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Antoine Miné1, and Charlotte Truchet4
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Abstract. This paper investigates the use of abstract domains from Ab-
stract Interpretation (AI) in the field of Constraint Programming (CP).
CP solvers are generally very efficient on a specific constraint language,
but can hardly be extended to tackle more general languages, both in
terms of variable representation (discrete or continuous) and constraint
type (global, arithmetic, etc.). For instance, linear constraints are usually
solved with linear programming techniques, but non-linear ones have to
be either linearized, reformulated or sent to an external solver. We ap-
proach this problem by adapting to CP a popular domain construction
used to combine the power of several analyses in AI: the reduced product.
We apply this product on two well-known abstract domains, Boxes and
Polyhedra, that we lift to constraint solving. Finally we define general
metrics for the quality of the solver results, and present a benchmark ac-
cordingly. Experiments show promising results and good performances.

1 Introduction

Constraint programming (CP) is a paradigm of declarative programming, in
which problems are described in mathematical terms involving constraints (i.e.
first-order logic formulas) over variables, and then solved using a constraint
solver. Solvers often focus on a few constraint languages, which are families of
constraints such as linear (in)equalities over the reals, over the integers, polyno-
mial constraints, real constraints with mathematical functions (sin, cos, log. . . ),
integer cardinality constraints, etc. Yet, most solvers share two common ingredi-
ents: first, they use propagation algorithms to reduce the search space by reason-
ing on the constraints, without losing solutions. Second, they usually feature a
branching process that consists in adding hypotheses (e.g. variable instantiation
or domain splitting) to the problem. If the new problem is proved infeasible,
the solver backtracks on the current hypotheses and makes new ones to explore
other parts of the search space. In classic CP solvers, the variables are always
considered independent, the only relations between them being the constraints.
In practice, solvers thus work in the Cartesian product of the variables domains,
which can be real intervals with floating point bounds, integer intervals or finite



integer sets. Each of these domain representations comes with specific propaga-
tors, such as Hull consistency [3] for real domains or bound-consistency [23, 18]
for integer intervals, to name a few.

The notion of abstract domain has been introduced for over-approximating
sets of interests (traces of programs) in order to capture specific properties
among them. Previous works [17] showed how to unify the core constraint solv-
ing methods by re-defining a generic notion of abstract domain, augmented with
CP-oriented operations.

A generic solving process based on abstract domains has been introduced in
[16], and implemented in the AbSolute abstract solver. Given an abstract do-
main (e.g. the Cartesian products of real intervals, also called boxes), the solver
combines propagators and branching operators well defined for this abstract do-
main (for instance on boxes: Hull consistency propagation and interval splitting).
An important feature of this solving method is its modularity: the same formal
method can be parametrized with different abstract domains. The main proper-
ties of the solver, which are termination, completeness, and soundness, depend
on the properties of the abstract domain it uses.5

In this fashion, a solver can benefit from the many abstract domains that have
already been defined in Abstract Interpretation (AI) to tackle specific program
properties: Intervals [6], Polyhedra [9], Octagons [14, 15], etc. For instance, Oc-
tagons have been adapted to continuous constraint solving with ad-hoc propaga-
tion and exploration heuristics [17]. Abstract domains feature different precision
and come at different costs: for instance, Octagons are costlier than Intervals but
more precise. Also, some domains such as Ellipsoids are designed to capture very
specific properties and ignore other ones, or propose very coarse approximations
for them. Choosing which domain to use is not a trivial task as these facts must
be taken into account.

In addition to abstract domains, AI defines a set of abstract domain trans-
formers, building upon one or several abstract domains to improve or combine
their precision. Such transformers are very useful in practice as they create more
expressive combined domains in a modular and generic way. For example the
Trace Partitioning transformer [19] partitions execution traces of a program ac-
cording to the control flow (e.g., which branch of a conditional statement was
taken), leading to a path sensitive analysis. It focuses on the abstraction of the
control flow and delegates the value analysis to another domain (generally a nu-
meric one), whose accuracy will benefit from the partitioning. In the following,
we will extensively use the Reduced Product [8], another very popular domain
transformer. A reduced product combines two domains to represent conjunctions
of properties from both of them. Additionally, operations in the reduced prod-
uct apply a reduction operator to communicate information between the base
domains, thus improving the precision.

5 Contrarily to AI, in CP the term completeness refers to an algorithm which does
not lose solutions (over-approximating the solution set), while soundness means that
the solver under-approximates the solution set. This vocabulary can be misleading.
In the following, we will use ”over/under-approximation” to avoid any ambiguity.



Contribution. In this article, we first present a Constraint Programming version
of the Box and Polyhedra abstract domains [9]. We then introduce a version
of the Reduced Product domain transformer adapted to CP purposes, and we
detail a constraint attribution operators for the Box-Polyhedra reduced product.
Finally, we present an implementation in the AbSolute solver and experiments
made on the Coconut benchmark [22].

To be usable in a CP framework, we will have to define on each abstract
domain (1) a split operator, to implement the branching process; (2) a size
function, to determine when the solver finishes; (3) and propagators for given
constraint languages. Compared to the classic reduced product of AI, our version
introduces a hierarchy between the domains, one of them being specialized to
a certain kind of problems only, in order to avoid a redundancy of information
between the two components of the product.

This paper is organized as follows: Section 2 recalls the definitions and re-
sults on abstract domains needed afterwards, in particular the generic notion of
abstract domain for CP. Section 3 introduces the Box and Polyhedra abstract
domains. Section 4 then explains how to build Reduced Products domains for
CP, and details the Box-Polyhedra reduced product. Section 5 presents exper-
iments using AbSolute with the new Box-Polyhedra domain. Finally, Section 6
concludes.

Related works. The links between CP and AI have already been highlighted
in previous works. The seminal work of Apt [1] expresses the propagation loop
which consists in propagating the unfeasible set of some constraints as chaotic
iterations in a well-chosen lattice. In the same spirit, [2] defines propagators,
whether discrete or continuous, in a similar framework. Later, [20] keeps the
same idea and weakens the conditions on the propagators while keeping the
convergence of the propagation loop. All these works focus on propagation. We
go one step further by expressing the splitting and size operators in the same
framework, thus taking into account the whole solving process.

A work more related to ours is [21], which also investigates the use of abstract
domains in CP and also mainly focuses on propagation. The key difference is the
way we build the abstract domain. [21] defines abstractions solely through Galois
connections, which is an important restriction as it bans interesting abstractions
such as polyhedra or zonotopes [11]. On the contrary, we can support a larger
set of abstractions, including those for which there is no Galois connection.

2 Abstract Constraint Solving

This section introduces the core notions of CP solving, and the extension of
abstract domains to the CP context.

2.1 Constraint Programming Background

Constraint solvers can deal with problems written as Constraint Satisfaction
Problems (CSP), where variables represent the unknowns of the problem. Each



variable takes its value from a given set, usually called domain, and constraints
express the relations between the variables. Note that the domains defined in
CP are not abstract domains as defined in AI. Next section will clarify this.

Definition 1. A Constraint Satisfaction Problem is a triplet (V,D, C), where n
and m are respectively the number of variables and the number of constraints of
the problem:

– V = {v1, ..., vn} are variables representing the unknowns of the problem,
– D = {d1, ..., dn} are domains for the variable, such that vk ∈ dk,∀k ∈ [1, n],
– C = {c1, ..., cm} are constraints over the variables.

Constraints of a CSP are defined in a given constraint language, i.e. a family
of first-order logical formulæ. For simplicity, we focus in this section on the case
of real variables, where the domains are real intervals with floating-point bounds,
and the constraints can be written using arithmetic operators, common math-
ematical functions (sin, cos, log, and any function which can be computed on
intervals), and a relation operator within {=, 6=, <,≤}. The corresponding ab-
stract domain will be formally defined in Section 3.1. Many constraint languages
exist in the literature, in particular on finite domains.

We call an instance a total mapping V → D from variables to their domain. A
solution of a CSP is an instance that satisfies all of the constraints. If the solutions
are not computer-representable, as it is the case with variables taking real values,
then solving the CSP means finding domains for the variables which are either
entirely solutions (all the instances inside the domains satisfy the constraints),
or are smaller than a given precision (on interval domains for instance, the size
of the domain is the interval length).

The search space is usually either too large (in the discrete case, its size
is exponential in the number of variables) or infinite (in the continuous case,
solutions for real variable may not be computer-representable) to be explored
exhaustively. A key ingredient of constraint solving is the notion of propagation,
which relies on the constraints to reduce the search space.

Definition 2. Let (V,D, C) be a CSP, and let c ∈ C be a constraint. A propa-
gator ρ for c is a function from P(D) to itself such that:
– ∀D′ ∈P(D), ρ(D′) ⊆ D′,
– ∀D′ ∈P(D),∀(x1, . . . , xn) ∈ D′, c(x1, . . . , xn) =⇒ (x1, . . . , xn) ∈ ρ(D′)

The first condition makes the propagators always decreasing for the ⊂-order.6

The second condition ensures that a propagator does not remove solutions for its
constraint. Constraint propagators are usually built to tighten the search space as
much as possible. For instance, Hull-consistency propagation on boxes [3], which
is similar to the bottom-up top-down algorithm in AI, reduces the domains by
analyzing the expressions inside the constraints with interval arithmetics.

6 Contrarily to the evolution of abstract elements during a static analysis in AI, con-
straint domains always decrease.



The propagation step in a solver applies the propagators for each constraint,
until it reaches a given consistency. Consistencies are properties on the sat-
isfiability of a problem. The application of a propagator makes it possible to
establish such properties. For example, the HC4 propagator [3] establishes the
Hull-Consistency property (i.e. it computes the smallest box containing all of the
solutions of the problem). For example, given two real variables x and y defined
respectively on the intervals [0; 5] and [0; 10], the smallest box that contains all
of the solutions of the constraint x2+y2 ≤ 4 is the store that maps x to [0; 2] and
y to [0; 2]. Propagation is usually not sufficient to find solutions of the problems,
for instance when the solution set cannot be exactly represented by a single
abstract element (e.g., Cartesian products cannot represent complex shapes).
Thus, the solver alternates propagation steps and choice operations (split), as
detailed below.

2.2 Abstract Domains for Constraint Solving

A key point in our work is the use and combination of abstract domains. In AI,
they have been introduced to over-approximate program states [6]. For example
with the Interval abstract domain, each variable of a program is mapped to an
interval with floating point bounds, and a program state is a box. An abstract
domain is a partially ordered set (a poset), where several operations can be made:
transfer functions compute the result of an operation on an abstract element,
the meet operator represent intersections of abstract elements, etc.

Abstract domains have already been extended to be used in a CP solver in
[16]. We recall the main definitions and algorithms in this section. A classic CP
solver alternates two main steps: propagation and search. The abstract-solving
method is defined by lifting up these operations to abstract domains. An abstract
CP domain must thus feature a propagation operation, a size function and a split
operator. Propagation is quite specific in our work, and is defined in the next
subsection.

Definition 3 (Abstract Domain for Constraints). An abstract domain is
given by:
– a poset (E,⊆), with a computer representation for the elements of E,
– a propagator ρ : E → E for each constraint c,
– a splitting operator on E, ⊕E : E →P(E),
– a size function τE : E → R+.

Here, the poset (E,⊆) defines the sets of points that can be exactly repre-
sented (boxes, octagons, etc). The propagator must return an over-approximation,
so that it does not lose solutions (as in Def. 2). The size function gives a metric
on the size of an abstract element. It is used for the termination condition and
should be designed such that an abstract element e ∈ E is considered as too
small to be split if τE(e) is less than or equal to a parameter r ∈ R+. Moreover,
if an element e is an atom of E, τE(e) should be equal to 0 as it is not possible
to split e into smaller elements (e.g., interval singletons).



Algorithm 1: Solving with abstract domains.

function solve(e, C) // e: initial abstract element, C: constraints

sols ← ∅ // abstract solutions

toExplore ← ∅ // abstract elements to explore

push e in toExplore
while toExplore 6= ∅ do

e← pop(toExplore)
e← ρ(e, C) // propagation of all constraints

if e 6= ⊥ then
if τE(e) ≤ r or ∀c ∈ C, c(e) then

sols ← sols ∪ e
else
∀ei ∈ ⊕E(e), push ei in toExplore // splitting

We call split the action of dividing an abstract element into smaller ones
w.r.t. ⊆. The split operator ⊕E must respect some conditions and should be
designed in accordance with τE .

Definition 4. Let (E,⊆) be a poset. A split operator ⊕E : E → P(E) is such
that, for e ∈ E an abstract element, we have:
– ∪ ⊕E (e) = e (no solution must be lost, nor added),
– | ⊕E (e)| is finite (this ensures finite width of the search tree),
– ∃ε > 0,∀e, ∀ei ∈ ⊕E(e), τE(ei) ≤ τE(e) − ε, (this ensures finite depth of the

search tree, hence termination).

If an abstract domain features all these operators, it can be used in the
abstract solving method defined in [16], which solves CSPs by computing and
refining covers of their solution space using abstract elements. Algorithm 1 gives
its pseudo-code. It proceeds as follows: given an initial abstract element e, sup-
posed to represent exactly the domains of definitions of the variables, and a set
of constraints C, we maintain a list of abstract elements toExplore, containing
all the abstract elements which remain to be explored, and initialized with e.
The main loop takes one element in toExplore, and performs the propagation of
the constraints on e. If e is empty, then it contains no solution and is discarded.
Otherwise, if e either fully satisfies all the constraints, or is small enough, it is
added to the solutions of the problem. And in the other case, the status of e
remains undecided, thus e is split and the resulting new elements are added to
toExplore. Any abstract domain can be used within this algorithm, provided
that the constraint propagators are well defined.

Figure ?? shows the result of this solving method on an example from the
Coconut benchmark. We can distinguish two kinds of elements in the resulting
cover: the one that are proven to satisfy the CSP, and the one that were too small
to be split. Considering only the former gives an under-approximation of the



x2 + 4y2 ≤ 4

2y2 ≤ x

(a) Constraint
system

(b) Resolution with the
interval domain

Fig. 1. Resolution of a continuous constraint problem using the interval abstract do-
main.

solution set and considering both kinds gives the same result as the continuous
solving method in CP, that is a union of boxes over-approximating the solutions.

3 Boxes and Polyhedra as Constraint Abstract Domains

As explained above, the notion of abstract domain coming from AI can be
adapted to be used in CP. In this Section, we introduce two numerical abstract
domains, Boxes and Polyhedra, in their CP version.

3.1 A Non-Relational Abstract Domain: Continuous Boxes

In non-relational domains, variables are analyzed independently. In other words,
each variable is assigned to a domain regardless of the domains of the other
variables. We detail here the case of boxes, where a variable domain is a real
interval with floating-point bounds.

In classic CP solvers over continuous variables, the domains are usually rep-
resented as intervals with floating-point bounds. This representation is already
a lattice [2]. Consider F the set of (non special) floating point numbers accord-
ing to the IEEE norm [10]. For a, b ∈ F, let [a, b] = {x ∈ R, a ≤ x ≤ b} the
real interval delimited by a and b, and I = {[a, b], a, b ∈ F} the set of all such
intervals. For any interval I, we write I (resp. I) its lower (resp. upper) bound.
Similarly, for any real point x, x (resp. x) is the floating-point lower (resp. upper)
approximation of x.

Let v1, . . . , vn be variables over finite continuous domains d1, . . . , dn. We call
box a Cartesian product of intervals in d1 × · · · × dn. Boxes built upon D (the
initial domain of the variable) form a finite lattice:

B(D) =

{∏
i

[ai, bi] | ∀i, [ai, bi] ⊆ di

}
The abstract domain is based on the lattice B ordered by inclusion. Its consis-

tency is Hull-consistency [4]. The splitting operator first uses a variable selection
strategy (e.g., the variable with the biggest range) and then splits the domain



of the chosen variable in two. Let vi be the variable chosen for the split and
di = [ai, bi] ∈ I its domain. Let h = ai+bi

2 rounded to the nearest float. The split
operator is:

⊕B(d1 × · · · × dn) = {d1 × · · · × [ai, h]× · · · × dn,
d1 × · · · × [h, bi]× · · · × dn}

The size function corresponds to the Manhattan distance between two ex-
tremities of a diagonal of a box:

τB([a1, b1]× . . .× [an, bn]) =
∑
i

(bi − ai)

Here, ⊕B and τB are designed in accordance with Def. 4, and we have ∀e′ ∈
⊕B([a1, b1] × . . . × [an, bn]), τBe

′ = τB(e) − max
i

(bi − ai). This respects trivially

our termination criteria as max
i

(bi − ai) > 0 (except if e is an atom, in which

case we would not have split it).
Using this abstract domain in the solving method (Algorithm 1) we retrieve

the usual CP solving method on continuous variables. Results detailed in [17]
show that this solver terminates and returns a cover over-approximating the
solutions.

Relational abstract domains get their names from the fact that they can
represent relations between variables. For instance, a linear relation y ≤ x can be
represented as a polyhedron, but not as an interval. This expressiveness comes at
a price, the operators being costlier in relational than in non-relational abstract
domains. We adapt here to CP a relational abstract domain, Polyhedra, and
present a Reduced Product for CP where Polyhedra and Boxes coexist.

3.2 A Relational Abstract Domain: Polyhedra

The polyhedra domain P [9] abstracts sets as convex closed polyhedra.

Definition 5 (Polyhedron). Given a set of linear constraints P, the convex
set of Rn points satisfying all the constraints in P is called a convex polyhedron.

Modern implementations [12] generally follow the “double description ap-
proach” and maintain two dual representations for each polyhedron: a set of
linear constraints and a set of generators. A generator is either a vertex or a
ray of the polyhedron. A ray is a vector representing a direction in which the
polyhedron is unbounded: starting from any point within the polyhedron, all
the points in the direction of the ray remain within the polyhedron. However in
practice, polyhedra are bounded in a constraint solver, hence they do not feature
rays.

Figure 2 illustrates the different representations for a same polyhedron. The
graphical representation 2(a), the set of linear constraints 2(b), and the genera-
tors and the maximal distance between two generators 2(c).



(a) A polyhedron.

x ≥ 1
x ≤ 4
y ≥ 1
y ≤ 4
2× y − x ≤ 6
2× y − x ≥ 0
2× x+ y ≥ 4

(b) Set of linear
constraints.

(c) Generators and
Precision.

Fig. 2. Different representations for the polyhedra.

The double description is useful because classic polyhedra operators [12] are
generally easier to define on one representation rather than the other. This also
holds for the operators we introduce here for CP. We define the initialization and
the consistency of a polyhedron on the set of linear constraints. The size function
is defined on generators and the split operator relies on both representations.

Propagation is an important operator to effectively reduce the search space.
In the following, we will consider a weak form of consistency for polyhedra: the
non-linear constraints are ignored (not propagated), only the linear constraints
are considered.

Definition 6 (Polyhedral consistency). Let Cl be a set of linear constraints,
Cnl a set of non-linear constraints, and C = Cl ∪ Cnl. The consistent polyhedron
for C is the smallest polyhedron including the solutions of Cl.

With this weak definition, the consistent polyhedron given a set of constraints
always exists and is unique. This simple consistency definition is sufficient when
using the polyhedron in the Box-Polyhedra Reduced Product. Note that higher
level consistencies could be defined to propagate non-linear constraints, using
for instance quasi-linearization [15], linearization of polynomial constraints [13],
cutting planes, or computing the hull box, to name a few. Our consistency can be
directly computed by adding the constraints to the polyhedron representation.

Proposition 1 (Polyhedral consistency). The polyhedral consistency returns
an over-approximation of the solutions

Proof. Assume that it does not return an over-approximation, then there exists
a polyhedron P ∈ P, a set of constraints C, the corresponding consistent poly-
hedron PC , and a solution s ∈ P such that s /∈ PC . Necessarily, one has c(s) for
all non-linear constraints c, because non-linear constraints are not considered.
Hence there exists a linear constraint c such that c(s) (because s is a solution of
the problem) and ¬c(s) because s /∈ PC , which gives a contradiction.

The size function is defined as the maximal Euclidean distance between pairs
of vertices. Let P ∈ P,

τP(P ) = max
gi,gj∈P

||gi − gj ||



Finally, the splitting operator for polyhedra can be defined in a similar way
to that of boxes, i.e. by cutting the polyhedron into two parts according to a
linear constraint. But we will not use this operator in the following, and omit
here its definition.

4 Reduced Product

The Reduced Product, introduced in [7], is a construction to derive a new, more
expressive abstract domain, by combining two or more existing ones. An abstract
element of the product comprises one abstract element component from each ab-
stract domain, and represents the intersection of the spaces represented by each
component. An operation on the reduced product applies the corresponding ab-
stract operation on each component independently, followed by a reduction phase
that communicates information between components to improve their precision
(for instance, a Polyhedral component can propagate bound informations to a
Box component). Hence, deriving a reduced product from existing abstract do-
mains only requires defining one additional operation, the reduction, making the
reduced product a powerful and attractive abstract domain transformer.

4.1 Constraint-oriented Reduced Products

We present here a generic way of defining Reduced Products for constraint ab-
stract domains. The idea is to combine domains which are not equivalent in the
product, and avoid duplicating constraint propagation in each domain. Thus, we
introduce a hierarchy between the two components of the product. We make one
of the component a specialized domain, dedicated to one type of constraints only,
and the second one, a default domain which will apply to the other constraints.
We will refer afterwards to these as the default and the specialized domains.
This configuration avoids unnecessary computations on the constraints that are
not precise or not cheap to represent on some domains (e.g., x = cos(y) with
the domain of polyhedra or x = y with the domain of intervals). Nevertheless,
we still keep the modular aspect of the reduced product: we can still add a new
domain on top of a reduced product by defining a reduction operator with each
existing component, and an attribution operator which specifies for a constraint
c if the new specialized domain is able to handle it.

Definition 7. Let (Ad,vd), (As,vs) be two abstract domains. Let C a set of
constraints, we define the product Ad × As, ordered with v where As is the
specialized domain and Ad the default one.

– The product Ad×As is an abstract domain ordered by component-wise com-
parison. Let xd, yd be two elements of Ad and xs, ys be two elements of As,
then (xd, xs) v (yd, ys)⇐⇒ xd vd yd ∧ xs vs ys.

– A reduction operator is a function θ : Ad × As → Ad × As such that
θ(xd, xs) = (yd, ys) =⇒ (yd, ys) v (xd, xs).



Algorithm 2: Propagation in a reduced product

function ρ(e, c) // e: abstract element, c: constraint
(es, ed)← e
if κ(c) then

e′ ← (ρs(es, c), ed)

else
e′ ← (es, ρd(e, c))

return θ(e′)

– Let c be a constraint, an attribution operator κ is a predicate κ : C →
{true, false} such that κ(c) = true if the domain As is well suited for the
constraint c.

Note that the reduction operator can be seen as a propagator with respect
to the constraint: “belong to both elements of the product”. Using the reduced
product, the propagation loop given in Algorithm 2 slightly differs from the
usual one in CP: for each constraint, either the specialized propagator (ρs) or
the default one (ρd) is applied, according to the result of the attribution operator
κ. When all of the constraints have been filtered, we then apply the reduction
operator (θ) on the resulting abstract element.

Consider Ad, As two abstract domains ordered with inclusion, and A =
Ad × As the product abstract domain with Ad the default domain and As the
specialized one. The consistency in A is defined as follow:

Definition 8 (Product-consistency). Let C be a set of constraints such that
C = Cd ∪ Cs with Cd = {C ∈ C | ¬κ(C)}, the constraints for the default domain
Ad, and Cs = {C ∈ C |κ(C)}, the constraints for the specialized domain As.
The product-consistent element for C is the product of the smallest element of
Ad including the solutions of Cd with the smallest element of As including the
solutions of Cs.

Proposition 2 (Product-consistency). The Product-consistency returns an
over-approximation of the solutions.

Proof. Assume that it does not return an over-approximation, then there exists
a product P ∈ A, a set of constraints C, the corresponding consistent product
PC , and a solution s ∈ P of the problem which has been lost, i.e. s /∈ PC . Then,
there exists a constraint c such that c(s) (because s is a solution of the problem)
and ¬C(s) because s /∈ PC , which gives a contradiction.

4.2 The Box-Polyhedra Reduced Product

The Box-Polyhedra abstract domain BP is particularly useful when solving prob-
lems which involve both linear and non-linear constraints. Here, the Polyhedra
domain is used as a specialized domain working only on the linear subset of



y ≤ 2x+ 10

2y ≥ x− 8

x2 + y2 ≥ 3

x, y ∈ [−5, 5]

(a) Linear and
non-linear con-
straints.

(b) Consistent
polyhedron.

(c) Solving the
non-linear part.

(d) Intersection
of the domains.

Fig. 3. Example of the Reduced product of Box-Polyhedra.

the problem. We use the Box domain as the default domain to solve the non-
linear part of the problem. More precisely, let Cl bet the set of linear constraints
and Vl the set of variables appearing in Cl, and let Cnl be the set of non-linear
constraints and Vnl the set of variables appearing in Cnl. We first build an ex-
act representation of the space defined by Cl using the Polyhedra domain. By
construction, this polyhedron is consistent with respect to Cl once it is created
(conjunctions of linear constraints can be expressed with a convex polyhedron
with no loss of precision). In effect, the linear constraints are propagated once
and for all at the initialization of the polyhedron. The variables Vnl appearing
in at least one non-linear constraint are then represented with the box domain
and the sub-problem containing only the constraints in Cnl is solved accordingly.

Figure 3 gives an example of the Box-Polyhedra abstract domain applied on
a problem with both linear and non-linear constraints. Figure 3(a) gives the set
of constraints, Figure 3(b) the consistent polyhedron (for the linear constraints),
Figure 3(c) the union of boxes solving the non-linear constraints, and Figure 3(d)
the intersection of both domain elements obtained with the reduced product.

As, by construction, the initial polyhedron is consistent for all the linear
constraints of the problem, the operators in the reduced abstract domain BP are
defined only on the box part.

Definition 9 (Box-Polyhedra Consistency). Let C = Cl ∪Cnl with Cnl (resp.
Cl) the set of non-linear (resp. linear) constraints. The box-polyhedra consistent
element is the product of the smallest consistent box including the solutions of
Cnl with the initial polyhedron.

This definition being a particular case of the Product-consistency is thus a
correct over-approximation of the solution set.

Let X = Xb×Xp ∈ BP with Xb the box and Xp the polyhedron. The splitting
operator splits on a variable in Vnl = (v1, . . . , vk) (in a dimension in Xb):

⊕BP(X) = {⊕B(Xb)×Xp}

Finally, the size function is:

τBP(X) = τB(Xb)



(a) Polyhedra. (b) Boxes. (c) Reduced Products.

Fig. 4. A reduced product for the Box-Polyhedra abstract domains.

Thus, we take advantage of both the precision of the polyhedra and the
generic aspect of the boxes. Moreover, we bypass the disadvantages bound to
the use of polyhedra. We do not need any kind of constraint linearization and
we reduce the propagation/split phase to one step.

Proposition 3 (Completeness of solving with BP). The solving method in
Algorithm 1 with the BP abstract domain returns a union of abstract element
over-approximating the solution set.

Proof. The Box-polyhedra consistency computes an over-approximation of the
solutions; then, by Definition 10 in [16], the abstract solving method using the
BP abstract domain returns a cover over-approximating the solutions.

5 Experiments

We have implemented the method presented above in the AbSolute constraint
solver.7 It implements the solving method presented in Algorithm 1 and in [16].
This solver is written in OCaml, and uses the APRON numerical abstract domain
library [12]. Its current version features a generic implementation of the prop-
agation loop with reduced products, the heuristic for the mixed box-polyhedra
abstract domain, and a visualization tool.

Figure 4 shows the results of a Boxes-Polyhedra reduced product. The so-
lution space (in green) is approximated using the polyhedra (resp. boxes), ab-
stract domain on 4(a) (resp. 4(b)). The informations are then shared using the
reduced product. The reduced product first transforms the polyhedron into a
box by computing its bounding box (this operation is cheap using the generator
representation), and then the box into a polyhedron (this step is straightforward
as boxes are polyhedra). Finally, the reduction is performed for each abstract
element: we propagate constraints from the box into the polyhedron (this step
induces no loss of precision) and symmetrically from the polyhedron to the box
which gives an over-approximation of their intersection 4(c). In this example,
both abstract elements are reduced, but applying the reduced product does not
necessarily change both or even either one of the abstract elements.

7 Available on GitHub https://github.com/mpelleau/AbSolute.



Table 1. Comparing Ibex and AbSolute with the interval domain.

problem #var #ctrs time, AbS time, Ibex #sols AbS #sols, Ibex

booth 2 2 3.026 26.36 19183 1143554

cubic 2 2 0.007 0.009 9 3

descartesfolium 2 2 0.011 0.004 3 2

parabola 2 2 0.008 0.002 1 1

precondk 2 2 0.009 0.002 1 1

exnewton 2 3 0.158 26.452 14415 1021152

supersim 2 3 0.7 0.008 1 1

zecevic 2 3 16.137 17.987 4560 688430

hs23 2 6 2.667 2.608 27268 74678

aljazzaf 3 2 0.008 0.02 42 43

bronstein 3 3 0.01 0.004 8 4

eqlin 3 3 0.07 0.008 1 1

kear12 3 3 0.043 0.029 12 12

powell 4 4 0.007 0.02 4 1

h72 4 0 0.007 0.012 1 1

vrahatis 9 9 0.084 0.013 2 2

dccircuit 9 11 0.118 0.009 1 1

i2 10 10 0.101 0.010 1 1

i5 10 10 0.099 0.020 1 1

combustion 10 10 0.007 0.012 1 1

In our experiments, we compared our solver with the defaultsolver of Ibex
2.3.1 [5], on a computer equipped with an Intel Core i7-6820HQ CPU at 2.70GHz
16GB RAM running the GNU/Linux operating system.

We selected problems from the Coconut benchmark8. This benchmark is
intended as a test set of continuous global optimization and satisfaction problems
and is described in detail in [22]. We have selected problems with only linear
constraints, only non-linear constraints or both as this is the main focus of our
work according to the constraint language recognized by the AbSolute solver.
We have fixed the precision (the maximum size of the solutions, w.r.t. to the size
metric of the employed domain) to 10−3 for all problems for both solvers.

We must define here the concept of solution for both solvers. Ibex and Ab-
Solute try to entirely cover a space defined by a set of constraints with a set
of elements. In Ibex, these elements are always boxes. In AbSolute, these are
both polyhedra and boxes. Thus, the performance metric we adopt is, given a
minimum size for the output elements, the number of elements required to cover

8 Available at http://www.mat.univie.ac.at/~neum/glopt/coconut/



the solution space.9 Hence, the less elements we have, the faster the computation
will be. Furthermore, having fewer elements makes the reuse of the ouput easier.

The first three columns in Table 1 describe the problem: name, number of
variables and number of constraints. The next columns indicate the time and
number of solutions (i.e. abstract elements) obtained with AbSolute (col. 4 &
6) and Ibex (col. 5 & 7).

According to the metrics mentioned above, on most of these problems, Ab-
Solute outperforms or at least competes with Ibex in terms of time and solution
number. We justify the good results obtained by our method by two main facts:
firstly, the linear constraints solving is almost immediate with our method. For
example, the booth problem is composed of one linear constraint and one non-
linear constraint. The linear constraint is directly representable with a polyhe-
dron and thus, the solving process immediately finds the corresponding solution,
while working only with boxes makes the search go through many splits before
obtaining a set of boxes smaller than the required precision. Secondly, after each
split operation, AbSolute checks for each resulting abstract elements whether it
satisfies the set of constraints. If this is the case, the propagation/split phase
stops for this element. This makes it possible to stop the computation as soon
as possible. The defaultsolver of Ibex does not perform this verification and
thereby goes much slower. This makes our implementation competitive on prob-
lems with only non-linear constraints. For the exnewton problem which only
involves non-linear constraints (the resolution thus only uses boxes), we also ob-
tain good performances, showing that the time overhead induced by the use of a
specialized abstract domain is insignificant when this one is not used for a given
problem. Note that disabling the satisfaction verification in AbSolute leads to
results with the same number of solutions as for Ibex, but still with a gain in
time. For instance, with this configuration, on exnewton without the satisfaction
check, we obtain 1130212 elements in 9.032 seconds.

Finally, regarding the solving time, the two methods have similar solving
time. But we can notice that on bigger problems, using a polyhedron to represent
the search space can be costly.

6 Conclusion

In this paper, we introduced a well-defined way of solving constraint problems
with several abstract domains. Our idea is to use an expressive domain able to
encode exactly a certain kind of constraints, and a low-cost domain to abstract
the constraints that can not be exactly represented in the specialized domain.
This allows us to get the best of both domains, while keeping the solver prop-
erties. We have detailed the case of the Polyedra-Boxes product, well suited for
problems with linear and non-linear constraints.

9 Note that AbSolute discriminates the elements in two categories: the ones such that
all of the points in them satisfy the constraints, and the one where it is not the case.
We have not showed this information in the experiments as Ibex does not do any
kind of discrimination on the resulting elements.



The principle is generic enough to add as many specialized domain as one
wishes. Integer domains need to be added to the framework, for instance, the
Congruence domain, based on constraints of the form: a ≡ b (mod n). We also
plan to investigate abstract domains efficiently representing global constraints,
as, for instance, Octagons and time precedence constraints. These domains could
be combined with more basic domains handling any constraint. In general, the
Reduced Product construction can be viewed as a way to combine different
specific constraint solving mechanisms, within a formal framework to study their
properties (soundness, completeness). Ultimately, each CP problem could be
automatically solved in the abstract domains which best fits it, as in AI.

Note The research described in this article has been partly funded by the Coverif ANR

project 15-CE25-0002-03.
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