the client wants to make

a new request then the connection is reestablished internally

without any external intervention and process is continued as

it was supposed to be continued. The parameter timeout allows

us to implement this feature and we can also change its value

to change the nature of Cypher’s behavior. This is the solution

to the problem described in [5] in the fourth point.

JSON format is used for interchange on information and for

that purpose, we utilize internal json parsing libraries which

enable efficient conversion from json to native data structures

and vice versa. The reason behind using JSON is very simple

: it is easy to parse, compact in nature, easy to read format,

self describing also parsing is faster than Extensible Markup

Language (XML). XML was a very popular format for data

interchange until JSON arrived, See more detailed research

over XML vs JSON in [1] [17].

Another thing to note is the EOR character used by Cypher.

It uses the terminal character (chr(0)) used by low level

languages like C/Cpp to terminate strings and sequences, this

is also the character which is used for terminating commu-

nication between devices in computers. This character makes

more sense than the \r\n\r\n and uses less space. This is the

solution to the problem described in [5] in the third point.

Ensurance of message reaching its destination. This is one

of the most important features of this mechanism. To ensure

that the message reaches its destination it utilizes the default

nature of TCP/IP as seen in [3]. Once the request is made,

the request is sent to the server the server processes the

request and sends the response, now this is the step where

all the magic happens, now the client listens to the server

for receiving the server, if there is any problem receiving the

request the connection is closed by client and a new connection

is established the request is made again on the new connection

and the loop goes until the request is received properly. This

is the solution to the problem described in [5] in the second

point.

When it comes to performance the utilization of system

resources is very important. Here we implemented the protocol

in a multi threaded manner, this enables to serve multiple

clients parallelly without any errors. This approach allows the

use of all system resources to maximize performance. This

is the solution to the problem mentioned in [5] in the fifth

point. This allows the live stream without minimal delay, if

the systems are implemented in a more distributed and load

balanced manner then we could achieve even more minimized

delay, detailed research at [1] [18].

Now coming to the algorithmic explanation. Up To now

clearly seen the theoretical overview of the implementation.

The algorithms will give a clear view of the implementation.

Before jumping to the algorithms, first discussing the control-

ling parameters for the server and the client nature.

The server has the following parameters which can control

the nature of the server : encryption_key - encrypts the

response, decryption_key - decrypts the request from the client

(NOTE : both decryption and encryption keys are static and

being used to prevent intervention until SSL/TLS support is

added to Cypher), request_handler - this is a method passed

by user that handles the requests, this function is responsible

for all requests being server as it has all the logic for serving

the requests, recv_buffer : parameter is responsible deciding

the size of chunk that will be received in one recv() call,

transmission_buffer : it is responsible for deciding the size of

chunk that will be transmitted to the other node in one send()

call and the last one timeout : this specifies the number of

seconds the connection will be stateful if it doesn’t receive

any response from the other node.

The client has the following parameters which can control

the nature of the server : encryption_key - encrypts the

response, decryption_key - decrypts the request from the client

(NOTE : both decryption and encryption keys are static and

being used to prevent intervention until SSL/TLS support is

added to Cypher), response_handler : this handles all the

response received from the server this has all the logic for data

processing, offline_signal_processor : this is a very important

parameter which is actually a user defined function which

receives all the signals which are generated when the client

faces any disconnection, all the actions which should be taken

when client goes offline or faces some problems are taken by

this function, online_signal_processor : user defined function

is responsible for taking all the decisions when the client

comes online state from offline state, recv_buffer : parameter

is responsible deciding the size of chunk that will be received

in one recv() call, transmission_buffer : it is responsible for

deciding the size of chunk that will be transmitted to the other

node in one send() call and the last one timeout : this is the

limit up to which one recv() call can listen for response for

receiving the data, if this time threshold passes the connection

is re-established and the request is made again.

There are mainly 5 algorithms that contribute to this

approach. There are algorithms for accepting connections,

deleting connections, server algo for maintaining connections

alive, connecting client to server and for making requests to

server. The first 3 algorithms are for the server and the last

two are for the client.

Algorithm1 (Accepting New Connections) :

For storing all the connection objects a dictionary or a map

is maintained as CLIENTS. A loop is running continuously

server_mainloop accepts all the connections, as soon as the

connection is accepted, a connection object is created and it is

added to the dictionary in the format - <key> : <object> where

Fig. 2. Workflow of Cypher Protocol

key is the tuple containing (<ip>, <port>) of the client that

requested to establish the connection. The accepting loop runs

until the SERVER_STATUS is set to false by the programmer

or it runs infinitely, SERVER_STATUS is the flag variable for

the server loop. There is a server_status variable which runs

the connection accepting loop until that is set to true. A lock

object LOCK is maintained for avoiding race conditions in a

multithreaded environment. Server socket object is maintained

as SERVER_SOCKET which accepts the connections. After

the server loop exits the SERVER_SOCKET is closed and the

server stops running.

1

2

3

4

5

6

7

8

9

Code Snippet 1. Connection Accepting Loop (Pseudocode/Algorithm)

Algorithm 2 (Deleting Inactive connections) :

As the connections become inactive, the connection objects

put the (<ip>, <port>) tuple which is the address of the

connection. Connection becomes inactive if it does not

receive any request within the timeout limit TIMEOUT. A

connection also becomes inactive if the connection is closed

by the client side. Addresses of all connections are stored in

a list or vector CLIENTS_TO_BE_DISCONNECTED.

A loop also runs with the server_mainloop which

is connection_object_destruction_loop which closes

all the inactive connections by traversing through

CLIENTS_TO_BE_DISCONNECTED, this loop runs

until SERVER_STATUS become false and CLIENTS gets

empty, both conditions should be true.

1

2

3

4

5

6

Code Snippet 2. Connection Object Destruction Loop
(Pseudocode/Algorithm)

Algorithm 3 (Maintaining Alive Connections) :

This algorithm is implemented in connection object class,

this plays the main role in implementation of Cypher as

this provides the main functionality from the server side

which is statefulness. There is a loop connection_loop run-

ning which listens to the requests that are coming from

define server_mainloop :

while SERVER_STATUS :

LOCK.acquire()

try :

CLIENTS[(<ip>, <port>)] <-

SERVER_SOCKET.accept()

catch :

PRINT DEBUG TRACEBACK

LOCK.release()

SERVER_SOCKET.close()

define

connection_object_destruction_loop

:

while SERVER_STATUS or CLIENTS != {} :

wait(1) //wait for 1 second

for connection_address in

CONNECTIONS_TO_BE_DISCONNECTED :

destroy_connection_object(

connection_address)

COLLECT GARBAGE

define process_request(client_resp) :

decrypted_response <-

DECRYPTION_OBJECT.decrypt(

client_resp) // raise error if can

’t decrypt

request_json <- convert_from_json(

decrypted_response) // raise error

if can’t decrypt

response_for_client <-

REQUEST_HANDLE_OBJECT(request_json

)

response_json <- convert_to_json(

responce_for_client)

Client_resp[0] <- EMPTY STRING

response_encrypted <-

ENCRYPTION_OBJECT(responce_json)

response <- bytes(responce_encrypted)+

chr(0)

for sub_bytes in response, step_size=

TRANSMISSION_BUFFER :

CONNECTION.send(sub_bytes)

define connection_loop() :

client_resp <- [EMPTY STRING]

while CONNECTION_STATUS :

try :

temp_resp <- CONNECTION_RESP.recv(

RECV_BUFFER)

client_resp[0] += temp_resp

if chr(0) in temp_resp :

process_request(client_resp)

elif temp_resp == EMPTY STRING : //

there is some network problem

break // breaking the loop will lead

to closing and destruction of

object

except : // the connection is either

closed by other side or there is

some network error

break //breaking will lead to closing

the client side. Two objects for encryption and decryption

are also maintained - ENCRYPTION_OBJECT, DECRYP-

TION_OBJECT. There is also a method for processing re-

quests. A server object is also maintained storing the reference

of server as SERVER_OBJECT. One very important refer-

ence REQUEST_HANDLE_TRIGGER is maintained which

is defined by the user and contains all the logic flow for

handling the requests. This is the function that provides core

server functionality. Also TRANSMISSION_BUFFER and

RECV_BUFFERS that decide buffer sizes for transmission

and receiving messages. A connection object also has a socket

connection object CONNECTION which provides communi-

cation methods between the nodes. For each connection there

is a CONNECTION_STATUS which ensures the statefulness

of the connection until it is set to true. IP_PORT stores the

address of the connection in the form (<ip>, <port>).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

23

24

Code Snippet 3. Maintaining Alive Connections (Pseudocode/Algorithm)

Algorithm 4 and 5 (Connecting To Server and Making

Request) :

This algorithm is implemented on the client side for es-

tablishing connection with the server. On the client side,

the variables CONNECTED as a flag to determine whether

it is connected or not, CYPHER_STATUS to determine

whether the user wants to stay connected to the server.

The functions for signalizing the user about internal events

like disconnection and reconnection as signalize_offline and

signalize_online are used, whenever the client goes offline;

signalize_offline is called, and whenever the client transitions

from offline to online state the method signalize_online is

called. CONNECTION is the socket connection that provides

the methods to interact with the server. TIMEOUT is be-

ing used to set a threshold for socket recv() timeout limit.

Along with all these the objects ENCRYPTION_OBJECT

and DECRYPTION_OBJECT for encryption and decryption,

RECV_BUFFER and TRANSMISSION_BUFFER variables

are used for specifying the buffer sizes for receiving and

transmission functions. The method connect is used to connect

to the client and make_request is used to request a server. IP

and PORT of the server are accepted from the user.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

21 18

19

22

and destruction of object

SERVER_OBJECT.

add_connection_to_be_destroyed(

IP_PORT)

//adding of IP_PORT to

CLIENTS_TO_BE_DESTROYED will

destroy the CONNECTION

define connect() :

if CONNECTED :

CONNECTION.close(); del CONNECTION

signalize_offline()

while not CONNECTED :

if CYPHER_STATUS :

try :

CONNECTION <- socket.socket()

CONNECTION.connect(IP, PORT)

CONNECTED <- True

except :

PASS //DO NOTHING

else : break // break if user do not

want to continue connection

process

wait(1) //wait for 1 second

if CONNECTED :

signalize_online()

define make_request(path, operation,

data, metadata) :

data_ = {} //initialize a map or

dictionary

data_[‘‘PATH’’] <- path ; data_[‘‘

OPERATION’’] <- operation

REFERENCES

Code Snippet 4. Connecting To Server

VI. CONCLUSION

We presented a new mechanism of data interchange, Cypher

Protocol, to make computer networking easier and more

efficient than it was in the past. Cypher connects to a node

statefully in the network without giving any errors, instead

it returns the status of types of errors that occur during

establishment of new connections and lets the user decide what

to do. It also ensures that the full potential of the TCP model is

utilized, TCP ensures that the message reaches the destination

properly, on top of that Cypher ensures that the message

reaches the destination in the correct format without worrying

about network issues and network quality. This mechanism

does not give up to ensure a message is sent to the destination

unless the user or developer tells or signalizes to do so. Using

this approach we are able to stabilize the connection and

the developer is more free to focus on logic rather than the

connection management. Cypher also enables us to unlock the

future possibilities for implementing the beautiful technology

called Web4. The results demonstrate that Cypher can be used

anywhere and very easily, it can also be used to create new

frameworks for networking, especially IoT frameworks.

[1] “Privacy Vulnerabilities in Encrypted HTTP Streams | SpringerLink.”

https://link.springer.com/chapter/10.1007/11767831_1 (accessed Feb. 24,
2023).

[2] “(PDF) Concept and Dimensions of Web 4.0.”
https://www.researchgate.net/publication/321366810_Concept_and_Dimensi
ons_of_Web_40 (accessed Feb. 24, 2023).

[3] “(PDF) A Comparison Study on Key Exchange-Authentication protocol.”
https://www.researchgate.net/publication/46286685_A_Comparison_Study_
on_Key_Exchange-Authentication_protocol (accessed Feb. 24, 2023).

[4] “‘From ARPANET to Internet: A history of ARPA-sponsored computer
network’ by Janet Ellen Abbate.”
https://repository.upenn.edu/dissertations/AAI9503730/ (accessed Feb. 24,
2023).

[5] “A JSON/HTTP communication protocol to support the development of
distributed cyber-physical systems | IEEE Conference Publication | IEEE
Xplore.” https://ieeexplore.ieee.org/document/8472084 (accessed Feb. 24,
2023).

[6] P. Wehner, C. Piberger, and D. Gohringer, “Using JSON to manage
communication between services in the Internet of Things,” May 2014, pp.
1–4. doi: 10.1109/ReCoSoC.2014.6861361

[7] T. He, J. Stankovic, C. Lu, and T. Abdelzaher, “SPEED: A stateless protocol
for real-time communication in sensor networks,” presented at the
Proceedings - International Conference on Distributed Computing Systems,
Jun. 2003, pp. 46–55. doi: 10.1109/ICDCS.2003.1203451.

[8] T. J. Hacker, B. D. Noble, and B. D. Athey, “The Effects of Systemic Packet
Loss on Aggregate TCP Flows,” Dec. 2002, pp. 7–7. doi:
10.1109/SC.2002.10029.

[9] “(PDF) A Survey on Application Layer Protocols for the Internet of Things.”
https://www.researchgate.net/publication/299535653_A_Survey_on_Applic
ation_Layer_Protocols_for_the_Internet_of_Things (accessed Feb. 24,
2023).

[10] N. Su, Y. Zhang, and M. Li, “Research on Data Encryption Standard Based
on AES Algorithm in Internet of Things Environment,” in 2019 IEEE 3rd
Information Technology, Networking, Electronic and Automation Control
Conference (ITNEC), Mar. 2019, pp. 2071–2075. doi:
10.1109/ITNEC.2019.8729488.

[11] A. Shieh, A. C. Myers, and E. G. Sirer, “A stateless approach to connection-
oriented protocols,” ACM Trans. Comput. Syst., vol. 26, no. 3, p. 8:1-8:50,
Sep. 2008, doi: 10.1145/1394441.1394444

[12] E. Rescorla, “HTTP Over TLS,” Internet Engineering Task Force, Request
for Comments RFC 2818, May 2000. doi: 10.17487/RFC2818

[13] M. A. Abdillahi, U. Dossetov, and A. Saqib, “Performance evaluation of
HTTP/2 in Modern Web and mobile Devices,” American Journal of
Engineering Research, 2017.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

data_[‘‘DATA’’] <- data ; data_[‘‘

METADATA’’] <- metadata

data_json <- convert_to_json(data_)

data_encrypted <- ENCRYPTION_OBJECT.

encrypt(data_json)

request <- bytes(data_encrypted)+chr

(0)

while CYPHER_STATUS :

try :

for sub_bytes in request, step_size=

TRANSMISSION_BUFFER :

CONNECTION.send(sub_bytes)

except : connect() ; continue

server_resp <- [EMPTY STRING] ;

error_occured_at_recieving <-

False

while chr(0) not in server_resp[0] :

try :

temp_resp <- CONNECTION.recv(

RECV_BUFFER)

if temp_resp != EMPTY STRING :

server_resp[0] += temp_resp

if temp_resp == EMPTY_STRING :

error_occured_at_recieving <- True ;

break

37 except :

38 error_occured_at_recieving <- True ;

 break

39 if error_occured_at_recieving :

40 connect() ; continue

41 handle_responce(server_resp)

42 break

