
EasyChair Preprint
№ 5030

Self Driving Lane Detection Car Using Python
and Opencv on Raspberry Pi

Venkata Shiva Prasad Nannuri, Sai Santosh Kumar Mantha,
Nikhilesh Pottipally, Sai Krishna Kodati and Suresh T.V Kumar

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 25, 2021

Venkata Shiva Prasad Reddy
Electronics and communication
Engineering
Bharat Institute of Engineering and
Technology, Hyderabad, India.
spr81189@gmail.com

P.Nikhilesh
Electronics and communication
Engineering
Bharat Institute of Engineering and
Technology, Hyderabad, India.
nikhileshpottipally21@gmail.com

Abstract

In this study, we present a perception
algorithm that is based purely on
vision or camera data. We focus on
demonstrating a powerful end-to-end
lane detection method using
contemporary computer vision
techniques for self-driving cars. We
first present a minimalistic approach
based on edge detection and
polynomial regression which is the
baseline approach for detecting only
the straight lane lines. We then
propose an improved lane detection
technique based on perspective
transformations and histogram
analysis. In this latter technique, both
straight and curved lane lines can be
detected. To demonstrate the
superiority of the proposed lane
detection approach over the
conventional approach,
simulationresults in different
environments are presented.

Keywords:

Sai Santosh Kumar
Electronics and communication
Engineering
Bharat Institute of Engineering and
Technology, Hyderabad, India.
saisantosh6190@gmail.com

K. Sai Krishna
Electronics and communication
Engineering
Bharat Institute of Engineering and
Technology, Hyderabad, India.
saikrishnakodati11@gmail.com

T.V. Suresh Kumar (Guide)
Assistant Professor
Electronics and communication
Engineering
Bharat Institute of Engineering and
Technology, Hyderabad, India.
Tvsuresh@biet.ac.in

Raspberry pi ,Lane detection, Hough
Transform, Threshold, Python
Language , OpenCV Library.

Introduction

Driver Assistant System is designed to
assist drivers in the perception of any
dangerous situations before, to avoid
accidents after sensing and
understanding the environment
around itself. To date there have been
numerous studies into the recognition.
Traffic accidents have become one of
the most serious problems. The reason
is that most accidents happen due to
negligence of the driver. Rash and
negligent driving could push other
drivers and passengers in danger on
the roads. More and more accidents
can be avoided if such dangerous

 SELF DRIVING LANE DETECTION CAR USING PYTHON AND OPENCV ON RASPBERRY PI

HSJD

mailto:spr81189@gmail.com
mailto:nikhileshpottipally21@gmail.com
mailto:spr81189@gmail.com
mailto:saikrishnakodati11@gmail.com

driving condition is detected early and
warned to other drivers. Most of the
roads, cameras and speed sensors are
used for monitoring and identifying
drivers who exceed the permissible
speed limit on roads and motorways.
This simplistic approach, and there are
no restrictions.

Algorithm

The block diagram of a proposed lane
detection system on Raspberry Pi is
shown in the figure below:

Figure 1: Block diagram of Lane
Detection System Each blocks of a
block diagram are explained one by
one below:
1. Capture input image: Hardware like
Camera is used to take input image.
2. Image Preprocessing: To enhance
the quality of image, we need to
preprocessit.The processes like noise
reduction, edge detection, contrast and
color management are applied.
 3. Region of interest: In determining
the computational complexity of lane
identification and LDI system, ROI
plays an
important role to detect it. Here only
the selected are as is detected or taken
for the next level of processing. These
selected ROI images are then used for
lane detection using a proposed
algorithm. The selection of ROI
reduces the processing time of the
frames.
4. Hough Transform: The Hough
Transform is implemented on images
after the canny edges detection has
taken place so as to obtain the image
pixels that are desired ones. So here in

this system to detect the lanes marking
from the image data, Hough
Transform is used.
5. Lane Detection: Here, the Lane will
be marked with a separate color. Two
important algorithms Canny Edge
Detection and Hough Transform are
used to implement Lane Detection
System which are explained below:

Canny edge detection

Canny edge detection is a technique to
extract useful structural information
from different vision objects and
dramatically reduce the amount of
data to be processed. It has been
widely applied in various computer
vision systems. Canny has found that
the requirements for the application of
edge detection on diverse vision
systems are relatively similar. Thus, an
edge detection solution to address
these requirements can be
implemented in a wide range of
situations. The general criteria for edge
detection include: [1]
 1. Detection of edge with low error
rate, which means that the detection
should accurately catch as many edges
shown in the image as possible.
2. The edge point detected from the
operator should accurately localize on
the center of the edge.
3. A given edge in the image should
only be marked once, and where
possible, image noise should not create
false edges.

Figure2: Example for canny edge
Detection [1]

Hough Transform

The features of various shape inside an
image can be separated using a
technique called as Hough Transform.
This technique is generally used for the
identification of arbitrary shapes such
as straight lines, circles, ellipses, etc.
The Hough Transform is implemented
on images after the canny edges
detection has taken place so as to
obtain the image pixels that are
desired ones. So here in this system to
detect the lanes marking from the
image data, Hough Transform is used.
The primary point of interest of
theHough Transform technique allows
gaps in feature boundary descriptions
and is not affected by noise. In general,
the straight-line equation is given by y
= mx + c can be represented as point
(c, m) in the parameter space or
Cartesian co-ordinate system. For the
Hough transform we convert the
equation to polar co- ordinates i.e. in
terms of rho and theta. [3]

Where r is the distance from the initial
position to closest point on straight
line and theta (ɵ) is the angle between
the line connecting the origin and the x
axis. The (r, ɵ) plane is referred to as
Hough space. The Hough transform
detect the straight line in two
dimensional arrays (matrix). Each
element of the matrix has values equal
to the sum of the pixels that are
positioned on line. So, the elements

with the highest values represent the
straight lines.

Proposed Lane
Detection System

 We are using the concept of
modularity. Modularity is that we have
separate files for each of the tasks to
perform . so we have one main module
that will handle all other files . so each
file we call it a different module . so if
you we want to use a ps4 , for that we
will create a module for that and we
will connect it to main module . the
same way if you want to run the
motors we have a motor module . in
the same way we have lane detection
and tracking module . these all are
seperate modules that we can add and
remove from our robot . so the
advantage is that the coding becomes
very neat and becomes very strategic
where you can add and remove
different modules without changing a
lot of stuff and you can use this
modules in any other projects also .

 In this project we are having a
main module that will first of all
connect to webcam module . The
images captured in the webcam
module are send to main module and
are used by lane module to detect the
lanes from the image and sends us
back the curve values on how much we
need to turn the wheels of the robot .
we also have a utility file that is linked
to lane module . The reason for this is
we don’t want to write all the code in
one module if it is too long . we will
write all the supporting functions in
the utility file and we can relate to lane
module. Once the curve is reached the
main module , we can send this curve
to motor module which will turn the
motors based on the speed we have
provided or based on the turn we have
provided or received from the lane
module .

 We are going to use pixel
summation method. The idea is that
we are summing up the pixels in a
column. Black is basically 0 and white
is 255. Now because we are using 8 bit
integers, we have 2 power 8 values that
are from 0 to 256 values . We gave
white as 255 and black as 0.

so with summing up the pixels in the
column and with little bit of math we
can not only determine whether we

have to turn left or right or go straight
but also how much we have to turn left
or right . so that is the value of the
curve . This is not a complicated
process and we are not using fancy
algorithms . It will be a easy process
and we will go step by step and we will
see the output of each steps .
 Eventhough we are going to run
our code in raspberry pi we are going
to write our code in pc and the reason
for that is it makes the coding process
much easier and its much faster to
debug . And once the module is
prepared we can add it to our existing
module and run it .

STEP 1 – Thresholding

Now the idea here is to get the path
using either Color or Edge Detection.
In our case we are using regular A4
White paper as path, therefore we can
simply use the color detection to find
the path. We will write the
Thresholding function in the Utilities
file.

STEP 2 – WARPING

We don’t want to process the whole
image because we just want to know
the curve on the path right now and
not a few seconds ahead. So we can
simply crop our image, but this is not
enough since we want to look at the
road as if we were watching from the
top . This is known as a bird eye view
and it is important because it will allow

us to easily find the curve. To warp the
image we need to define the initial
points. These points we can determine
manually. So to make this process
easier we could use track bars to
experiment with different values. The
idea is to get a rectangle shape when
the road is straight.

STEP 3-Histogram

Now comes the most important part,
finding the curve in our path . To do
this we will use the summation of
pixels. But what is that? Given that our
Warped image is now binary i.e it has
either black or white pixels, we can
sum the pixel values in the y direction.
Lets look at this in more detail.

The picture above shows all the white

pixels with 255 value and all the black with

0. Now if we sum the pixels in first column

it yeilds 255+255+255+255+255 = 1275.

We apply this method to each of the

columns. In our original Image we have

480 pixels in the width. Therefore we will

have 480 values. After summation we can

look at how many values are above a

certain threshold hold lets say 1000 on

each side of the center red line. In the

above example we have 8 columns on the

left and 3 columns on the right. This tells

us that the curve is towards left. This is the

basic concept, though we will add a few

more things to improve this and get

consistent results. But if we look deeper

into this we will face a problem. Lets have

a look.

The above images shows the 3 cases
where this methods would work. We
can clearly see that when the curve is
right the number of pixels on the right
hand side are more than the left and
vise versa. And when its straight the
number of pixels are approximately
same on both sides.

STEP 4 – Averaging

Once we have the curve value we will
append it in a list so that we can
average this value. Averaging will allow
smooth motion and will avoid any
dramatic movements.

STEP 5 – Display

Now we can add options to display the
final result . We will add an input
argument to our main ‘getLaneCurve’
function so that we can have the
flexibility of turning it on and off, since
raspberry pi would run at very slow
speeds if we display and run at the
same time.

Conclusion

The existing system which uses canny
edge detection and hough transform
usually detects straight lines. But it
becomes very hard if there is a curve.
When a curve appears the existing
system usually cannot detect the lane
accurately and there is a chance of

getting hit by other vehicle. we have to
turn the car according to the curve.
 Our proposed system uses
simple methods like thresholding,
pixel summation methods and
histogram analysis to detect the curves
. This method is very much accurate
when compared to the existing system.
it detects the curve accurate enough to
turn the motor in the provided speed.

References

1. Mr.Mustafa Surti, # Prof. (Dr.)
Bharati Chourasia, “Real time lane
detection system using Python and
OpenCV on Raspberry Pi”,
International Journal for Research in
Engineering Application &
Management (IJREAM) ISSN : 2454-
9150 Vol-05, Issue-06, Sep 2019 .

2. Abdulhakam.AM.Assidiq, Othman
O. Khalifa, Md. Rafiqul Islam, Sheroz
Khan, “Real Time Lane Detection for
Autonomous Vehicles “, Proceedings of
the International Conference on
Computer and Communication
Engineering 2008 , May 13-15, 2008
Kuala Lumpur, Malaysia .

