
EasyChair Preprint

№ 968

Environmental Monitoring System Using IoT and

Cloud Service at Real-Time

Mukesh Ranjan Sahay, Muthu Kumar Sukumaran,
Sudha Amarnath and Thirumalai Nambi Doss Palani

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 5, 2019

Environmental Monitoring System Using IoT and
Cloud Service at Real-Time

Mukesh Ranjan Sahay
Department of Software Engineering

San Jose State University
San Jose, United States of America

mukesh.sahay88@gmail.com

Muthu Kumar Sukumaran
Department of Software Engineering

San Jose State University
San Jose, United States of America

muthu220515@gmail.com

Thirumalai Nambi Doss Palani
Department of Software Engineering

San Jose State University
San Jose, United States of America

ptndoss@gmail.com

Sudha Amarnath
Department of Software Engineering

San Jose State University
San Jose, United States of America

sudha04.a@gmail.com

Abstract— In this paper, we have proposed an Internet of
Things (IoT) based on a real-time environmental monitoring
system. Internet of Things (IoT) plays an important role in
today’s world through a vast and persistent system of sensor
networks concerned to the environment and its parameters.
This system deals with monitoring and controlling important
environmental conditions like temperature, humidity and CO
level using the sensors and then this data is sent to the cloud.
This information can be accessed from anywhere over the
internet and then the sensor data is presented as graphical
statistics in a mobile application. This paper explains and
presents the implementation and outcome of this environmental
monitoring system which uses the sensors for temperature,
humidity and other environmental parameters of the
surrounding area. This data can be used to take remote actions
to control the conditions. This can also be used to send
notifications. The collected data is pushed to the cloud storage
and an Android application accesses the cloud and presents the
results to the end users. The system employs an Arduino UNO
board, DHT11 sensor, ESP8266 Wi-Fi module, which transmits
data to AWS IoT Core cloud services using MQTT. An Android
application is created which accesses the cloud data and displays
results to the end users.

Keywords— Internet of Things; Cloud; Mobile application;
Sensor Network; Environmental Monitoring

I. INTRODUCTION

Internet of Things (IoT) is expected to transform the
world by making it possible to monitor and control important
environmental phenomena using the devices/sensors capable
of capturing, processing and transmitting the data wirelessly
to the remote storage like the cloud services which stores,
analyzes and exposes this data as a meaningful information.
This information can be accessed over internet through
various front-end user interfaces such as a web page or a
mobile application, depending on the need and the intended
goal. Internet plays a critical role in this transformation by
making it more efficient and reliable, and ensuring a smooth
and swift communication of data from these IoT devices to
the cloud and from the cloud to the users. The Internet of
Things (IoT) is a system of interrelated computing devices,
mechanical and digital machines, objects, animals or people
that are provided with unique identifiers and the ability to
transfer data over a network without requiring human-to-
human or human-to-computer interaction. The “things” are
capable of sensing, capturing and sending the data such as
temperature, pressure, humidity, noise, pollution, object
detection, patient vitals etc. Environmental monitoring is an
important IoT application which involves monitoring and
controlling the surrounding environment and presenting this

data for effective actions such as remotely controlling the
heating or cooling devices, sending notifications about the
current status and a long term data analysis. This paper
presents and explains the implementation details and the
outcome of an environmental monitoring system which uses
the IoT for temperature, humidity and other environmental
parameters of the surrounding area. The sensors are placed at
various locations to collect the data in order to predict the
behavior of a particular area of interest. The main goal of this
paper is to design and implement an efficient monitoring
system through which the required parameters are monitored
remotely using internet and the data gathered from the
sensors are stored in the cloud and to project the estimated
trend on a mobile application. In this paper we also present a
trend based on the results of collected data with respect to the
normal or specified ranges of particular parameters. The
system consists of a central Arduino UNO board which
interfaces at the input with temperature and humidity
monitoring sensor DHT11 and at the output with ESP8266
Wi-Fi module (NodeMCU) which transmits the sensed data
through Internet to a remote cloud storage. Also, when the
NodeMCU get all the DHT11 Sensor data it converts this data
into a JSON data and send to a web server. This is a low cost
system which gives insight into the design and
implementation of a complete IoT application involving all
aspects from sensing and wireless transmission to cloud
storage and data retrieval from cloud via a mobile application.
It involves a detailed study and deployment of Arduino
development board, its interfacing with input and output
modules such as sensors and Wi-Fi module, the usage of API
for sending data to the cloud and development of a mobile
application based on the Android operating system. The
results of the project show the real-time monitoring of
temperature and humidity levels from any location in the
world and its statistical analysis. This system can be extended
to enable remote controlling of various appliances based on
the sensed data.

The proposed system that we are proposing uses the
Broadcast based approach wherein multiple devices
subscribe for a MQTT topic (T) with the Broker. Temperature
and humidity values are received from DHT11 sensor and
processed by the ESP8266 NodeMCU. Sensor readings from
NodeMCU are published to the AWS IOT core that maintains
the Shadow table for this Topic (T).

II. RELATED WORK

IoT has emerged as an area of great interest for both the
investors and the tech giants, resulting in an overabundance
of the research activities and initiatives. Many of the

applications and IoT based concepts have harvested attention
including the smart grid, smart city, smart wearable devices
and smart home. Mostly all these IoT applications involve
sensors and transducers attached to a microcontroller along
with a wired/wireless transmission of the data to either a local
datastore or a remote cloud service which transforms the raw
data into an advantageous information that can be effectively
utilized to bring insights in that area. The research and
development activities encompass techniques of fabrication
of the smart devices, appropriate wireless technologies,
development boards, designing network protocols,
applications and much more. While working on our project,
we explored recent works accomplished in the development
of beneficial and exciting applications using low cost
development boards such as Raspberry Pi and Arduino. Some
of the common applications developed based on these boards
include home automation system, patient monitoring systems
and weather and environmental monitoring systems. In [1],
the data related to temperature, humidity, light intensity, gas
leakage, sea level and rain intensity are captured, and then the
data is sent wirelessly to ThingSpeak using Arduino UNO.
This work is focused significantly on the MATLAB
visualization and analysis of the environmental data. In [2],
the authors are monitoring the environmental conditions like
temperature, relative humidity, light intensity and CO2 level
using sensors and LPC2148 microcontroller. The data was
sent to ThingSpeak cloud. In contrast with LPC2148,
Arduino UNO used in our system is simple, low cost and less
complex for such a simple application. In [3], the authors
present an IoT based real-time weather monitoring system
using Raspberry Pi which is intricate compared to Arduino
due to the programming language used and the Raspbian
operating system. An Arduino based weather monitoring
system is developed and presented in [4]. In this, the data
from multiple sensors is imported to the Microsoft Excel
which is cumbersome when compared to ThingSpeak or other
cloud services. In [5], the authors have designed and
developed a wireless network of sensors for environmental
monitoring using Raspberry Pi and Arduino. They employed
Xbee module to instrument the IEEE 802.15.4 standard for
data collection from multiple sensor nodes at a base station
(Raspberry Pi). This system can be extended to ensemble
large scale applications, however in the present form, the
system lacks cloud connectivity.

III. HARDWARE DESIGN

The vital component of the proposed system is a
microcontroller module (NodeMCU – ESP8266) which acts
as the main processing unit for the entire system. It interfaces
with the DHT-11 sensors at the input for receiving
temperature and humidity data and with the Wi-Fi module at
the output to send the received data to the cloud and web
server over the Internet. The microcontroller polls the sensor
to fetch the data and sends it over the Internet to the cloud for
analysis.

A. Microcontroller

The fundamental hardware component of the proposed
system is the microcontroller which interfaces with other
components of the system. We have used the NodeMCU
(ESP-8266) because of its simplicity, robustness and lost cost.
Also, it serves our purpose with ease and convenience [6].
Figure 1 shows a picture of NodeMCU microcontroller used

in our system. This microcontroller board is based on the
ATmega328P. It has 14 digital input/output pins, 6 analog
input pins, a USB connection, 16 MHz quartz crystal, a power
jack, and a reset button. It can be powered with a battery. It is
programmable with the Arduino IDE (Integrated
Development Environment) via a type B USB cable.

Figure 1: NodeMCU Microcontroller board

B. Sensors

For the proposed system, we have selected the DHT-11
sensor for measuring the temperature and humidity for
environmental monitoring and preferred a single sensor with
both sensing capabilities instead of separate sensors for each
parameter. The DHT-11 Temperature & Humidity Sensor
provides a temperature & humidity sensor compound with a
calibrated digital signal output. It uses the high-class digital-
signal-acquisition method and temperature & humidity
sensing technology. It guarantees a great consistency and
outstanding long-term steadiness. DHT-11 sensor comprises
of a resistive-type humidity measurement component and an
NTC temperature measurement component. It is small sensor
with fast response and high quality. It has a comparatively
low cost and a strong anti-interference ability, digital signal
output, and precise calibration. It can be easily be interfaced
with Arduino UNO board using the DHT library and the
connecting wires. Figure 2 shows a picture of the DHT-11
sensor which we used in our system. It has temperature range
from 0 to 50°C and humidity range from 20 to 90%RH, and
the signal transmission range of 20m. We have installed the
DHT library and used it to get the required data.

Figure 2: DHT-11 sensor for temperature and
humidity

C. Wifi Module

The system uses the WiFi module ESP8266 in order to
upload sensor data from DHT-11 to the cloud datastore

(Figure 3). It is a low cost WiFi microchip with full TCP/IP
stack and works on the 3.3V that is provided by NodeMCU in
our system. This module is constructed through the AT
commands and needs the essential sequence to be used as a
client. The module can work as both client and server. It
acquires an IP address on being connected to WiFi through
which the module then communicates over the Internet. After
testing our ESP8266 module, we connected it with NodeMCU
and then programmed it to configure ESP8266 WiFi module
as TCP client and send data to cloud server (AWS IoT) using
MQTT, from where we can get the data (received from the
sensors) to visualize and analyze on the mobile application.

Figure 3: ESP8266 WiFi Module

D. Hardware Block Diagram

Figure 4 shows the hardware block diagram of the
proposed system. The figure also depicts the flow of the
system functionality with DHT-11 sensors providing the live
readings of temperature and humidity simultaneously to the
microcontroller which sends these reading through the Wi-Fi
module over the Internet to the cloud.

Figure 4: Block diagram and connections

IV. SOFTWARE IMPLEMENTATION

Software as always plays the most important role in the
integration and working of any hardware design, so as in our
proposed system. There are two parts to our software
development: initialization and configuration of hardware,
and the development of Android based mobile application as
the user interface.

A. Software for Initialization and Configuration of
Hardware

Arduino IDE was used to program the NodeMCU
microcontroller for data retrieval from sensor and data
transmission to the cloud. Once the individual hardware
components were tested, we integrated them together. Using
the Arduino IDE include the libraries from Sketch -> Include
Library -> Manage Libraries. Then install the WiFi manager
libraries.

Now Install the DHT sensor Library same way we install
WiFi manager library but chose “DHT sensor library by
Adafruit Version” and select your desired version to install. It
is recommended to select latest version of both DHT-11 and
WiFi manager Library.

Figure 5: Library installation using the Arduino IDE

Figure 5.1: WiFi Manager Library installation

Figure 5.2: DHT Library installation

 First of all, the Wi-Fi shield was initialized and then
configured the Wi-Fi module ESP8266 as a TCP/IP client.
Once the sensor data is read by the NodeMCU microcontroller
it is uploaded to the cloud, we use the IoT analytics service of
cloud services to aggregate, visualize and analyze live data
streams. The Wi-Fi module sends data to the cloud through its
assigned IP.

Figure 6: Flowchart of the program

B. Transferring data from the sensor to cloud using MQTT

Message Queuing Telemetry Transport (MQTT) is a
widely used Publish-Subscribe based messaging model that
uses UDP as a transport protocol. Most of the IoT
communications between the devices require a simple, fast,
bandwidth efficient, and do not need more overhead for the
data transmissions. Because of these reasons, MQTT has an
edge over HTTP where in the latter protocol uses TCP, is
slower, consumes nearly ten times the bandwidth and is more
power consuming. MQTT is client-server-based model where
in the server preferably called the MQTT Broker is
responsible to handle the requests of one or many clients. The
messaging actions between the clients and the MQTT Broker
are grouped into Publish and Subscribe models. The Client
that intends to send its data usually Publishes it in the JSON
format to the IoT MQTT Broker. The Broker maintains the
data in its shadow database table and sends this data to the
other Clients which are subscribed for the MQTT Topic with
the Broker. Since the MQTT protocol is lightweight, the
average transmission time for the data transfer from the

publishing client to the receiving client that subscribes for this
Topic from the MQTT Broker is almost in real time.

C. Android Application

We have created an Android application using the Android
Studio Integrated Development Environment (IDE) and Java
programming language [8]. The Android application get the
data captured by the DHT-11 sensors from the cloud using the
needed services. Using the REST API request methods such
as GET, POST, PUT, and DELETE, we can create a channel
and update its feed, update an existing channel, clear a channel
feed, and delete a channel. The application gets the data from
the cloud using the REST GET method. The received JSON
response from the cloud is then populated using JSON Parser.
The end users run the Android application and it allows them
to monitor the real-time temperature and humidity readings
for the monitored area e.g. a room. We have provided a user
friendly and simple user interface for the user to view and
interpret the required information from the data. Along with
the data we are presenting some helpful outcomes and trends
using the sensor data. Apart from the temperature and
humidity data from the sensors we have used the live data
from the National weather services related to other
environmental parameters for deriving some useful facts and
presenting it to the user in the Android application.

COMPARING THE TECHNOLOGIES USED

A. AWS IoT vs Azure IoT Hub vs Google Cloud IoT

Amongst the current available Cloud IoT solutions in the
market, these three offers the most notable services for IoT
Cloud Computing – AWS IoT, Azure IoT Hub and Google
Cloud IoT.

Compari
son

Topics

AWS IoT Azure IoT
Hub

Google Cloud
IoT

Market
Share
(2018)

52%
(Leading in
the industry)

31% 19%

IoT
Cloud
Services

IoT Core,
Greengrass,
IoT Device
Manager,
IoT – 1
Click, IoT
Device
Defender,
FreeRTOS

IoT Hub,
IoT Edge,
IoT Central,
IoT Solution
Accelerators

Cloud IoT
Core, Cloud
Pub/Sub,
Cloud IoT
Edge

Analytic
s

IoT Analysis,
Amazon
Kinesis,
Quicksight,
Cloud Watch

Azure
Monitor,
Azure
Storage,
Stream
Analysis,
Power BI,
Azure Event
Hubs

Big Query,
Compute
Engine, App
Engine,
Stackdriver

Support
ed
Protocol
s

MQTT,
HTTPS

MQTT,
HTTPS,
AMQP

MQTT,
HTTPS

SDK Java, Python,
C, Android,
iOS, Node.JS

.NET, Java,
C, Node.JS,
Android,
Native iOS

Android, Go,
Java, .NET,
JavaScript,
C, C++,
PHP, Python,
iOS

Authenti
cation

and
Security

IAM Service,
Cognito User
Service,
X.509 Client
Authenticatio
n, TLS for
device –
cloud
encryption

X.509
certificates,
Token based
(SAS) per
device, TLS
for device –
cloud
encryption

X.509
certificates
and private
keys, IAM
users and
groups, RSA,
Elliptic
curve, TLS
for device –
cloud
encryption

Pricing Per number
of messages
– each
message size
1Kb

Number of
messages/
per unit -
each
message
size 4kb

Based on
bandwidth
usage

Commu
nication

Telemetry,
Command
based, JSON
Web tokens

Telemetry,
State based
commands
usage,
JSON Web
tokens

Telemetry,
Command
based, JSON
Web tokens

Compared to all others, AWS IoT platform offers a vast IoT
Cloud Services and Applications and the projects are
generally easy to start with AWS IoT. AWS offers an
impressive infrastructure for the IoT applications that can be
integrated across a sheer number of AWS Services, Products,
Analytics and Powerful AI. Considered in our project, the
messaging volume and the bandwidth less than 1Kb per
message, AWS is cost effective as well.

B. IoT Stack Protocols: MQTT vs AMQP

For the IoT communication between the embedded devices
(e.g. NodeMCU) and the IoT core, there are few protocols
available. Of these MQTT and AMQP (Advanced Messaging
Queuing Protocol) are widely used in the industry. The choice
of the protocols depends on the kind of data and the level of
security needed in the communication. MQTT is designed to
be used where low overhead and bandwidth is of concern.
Whereas AMQP has a very rich set of advanced features and
provide more overhead than MQTT. So, we have chosen
MQTT over AMQP as a communication protocol between
IoT Core and the Clients.

EXPERIMENT RESULTS

A complete design of the proposed environmental monitoring
system is shown in Figure 4 and the implemented design is
shown in Figure 8, which shows the integration of all
hardware components in working condition. DHT-11 and
ESP8266 are connected to the NodeMCU microcontroller.
DHT-11 and the cloud services are interfaced using the
Arduino IDE. The end user Android application connects
with cloud and displays the captured data and the relevant
information from the analysis of this data.

Here we present the experimental results of the proposed
system and display it to the mobile user through the mobile
application and the graphical record of temperature and
humidity monitoring, and other environmental parameters.

The proposed system use the MQTT protocol for sending the
input values from the DHT11 sensor placed in different geo-
locations with multiple mobile devices on the receiving edge.
These devices subscribe to the same MQTT topic and through
NodeMCU the message gets published to that shared topic.

Figure 8: Integrated System

A. Sensor and Cloud

Figure 9 shows the data displayed on the Arduino console.

Figure 9: Arduino Console

AWS IoT core Shadow Table for Topic (T) displaying the
readings as received from the NodeMCU Client. IOT Core
acts as a MQTT Broker in figure 10.

Figure 10: AWS IoT Core Shadow

Figure 11 shows the payload received by the Mobile Client
which is subscribed to AWS IOT topic (T) via MQTT.

Figure 11: Data received by the mobile client

B. Application User Interface

The Android application shows the data related to the
temperature and humidity record captured by the DHT-11
sensors and other environmental parameters fetched from the
National Weather Service’s APIs.

C. Graphical Record Temperature/Humidity Monitoring

Figure 12 shows the record of temperature monitoring over a
period with an interval of 15 seconds. To accurately test the
proposed system, we varied the temperature around the
sensor artificially by a lighting system, thus a spike can be
observed on the graph after which the temperature readings
settle to average environmental temperature.

Figure 12: Temperature monitoring record

Figure 13 shows the record of humidity monitoring over a
period with an interval of 15 seconds. Like temperature
monitoring, we varied the temperature around sensor
artificially by a lighting system, the downward spike in
humidity can be viewed in the graph after which the humidity
readings settle to average environmental humidity.

Figure 13: Humidity monitoring record

D. Temprature vs Humidity

Figure 14 shows a graph of humidity versus temperature. As
expected, temperature and humidity are inversely related to
each other that is the humidity level decreases with the
increase in temperature.

Figure 14: Temperature Versus Humidity

CONCLUSION

This paper presents a real time IoT based environmental
monitoring system for monitoring of temperature and
humidity of surrounding environment, and to infer some
relevant knowledge based on the weather data. The captured
data is sent through Wi-Fi to the cloud where both real-time
data and its graphical analyses can be viewed. An Android
application is developed for the end user to monitor the
environment of the area where the hardware is deployed
using a smart phone. Also, this system can be used to send
the notifications using the one click IoT device about the
current condition. This system can be extended to instrument
a home automation system by auto triggering some actions
and control other devices based on the monitored values of
temperature and humidity with the help of the mobile
application. The proposed system is a key step in
understanding the IoT applications development and
implementation. It also serves as a building block for several
useful innovations in this direction. The Environmental
Sensor Monitoring system furnishes a good paradigm for any
Automation System based on Internet of Things (IoT).

ACKNOWLEDGMENT

We thank our professor Chandrasekar Vuppalapati from San
Jose State University who provided us this opportunity to
work on this research paper and project and guided us on the
same. We would also like to show our gratitude to our friends
for sharing their pearls of wisdom with us during the course
of this research and thank them for reviewing this paper.

REFERENCES

[1] S. Pasha, “ThingSpeak based sensing and monitoring
system”, International Journal of New Technology and
Research, Vol. 2, No. 6, pp. 19-23, 2016
[2] K. S. S. Ram, A. N. P. S. Gupta, “IoT based data logger
system for weather monitoring using wireless sensor
networks”, International Journal of Engineering Trends and
Technology, Vol. 32, No. 2, pp. 71-75, 2016
[3] S. D. Shewale, S. N. Gaikwad, “An IoT based real-time
weather monitoring system using Raspberry Pi”,
International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering”, Vol. 6, No. 6,
pp. 4242-4249, 2017

[4] R. Ayyappadas, A. K. Kavitha, S. M. Praveena, R. M. S.
Parvathi, “Design and implementation of weather monitoring
system using wireless communication”, Vol. 5, No. 5, pp. 1-
7, 2017
[5] S. Ferdoush, X. Li, “Wireless sensor network system
design using Raspberry Pi and Arduino for environmental
monitoring application”, Procedia Computer Science, Vol.
34, pp. 103-110, 2014
[6] Arduino, Arduino Uno Rev 3 Overview, available at:
https://store.arduino.cc/arduino-uno-rev3
[7] Girija, Harshalatha, Shires, Pushpalatha, “Internet of
Things (IOT) based Weather Monitoring System”
[8]
[9] MQTT (MQ Telemetry Transport)
https://internetofthingsagenda.techtarget.com/definition/MQ
TT-MQ-Telemetry-Transport
[10] Arduino Development Environment and IDE
http://arduino.cc/en/guide/Environment
http://arduino.cc/en/main/software
[11] https://developer.android.com

